
IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 1

Difference on Visual Related Programming Understanding between
Designers and Programmers by Using a Programmed Contents

Comparison Method

DICK MARTINEZ CALDERON†1 YUKINOBU MIYAMOTO†2
HIDENARI KIYOMITSU†1 KAZUHIRO OHTSUKI†1

The main objective of this research is to look for a difference on programming understanding between Graphic Designers, Game
Designers and Programmers. We propose a method whereby comparing 2 displayed images and interactive animations produced
by programming samples (problems) a subject decides which one of the programs is more difficult to build with programming
than the other, or, if the difficulty is similar; to solve this problems, two types of understanding are needed: one regarding the
visual processing of the two pictures, and the second regarding the program making those images. The problems of this method
were built considering those two types of understanding. We built a testing system based on this method and performed an
experiment using this system with three groups of students: Game Software (GS), Graphic Design (GD) and IT.

1. Introduction

 During the last two decades, software development has

changed drastically; new resources to make programming easier

have been created, therefore more people not involved in

professional software development have become able to do

programming, for example: several amounts of code samples

and tutorials are being uploaded to the web, and any person

involved in programming tasks are copy-pasting them; a large

amount of algorithms are constantly being converted into

libraries, or compilations of functions and made widely

available, then, to find the best-suited function within libraries

has become an important task; and several visual software

development tools and languages, where the programming code

is hidden or “black-boxed” and can be applied with “just a

click” are being developed.

 In addition to those changes on programming development,

the background and learning modes of people using

programming in their jobs or careers have diversified as well.

 For example: Software developers are being taught to use

code samples and libraries to do programming as a complement

to the traditional “write code from scratch” traditional

perspective, while graphic designers are learning programming

through authoring tools and visual-based programming

languages. Additionally, game designers are learning the

principles of both of the mentioned professions at the same time.

Considering these changes on learning modes we may assume

that programming knowledge is different according to the field

as well.

 The objective of our research is to look for a difference on the

way graphic designers, game designers and programmers

understand programming in a general sense, by using their own

knowledge. To look for this difference, we propose a method

based on the comparison of programmed samples; with this

method, from a pair of images produced by these programming

†1 Graduate School of Intercultural Studies, Kobe University, Kobe, Hyogo,

657-8501, Japan.
†2 Graduate School of Information Technology, Kobe Institute of Computing,

Kobe, Hyogo, 650-0001, Japan.

samples (problems) a subject must decide which one of the

programs is more difficult to build with programming than the

other, or, if the difficulty is similar. We think that by using this

method we can measure a “panoramic” programming

knowledge, different than the knowledge related to

programming language grammar, code writing and reading, or

practical performance at making programs.

 We built a testing system based on this method, where 16

problems were displayed, and using this system we performed

an experiment with three groups of students: Game Design,

Graphic Design and IT; from the College of Computing of the

Kobe Institute of Computing.

 On Section 2 of this paper, we make a distinction between

programmers and designers making emphasis on the processes

that designers carry on when programming on authoring tools,

these processes define for us the panoramic understanding of

programming and serve as a background to, subsequently,

describe the proposed method in detail in Section 3.

 Section 4 introduces and explains the characteristics of the

performed experiment and Section 5 presents the results,

emphasizing on findings per group and discussing representative

cases.

2. Background of the Study

2.1 Designers as Programmers

 In Graphic Design related courses in universities and

specialized schools, it’s becoming usual to include graphic

software and authoring tools programming classes, because any

designer has to learn several tools combining different

programming languages and management of specialized

interfaces.

 Programming in Graphic Design is usually taught by

following a basic curriculum extracted from IT courses on the

same subject, but fixing the topics according to the resources

available on the tools [2], or externally in additional libraries,

probably code snippets or extensions; then, when a designer

deals with a new tool almost always deals with new methods to

use an already learned programming language or a new

programming language. Ko et al. consider that, with

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 2

visualization tools for programming, “learners [do] not face

barriers in understanding data itself, but in trying to act on data

(such as how to create or modify it)” [3].

