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Parameter Estimation in the Extreme-Value Distributions
Using the Continuation Method

HIDEO HIROSE'

An efficient and stable maximum likelihood parameter estimation scheme is introduced for the
three kinds of extreme-value distribution (Weibull, Gumbel, and Fréchet) using the generalized
extreme-value distribution and the continuation method. As the proposed algorithm can almost
always obtain the existing local maximum likelihood estimates automatically, it is of considerable
practical value. This paper focuses on the Weibull distribution parameter estimation and shows that
it is better to use the generalized extreme-value distribution than the Weibull distribution itself, and
that the continuation method is more efficient than the grid search method in searching for parameters
globally. The paper also shows that when there are no finite local maximum likelihood estimates in
the Weibull distribution, it is probable that there are finite local maximum likelihood estimates in
the Fréchet distribution, and vice versa. Only complete data sets are considered in this paper, but
the algorithm can easily be applied to censored data.

1. Introduction

It is well-known that maximum likelihood
parameter estimations in the three-parameter
Weibull distribution (W3P) are extremely tedi-
ous, and many researchers have long been pursu-
ing algorithms that find the estimates (see Pan-
chang and Gupta!'® and Hirose®), The proba-
bility distribution function of the Weibull model
is expressed by

F'(x; 7 B, 7):1*6Xp{*<i;—7)/3},
x>y, n>0, >0, (1)
where 7, 3, and y are scale, shape, and location
parameters, respectively. There are mainly two
difficulties in the Weibull parameter estimation ;
one is the non-regularity and other is the param-
eter diverging problem.

In the non-regular condition, which is treated
anomalously in the distribution, there are no
maximum likelihood estimates (MLEs) when 0
<B<1; MLEs do exist, but are not asymptot-
ically normal, when1 <A< 2 (see Duby® or
Smith'®). In order to avoid these difficulties,
especially for non-regular cases, a variety of
methods have been proposed. Among them

are modified moment estimation, proposed by
Cohen and Whitten® and Cohen, Whitten, and
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Ding® ; modified maximum likelihood estima-
tion, proposed by Cohen and Whitten® ;
and closed form methods, proposed by

Kappenmann'? ; Newby!? ; Wingo?? ;
Wyckoff, Bain, and Engelhardt?V; Zanakis?? ;
and Zanakis and Mann?®, However, the esti-
mates obtained by these methods have some
biases, as is shown by the results of the Monte
Carlo simulation (Hirose®), when the shape
parameter is large, and such cases are not rare.
Therefore, obtaining the MLEs is much better
than using other temporary expedient estimates.

In some cases the Weibull parameters diverge
in the Newton-Raphson process, and the three
diverging parameters in the Weibull distribution
correspond to the parameters in the two-
parameter Gumbel distribution (G2P). This is
the second problem. In such a case, the three-
parameter Fréchet distribution (F3P) is much
more appropriate than the other two distribu-
tions, in a likelihood sense. This is also true for
the Fréchet parameter diverging pattern. Thus,
the GEV, which gives us a better understanding
of the features of the sampled data, is recom-
mended.

Here, a stable and efficient maximum likeli-
hood estimation method in the W3P is proposed,
using the generalized extreme-value distribution
(GEV) and the continuation method (CM).
This approach is quite new. The algorithm
turns out to be simple, but the results are aston-
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Table 1 Dielectric breakdown voltage data of epoxy
resin.

Data Items Casel Case2 Case3 Cased Cased

1 24.54 27.15 27.66 27.98 28.04
2 28.00 29.13 26.54 27.49 28.57
3 25.69 28.28 26.96 27.85 26.33
4 27.72 27.74 26.15 27.93 29.61
3 28.05 28.87 25.26 24.19 28.17
6 27.53 26.42 29.44 25.01 27.14
7 27.34 24.46 28.32 27.06 29.17
8 26.80 30.88 27.66 27.62 25.44
9 26.51 29.11 28.21 28.94 28.49
10 27.28 27.31 27.80 29.09 7.46
11 28.16 27.54 27.59 27.63 27.31
12 28.86 27.98 26.63 28.28 .26.95
13 26.67 28.49 28.08 27.63 27.88
14 28.37 26.25 28.83 28.20 27.30
15 28.37 28.50 27.96 27.95 29.02
16 28.44 25.61 28.13 28.33 29.52
17 28.05 29.50 29.06 27.11 26.89
18 24.61 28.04 26.78 26.47 27.89
19 27.54 -27.94 28.00 28.17 28.08
20 26.85 26.66 26.28 27.35 27.75

ishing. For cases in the Monte Carlo simulation
where the random data are drawn in the way
shown by Hirose,” this algorithm obtained all
the existing local MLEs. Another aspect of this
method is that we can automatically see the
properties of the estimates in all three of the
extreme-value type distributions.