 For example: a popular web authoring tool used by designers

to program with HTML (HyperText Markup Language), CSS

(Cascade Styling Sheets) and JavaScript among other

programming languages is Adobe Dreamweaver [4]; this tool

has several snippets and pre-made objects that can be dragged

into a visible template of a web page, and supposedly will work

at execution time but sometimes they don’t. Besides, there are

many “tricks” to make appear specific pieces of code or to

control diverse processes; these tricks usually require a long

sequence of mouse clicks, searching around the tool menus or

the interface and dealing with programming code directly;

Adobe Inc. (creators of Dreamweaver) announced a new web

design tool called Muse that supposedly allows graphic

designers to: “create unique, standards-based websites –

without writing a single line of code” [5], with this new tool

Graphic Designers need to get used to new methods or “tricks”

to be able to use the same programming languages.

 Because of this double-tool handling and considering that a

graphic designer is an end-user programmer, or a person who

needs to use programming in his projects but is not entirely

dedicated to that [1]; he will consequently solve programming

problems recursively: by trial and error, by pulling in and taking

out those code snippets and pre-made objects, by possibly trying

out a few lines of code he could have found online; in the end by

“sketching” code [1][6], that he himself has built without having

any idea if it’s optimal or standard-compliant, not even how

many hidden bugs it will have, through this “sketching” of code

this designer is applying his design knowledge.

 This “sketching” way of programming will eventually bring

difficulties if intended to be performed in a professional level,

because most of the times its learning curve is shallow, leading

to what Ko et al. call “Simplifying Assumptions” [3]. By

“sketching” code a designer is constantly learning from diverse

sources, and trying diverse ways to solve a programming

problem that, in the end, summarizes in a product he assumes is

good but, when compared with what it should be, many

mistakes can emerge, resulting in “Knowledge Breakdowns”[3];

in other words: if a program is bad, surely all the methods

applied by the designer to do this product will fall down too, and

he will need to start learning again having the same possibility

of making those simplifying assumptions and having knowledge

breakdowns again.

2.2 Particularities of Graphic Designers’ Programming

Understanding

 Even when it could be considered an unappropriated way to

do programming, “sketching” code allows graphic designers to

transform the knowledge they acquire on programming, an

external matter, into something more related with their visual

nature; so they generate a new kind of programming knowledge

merged with design concepts [1][2]; different from

programming learnt through formal, academic ways on IT and

software development fields.

 In any design project, a graphic designer needs to establish a

connection, primarily visual, with any material he needs to use

or handle; he expects some of the skills he assumes as

fundamental related with the appropriation of objects (for

instance: drawing, diagramming, getting to know physical

characteristics like: color, form, texture) to be available when

programming; Ozenc et al refer to this as the “immateriality of

software” [6]; so through sketching a designer tries to bring

materiality to code.

 Referring in detail to the process a designer performs, Ozenc

et al. mention that:

“In their work to envision ‘what might be’, designers engage in

reflection in action (discovering the idea at the point of

rendering it) and reflection on action (stepping back to assess

what they have made as they plan their next move)” [6].

 Designers need scenarios, stages, where to explore the

relation between objects (things), space, and environmental

factors, but they find really difficult to do this with code; they

lack the understanding of “code” as “objects” because they

don’t have anything that holds up their perception.

 Norman refers to this process as “Affordance”, that is: “A

relationship between the properties of an object and the

capabilities of the agent that determine just how the object

could possibly be used” [7].

 Programmers on the other hand only gets to know and

become aware of software graphic elements when they deal with

subjects like: User Interface Programming, Web development,

or Multimedia (Sound or Video). But unlike designers, they

don’t do programming by “seeing” but by “reading”, they

manage languages so they need to be aware of syntax,

coherence and particularly, errors; they focus on code patterns

and coding style to “catch the bug”.

 Regarding this aspect LaToza and Myers state that:

“ In coding activities, developers select among various

strategies to answer the questions necessary to complete their

tasks (…). When exploring code, developers seek information,

make decisions about which structural relationship to traverse

to find information” [8].

 Programmers then, make relationships between structures

instead of objects, they cannot perceive things like color, or

shape but they decipher code and, to do that, they apply

“strategies” instead of “sketching”.

3. Programmed Contents Comparison Method

 The objective of our research is to look for a difference on the

way graphic designers, game designers and programmers

understand programming in a general or panoramic sense, by

using their knowledge.

 To seek this difference we propose a “Programmed Contents

Comparison Method”. With this method, by comparing 2

displayed images and interactive animations produced by

programming samples, a subject decides which one of the

programs producing those images is more difficult to build with

programming than the other, or, if the difficulty is similar for

both of them. For our purposes, a set of two programming

samples will be called a “problem”.

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 3

Figure 1 Example of a problem (a pair of samples)

 Figure 1 shows an example of the proposed problems. The

concept for this problem is “Hidden Line Removal”, the same

image can be obtained easily with graphic authoring tools, as

well as with diverse programming languages based on graphic

objects libraries (like Processing), but even when  case seems
a simple change (the color filling of the circles is extremely easy

to achieve in any graphic tool), the programming concept here

involved: “Hidden Line Removal” is more complicated than the

one involved on . The answer to this problem will depend on
the person’s association of the images with programs and the

identification of the “Hidden Line Removal” concept.

 By applying the “Programmed Contents Comparison

Method”, we think we can see if a subject is capable of solving

programming problems without thinking about programming

language’s syntax, code writing and reading; instead, by using

his own understanding about how the programming of those

samples works and by applying his own knowledge and way of

thinking.

 If a subject is capable of: associate the compared images to

the programs producing them, grasp (perceive, see) their main

structures, understand which one of those structures is more

difficult and from there give an answer to one of the

programming problems proposed; we can say that this person

was able to solve this programming problem if he gives the

correct answer.

 Having into account that the programming problems on our

method are based on programming structures that designers and

programmers learn and are used to deal with; if designers and

programmers provide distinct answers, we think that the

difference on their understanding of each structure in general

could become evident.

3.1 Problems Preparation

3.1.1 Problem Selection and Classification

 Each problem is based on the difficulty level of one sample

over the other regarding a main programming structure we

called: “programming concept”; basically, the subject needs to

identify this programming concept in order to answer correctly;

this concept is the base of the most difficult sample of each

problem.

 To build a prototype of the method, several programming

concepts were summarized from programming books oriented to

designers and developers; having as a main selection criteria its

level (beginners to experts) and considering if this concept is

representative of programming in general, or if along those

books the concept is studied by graphic and game designers, as

well as by developers and programmers [9][10][11][12][13]; the

chosen concepts were, respectively: Bezier Line, Nested

Iteration, Coordinates Storage and Recalling, Erasing and

re-drawing, Boundary detection, Easing, Timer, Area

delimitation, New position according to previous position,

Change through time, Animation using trigonometry, Picture

Pixel Management, Recursion, Lists, Empty Area Recognition

and Hidden Line Removal. In total 16 problems were prepared.

3.1.2 Problems’ Degree of Difficulty

 We designed the whole set of problems to have two kinds of

difficulty for each one: first, the difficulty of associate images

with programs; to surpass this difficulty, we consider that the

subject answering the problems probably needs to:

 Understand what is each sample doing (how it is moving,

what is happening) by looking at the images on screen.

 Identify what elements is each program using to do what

it’s doing (for instance: if there is a circle on the picture,

there probably will be a circle on program, if there is a

vertical movement on the animation, there probably will

be a vertical movement on the program).

 Understand how the objects the program is using are

working together to give that (visual) result (for example

how a circle is connected with the movement it’s doing or

the position and timing it’s appearing).

 Second, the difficulty of associate the programs with the

programming concept; to surpass this difficulty we think the

subject probably needs to:

 Think about, and/or recall from his own knowledge and/or

experience:

o What kind of programming structure can be used to

achieve this movement, or effect? (For example: the

subject could be asking to himself: how a circle

moving on screen can be moving it? through what

programming structure or concept?)

o What is the main effect of each of those structures?

(The subject probably asks himself: if we apply that

structure to something, what is the result? And, is

that result coherent with some of what is currently

happening on the pictures?).

o How many programming structures or concepts he

can apply into the objects appearing on the screen,

and how many ways of application does they have

(alternative uses)

 Identify which is the main concept for each sample (what

is the more relevant programming concept?).

 Compare both main concepts, for both samples.

 Following this line of thought, we arranged some problems to

have a difficult image-program association, that will need more

knowledge on images or graphic software tools management;

some other problems were thought to have an easily identifiable

image-program association but the comparison between

programs and the connection with the concept will need a

deeper knowledge on programming; and finally, we thought

problems with both characteristics, where both kinds of

knowledge will be needed.

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 4

 It doesn’t matter if the concept is thought to be applied

through a library or an internal simplified function of a

programming language, neither if applied with a graphic tool;

the purpose of each problem is for the student to be able to think

about the concept using his own understanding of programming

as general and different as it could be (depending on the field).

4. Experiment

 In this section we describe the characteristics of the

experiment performed using a web testing system with three

groups of students.

4.1 Programmed Contents Comparison Testing System

 We built a web testing system based on the described method,

where the set of 16 problems was displayed. Problem’s contents

were developed using Processing.js and in order to make the

system compatible with modern browsers, the interface and

database were developed using web current technologies and

programming languages such as: JavaScript, MySQL and PHP.

 Having into account that the difficulty is to be evaluated from

the programming contents, the answering method was built to be

simple and straightforward, having a unique question: “which

sample (of the pair displayed on each problem) is more

difficult?” and four answer options: “The first sample”, “The

second sample”, “Both of them” and “I don’t know”. During

the test the student must choose only one answer within those

options, then click on a “submit” button to store his answer on a

database and pass to the next problem. The test was thought to

be carried on sequentially (one problem after another) and in

one try, the subject was asked to answer all and each one of the

problems and the time needed to answer one problem was

considered to be 30 sec. to 1 min.

 Table 1 shows the displaying order of the problems in the test,

and the programming concept of each numbered problem.

Table 1 Programming concept for each problem number

Problem
Number

Programming Concept

#1 Bezier Line
#2 Nested Iteration
#3 Coordinates Storage and Recalling
#4 Erasing and re-drawing
#5 Boundary detection
#6 Easing
#7 Timer
#8 Area delimitation
#9 New position according to previous position

#10 Change through time
#11 Animation using trigonometry
#12 Picture Pixel Management
#13 Recursion
#14 Lists
#15 Empty Area Recognition
#16 Hidden Line Removal

 Since there is only 1 question and 4 answer options across all

the 16 problems, the answers are compiled on the database

assigning a number to each one; therefore, for the original

question: “Which sample (of the pair displayed on each

problem) is more difficult?” if the answer is stored on the

database as “0”, that means this person answered “sample 1”, if

the answer is stored as “1” this person answered “sample 2”,

and so on.

Figure. 2 Example of a problem on the Web Testing System

 On Figure 2 we can see the appearance of a problem when

seen on screen; the screen is divided to contain a first section

(header) with information of the current amount of correct

answers and the number of the current displayed problem; a

second section (contents) that includes the two programming

samples to compare; and the third section (question) displaying

the question with the list of answers to be chosen using

radio-buttons and the submit button.

 In addition, by the end of the test, a complete report with

user’s answers per question compared with their respective

correct answers and a brief explanation about the evaluated

programming concept is displayed; likewise, each subject has

the opportunity to answer a brief questionnaire regarding the

whole test experience.

4.2 Student Groups Characteristics

 The experiment was conducted with three groups of students

from the College of Computing of Kobe Institute of Computing:

The first group was Graphic Design (GD) on the 1st year

integrated by 32 students; their curriculum includes subjects

where Graphic Software Tools for Photo Edition, Illustration,

Desktop Publishing and 3D Modeling are taught together with

Web Coding and Web Design, and only programming languages

oriented to Web (HTML, CSS, JavaScript) are studied.

 The second group was IT and Software (IT) in the 2nd year

integrated by 41 students; their curriculum includes subjects

where programming languages such as: C, Java and Assembler

are taught, also Algorithm Theory is studied together with Web

back-end programming and networking. This curriculum doesn’t

include classes where any graphic software tool or visual-related

programming language has to be used or studied.

 The third group was Game Software (GS) on the 3rd year

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 5

integrated by 61 students; Besides of Game Design related

subjects such as: Graphic Design Principles, Character Design,

3D Modeling and Animation; their curriculum includes subjects

where the same programming languages studied by IT are taught.

Additionally, this curriculum includes subjects on graphic

libraries for those languages (for example: DirectX on C++),

Web Coding, Algorithm Theory and Mathematics. Graphic

Software Tools are used mostly on Game Design classes.

 Professors in charge of the three groups reported their scores

obtained on a previous paper-based programming ability test;

these scores followed the pattern: GS>IT>GD, in other words:

Game Software (GS) group achieved the best score on the test,

followed by the IT and Software group (IT), and in the last

position was the Graphic Design (GD) group.

5. Results

 In this section we examine the process through which we look

for difference on the experiment results, followed by a

discussion about problems that obtained a significant difference

(Representative Problems) dividing them according to the group

who obtained the highest score on each; this discussion

considers the possible reasons for each of these problems to be

advantageous for a particular group.

 The amount of answers per option per problem were

compared with the correct answer for each problem to obtain the

amount of correct answers per group for each problem and for

the whole test per student.

 Being unequal groups, we had to establish the percentage of

correct answers per problem for each one of the groups, Table 2

shows the percentage of the total of correct answers and average

for each problem per group, highlighting problems with high

and low scores.

Table 2 Percentage of correct answers per problem highlighting
problems with high and low scores per group

Problem Number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 Avg

Game Software
% correct answers

90 74 64 31 62 85 54 41 67 5 26 69 84 72 44 51 57

Graphic Design
% correct answers

88 31 72 44 88 81 44 34 72 19 16 66 53 63 41 25 52

IT and software
% correct answers

63 66 56 37 71 80 41 37 66 20 20 39 63 49 27 41 48

Conventions High Score Low Score

 By using the correct answers percentages, we could establish

difference per problems between the three groups by comparing:

GD with IT and; GD with GS and GS with IT.

 Having the differences on the correct answers for each group

we could see which problems had a significant difference on its

correct answers’ percentage; considering these problems as

representative we performed an F-test of equality of variances

over the original results according to the groups’ comparison

previously mentioned, according to the results of this test, for

each of the compared sets of data we performed a two tailed

T-test to confirm the validity of the difference for each

representative problem.

 Table 3 shows the difference on correct answers’ percentage

between the groups highlighting the representative problems, or

the problems that had a significant difference for, at least one of

the performed comparisons.

Table 3 Significant difference on percentage of correct answers
verified through T-test per group comparison per problem, highlighting

representative problems

Problem Number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

% Difference GD vs IT                

% Difference GS vs IT                

% Difference GD vs GS                



 



Conventions
Significant Difference
Advantaging GS

Significant Difference
Advantaging IT

Representative Problem

Problems without
Significant Difference

Significant Difference
Advantaging GD

5.1 Representative Problems Having a Difference

Advantaging GD
 GD obtained a comparatively better average per problem than

IT, particularly on problems having easier image-program

association and a difficult comparison and programming concept

association, but was overtaken in most of the problems by GS’

score.

 This group obtained a result somewhat lower than GS but

higher than IT on two problems, namely: “Bezier Line” (#1) and

“Picture Pixel Management” (#12), had the best score of the

three groups on one of the representative problems: “Boundary

Detection” (#5) and almost the same result than IT on “Change

through time” (#10) problem.

5.1.1 Bezier Line (#1)

Figure 3 Appearance of “Bezier Line” problem

 This problem belongs to the group requiring more knowledge

on images management or graphic tools; it contains static

samples, therefore interaction wasn’t needed.

 IT obtained the lowest percentage of correct answers (63%),

and the GS and GD obtained almost equal percentages of correct

answers (90 % and 88% respectively).

 This problem was thought to have a really simple set of

images to interpret, but the concept is more familiar for GS and

GD because several authoring and creation tools are based on

this kind of graphics (in fact, one of the first concepts to learn

when dealing with those authoring tools is the difference

between a “Pixel based image” and a “Bezier based image” and

the complexity of the last one). given that either: a curve line or

an straight line can be written in many programming languages

by using only one function (sometimes the same function with

different parameters) regardless of if it’s Bezier or not, some of

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 6

the IT students could have thought that the difficulty was

similar.

5.1.2 Boundary Detection (#5)

Figure 4 Appearance of “Boundary Detection” problem

 This problem belongs to the group requiring both, knowledge

on programming and on images management or graphic tools

and it requires mouse interaction; on the first sample, if the

mouse pointer hovers over the circle, the background turns

black; for the second sample the mouse pointer is replaced by a

circle so if the static circle is intersected by the moving circle,

the background turns black.

 GS obtained the lowest percentage of correct answers (62%)

while GD and IT groups obtained 88% and 71% respectively.

 For GS the “Boundary detection” concept is fundamental,

either for programming and screen design. Games are based on

the detection or not of objects’ limits in order to perform actions,

and in order to create environments (worlds, terrains) boundary

detection is needed as well. By looking at GS’ data on other

answers for this problem, the answer “both of them” is on

second place; 17 of 61 people thought this problem was of

similar difficulty. From the point of view of a game designer

probably both samples had the same difficulty because they

seemed to be related to boundary detection; a graphic designer

on the other hand is probably used to see the first sample when

dealing with interface button behaviors, available as easily

changeable options in several authoring tools while the second

sample shows an action caused by the (precise) intersection of

two forms, since the second one considers the area and the point

of intersection of the two circles, it is more difficult for GD to

imagine in programming.

5.1.3 Change Through Time (#10)

Figure 5 Appearance of “Change Through Time” problem

 This problem belongs to the group requiring both, knowledge

on programming and on images management or graphic tools; it

includes animated samples, but interaction isn’t needed.

 For this problem IT obtained 20% of correct answers while

GD obtained 19% and GS obtained 5% but, we need to consider

that from the total population, considering all the three groups

only 17 students of 134 answered correctly.

 We think that this problem needs to be revised in order to see

why did it perform poorly, but considering the rest of the

answers apart from the correct ones, the majority on the three

groups was inclined to answer that the first sample is the most

difficult; we think there are some possible reasons for this

situation, the first is: sample # 1 seems visually complicated;

and the second reason is: apparently, a more difficult concept

than the one we wanted to evaluate was included in the first

sample: “line position according to coordinates”. In other words,

in the second sample the position of the starting point and

ending point of the line on the X axis is the same on each step

while the line moves on the Y axis sequentially in one direction

only; but in the first sample, the starting and ending point of

each line on each step as well as the position on Y axis change

randomly, these are not sequential.

5.1.4 Picture Pixel Management (#12)

Figure 6 Appearance of “Picture Pixel Management” problem

 This problem belongs to the group requiring more knowledge

on images management or graphic tools; it requires mouse

interaction as well; the first sample changes the brightness of a

picture according to the position of the mouse while the second

sample replaces every pixel by a circle according to the depth of

color of a base picture, and changes the size of each circle

according to the position of the mouse.

 GS and GD obtained 69% and 66% respectively while IT

obtained 39% of correct answers.

 The results of this problem were expected because this

problem involved Image Processing knowledge, and pixel

management is a basic concept for both GD and GS, these

groups of students understand the concept of Pixel from their

first years of their careers.

5.2 Representative Problems Having a Difference

Advantaging IT

 According to the results, in general, IT performed

comparatively worse than GD and GS on most of the problems

but had a better result in two of them, namely “Nested Iteration”

(#2) and “Hidden Line Removal” (#16); and one requiring both

kinds of knowledge: “Change through time” (#10).

 We have already analyzed the “Change through time”

problem on the previous subsection about GD results, having

this into account we will discuss here the remaining two

problems.

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 7

5.2.1 Nested Iteration (#2)

Figure 7 Appearance of “Nested Iteration” Problem

 This problem belongs to the group requiring more knowledge

on programming; it contains static samples, therefore interaction

isn’t needed.

 GD obtained the lowest percentage (31%) being one of lowest

of the group’s whole test; comparatively IT and GS obtained

comparatively high percentages (66% and 74% respectively).

 The concept “Nested Iteration” is basic in programming for

matrix allocation, basic search through lists and matrices,

among other procedures; both samples on the problem included

that concept; the fact that this problem was answered correctly

by most of IT students shows us that probably they have certain

knowledge on the graphical representation of the “Nested

Iteration”, therefore they were able to surpass the difficulty

Image-Program, while graphic designers only get to see this

kind of graphics through authoring tools. By looking at the

second sample GD found this one more difficult to perform

probably because of the steps needed to achieve it using a

graphic tool, having into account its amount of graphic elements

(squares).

5.2.2 Hidden Line Removal (#16)

Figure 8 Appearance of “Hidden Line Removal” Problem

 This problem belongs to the group requiring more knowledge

on programming; it contains static samples, therefore interaction

isn’t needed.

 The difference is higher for GS and IT, whom obtained 51%

and 41% of correct answers respectively while Graphic Design

group obtained only a 25% of correct answers.

 Apart from the correct answers, the rest of the answers for

this problem show that the majority of students of GD were

inclined to think that sample #2 was more difficult. As we

explained previously on section 3.1 of this paper, we expected

the “Hidden Line Removal” process to be identified; this wasn’t

achieved by GD who surely lacks the knowledge related with

this main programming concept. We expected GD to, at least,

identify the difficulty as similar for both samples since, in order

to get the same pictures with graphic tools, a simple process of

changing the filling of the ovals with commands is to be

performed, but probably the “visual disorder” of the second

sample tricked them.

5.3 Representative Problems Having a Difference

Advantaging GS

 GS achieved the highest percentage of right answers for most

of the problems, this group was able to surpass both difficulties

regardless of what kind of problem was presented; as we

thought, they possibly perform very well when dealing with

authoring tools and visual-related programming languages.

 GS had the best score of the three groups on six of eight

representative problems, namely: “Bezier Line” (#1), “Nested

Iteration” (#2), “Picture Pixel Management” (#12), “Recursion”

(#13), “Lists” (#14), and “Hidden Line Removal” (#16). We

have already analyzed “Bezier Line”, “Nested Iteration”,

“Picture Pixel Management” and “Hidden Line Removal” on the

previous subsections, therefore we will discuss here the

remaining two problems.

5.3.1 Recursion (#13)

Figure 9 Appearance of “Recursion” problem

 This problem belongs to the group requiring both, knowledge

on programming and on images management or graphic tools; it

requires mouse interaction as well, when the user clicks on each

sample there is a change: for sample #1 this change follows a

recursive algorithm, the second sample only draws two crossing

lines in the position where the click is performed.

 The difference is higher for GS, who obtained 84% while IT

and GD obtained 63% and 53% respectively.

 This problem is of high complexity in both the visual part and

the programming part, even though the sample on the right

could become visually disorganized as the clicks’ number raises,

the sample on the left looked much more symmetric. A GD

Student could be familiar with the concept of “fractal”, at least

to having read about, or seen visual samples of what a fractal

“looks like”; what we want to highlight here is the fact that GS

obtained a comparatively high score, and the difference with GD

is also high; from this result we can say that probably GS has a

solid knowledge of this concept in a programming level; and

this problem allows us identify a particular understanding of

programming from GD that seems to be solid from the Image

Management side.

 We may think that IT could be more familiar with the fractal

concept at a programming level than with its graphic

representation; we could also think that they weren’t able to

associate the second sample to a simpler program.

Vol.2015-CE-129 No.11
2015/3/21

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 8

5.3.2 Lists (#14)

Figure 10 Appearance of “Lists” problem

 This problem belongs to the group requiring more knowledge

on programming and it needs mouse interaction as well, for the

sample #1, when the user clicks on each colored circle a new

circle is added to the end of the “array” of black circles, while

on sample #2 the color circle is added on the middle of the

“array”.

 The difference advantages GS, who obtained 72% while IT

and GD obtained 49% and 63% respectively.

 “Lists Management” concept is fundamental in programming

and, has a high difficulty. The result advantaging GD and GS

could mean that, for programmers familiarized with lists

management (IT’s case), both samples are equally easier; we

verified this by looking at the other answers for this problem in

this group where “both of them” received the second larger

amount of answers.

6. Limitations and Future Topics

6.1 Limitations

 This method was implemented as a prototype, in this sense,

only results from three test groups were obtained; through the

analysis of the results provided by the application of this method

to the mentioned groups we were able to obtain only:

 Enough evidence to say that there is a difference on the

three groups’ understanding of the programming problems

included.

 Particularities of this difference per problem and per group,

including: best and worst answered problems by group,

difference in correct answers per problem per group, and

characteristics of the difference on answers.

6.2 Future Topics

 In further stages of this research, we want to enhance the

testing system to make it capable to identify and measure

programming abilities; we are considering to make use of this

system to measure how much of (in what degree) a specific

programming ability does a student have or is able to apply to

solve a programming problem as well as to make it useful to be

applied on different expertise levels and for identify

curricula-specific abilities by field; not only on Graphic Design,

Game Design and Software Development fields but with other

kind of professionals using programming in their daily jobs.

7. Conclusions

 We were able to use the proposed method to perform the

comparison of programmed contents with the purpose of

looking for difference. This method’s comparison can be

performed in the future with other kind of samples and other

kind of programming concepts to obtain more results regarding

the found difference.

 Results indicate as well that this method was useful to find a

difference on programming understanding between graphic

designers, game designers and programmers. Additionally,

results from the performed questionnaire showed a positive

feedback regarding the test system. Students recognized that this

test allowed them to evaluate their own ability on programming;

besides, by comparing this test with a usual paper based ability

test, they thought this test to be more enjoyable.

 Acknowledgments We would like to thank all the

Professors and Students from the College of Computing of Kobe

Institute of Computing who through their participation and

collaboration made possible the realization of this project’s

experiment.

References
[1] Myers, B., Park, S.Y., Nakano, Y., Mueller, G. and Ko, A.: How

Designers Design and Program Interactive Behaviors,
Proceedings of the 2008 IEEE Symposium on Visual Languages
and Human-Centric Computing (VLHCC '08), pp. 177-184
(2008).

[2] Park, S.Y., Myers, B. and Ko, A.: Designers' Natural Descriptions
of Interactive Behaviors, Proceedings of the 2008 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VLHCC '08), pp. 185-188 (2008).

[3] Ko, A., Myers, B. and Aung, H.H.: Six Learning Barriers in
End-User Programming Systems, Proceedings of the 2004 IEEE
Symposium on Visual Languages - Human Centric Computing
(VLHCC '04), pp. 199-206 (2004).

[4] Adobe Dreamweaver CC Website Builder, available from
< http://www.adobe.com/products/dreamweaver.html>.

[5] Adobe Muse Web Design Software, available from
< http://www.adobe.com/products/muse.html>.

[6] Kursat Ozenc, F., Miso, K., Zimmerman, J., Oney, S. and Myers,
B.: How to support designers in getting hold of the immaterial
material of software, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '10), pp. 2513-2522
(2010).

[7] Norman, D.: The Design of Everyday Things. Basic Books, New
York (2013).

[8] LaToza, T. and Myers, B.: On the Importance of Understanding
the Strategies that Developers Use, CHASE '10 Proceedings of
the 2010 ICSE Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 72-75 (2010).

[9] Bohnacker, H., Gross, B. and Laub, J.: Generative Design:
Visualize, Program and Create with Processing. Princeton
Architectural Press, New York (2012).

[10] Shiffman, D.: The Nature Of Code. Self-published, New York
(2012).

[11] Shiffman, D.: Learning Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction. Morgan
Kaufmann, Burlington (2008).

[12] Terzidis, K.: Algorithms for Visual Design Using the Processing
Language. Wiley Publishing, Inc, Indianapolis (2009).

[13] Lutz, M.: Learning Python. O'Reilly Media Inc., Sebastopol
(2009).

Vol.2015-CE-129 No.11
2015/3/21