To obtain the MLEs, grid search methods
have been used in searching for initial points of
the Newton-Raphson iteration (see Panchang
and Gupta'®), but they are time-consuming and
tedious. As an improvement on this method, it
is shown in Section 3 that adopting the GEV is
effective, but still imperfect. Combining the
GEV with the CM turns out to be a perfect
method for finding the existing local MLEs. The
algorithm is given in Section 4.

Although the method focuses on the Weibull
parameter estimation, the Fréchet and Gumbel
parameters are obtained simultaneously. Only
complete data cases are cosidered in this paper,
but the proposed algorithm can be applied to
censored data.

2  Another Issue in the Three-Parameter
Weibull Distribution

Table 1 shows the dielectric breakdown volt-
ages of one hundred epoxy resin test pieces that
were tested in our experimental laboratory
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Table 2 Estimates of the parameters for various distri-
butions.

Distribution Estimates Casel Case2 Case3 Case4 Cased

w3Pp 7 o 6239  5.051 © 4.725
8 o 4529 5.267 IS 4.811
5 —co 22,092 22921  —co  23.523
logl ~ —28.979 —35.375 -28.652 —27.613 —28.824
G2P & 0.8473 13643 09183  0.7994  0.9391
i 27790 28491  28.066  27.997  28.356
logL —28.979 —36.446 —29.165 —27.613 —29.503
F3P 7 5.181 o o0 9.596 )
B 6.553 oo ) 12.329 £
5 33.037 —o0 —o0 37628  —oo
logL ~ —28.672 —36.446 —20.165 -27.444 —29.503
GEV & 07906  1.3775  0.9589  0.7783  0.9821
i 27.567  28.331  27.972  28.032  28.248
E —0.1526 0.2208  0.1898 —0.0811  0.2079
logL ~ —28.672 —35.375 -28.652 —27.444 —28.824

(Hirose”); it should be noted that some experi-
ments (such as that for a generator) are very
expensive, and therefore such a large number of
test pieces is unusual. Twenty test pieces were
tested by applying an ascending voltage to each
in turn ; this was repeated five times. Thus, we
have five sets of data for the same underlying
distribution. Since failure data usually fit the
Weibull distribution, the MLEs of the Weibull
parameters were obtained for the five data sets.
The computing results obtained by the proposed
method are shown in Table 2. We see that the
first and fourth data sets have infinite estimates
in the table, and this phenomenon becomes
much clearer if we plot the likelihood function
for case 4 (Fig.1). This diverging property is
discussed in the next section.

3. Reparameterization to the GEV Distri-
bution

In order to figure out the diverging property,
the Newton-Raphson iteration process was
traced by using carefully selected initial values;
the result is shown in Table 3 for the data from
case 4. In the table, we can see that both /5
and 7+ y converge, to 0.7994 and 27.997, respec-
tively, and that the log-likelihood function con-
verges to —27.613. This reminds us of the
generalized extreme-value distribution (GEV)
derived by von Mises!®. Using the reparameter-
ization.

o=n/B8, p=n+ty, k=1/8, (2)
the probability distribution function of the GEV
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Fig.1 Contour plot of the likelihood function for the

Weibull distribution based on data case 4. The
scale parameter is optimized.

Table 3 Newton-Raphson iterations based on the data
from case 4.

Iteration Log-

Number  Likelihood 7 B 5 ﬁ/E T+5

0 -28.642 8.0 10.0 20.0 0.8000 28.0000
1 —28.259 10.1 124 17.9 0.8139 27.9687
2 —28.032 13.3 16.4 14.7 0.8133 27.9758
3 —~27.886 18.1 22.3 9.9 0.8104 27.9817
18 —27.613 58444 7310.8 —3816.4 0.7994 27.9972
19 —27.613  8762.7 10961.5 —8734.7 0.7994 27.9972

is expressed by
F(x; 0 1 k)

:l—eXpP{lJﬁk(f’%ﬂ)}“k}

>0, 1+k<x%“‘>>o, (3)

when k4=0. The Weibull distribution (1)
corresponds to the case k >0. The cases k—0
and k <0 correspond to Gumbel (4) and Fré-
chet (5) distributions, respectively.

F¥(x; o, /z)zl—eXp{~eXP< e )}

o>0. 0 (4)
F3(x; 7, B, 7)=1 —eXp{-<l7f“>iﬁ},
x<y, >0, B>0. (5)

Distributions (1), (4), and (5), which are

285

27.5 ,
-0.2 . 0
Fréchet k Weibuil 02

Fig.2 Contour plot of the likelihood function for the
GEV distribution based on data case 4. The
scale parameter is optimized.

called extreme-value distributions for the mini-
mum value, were first discovered by Fisher and
Tippett, and the extreme types theorem was
later completely proved by Gnedenko® (see
Castillo® and Galambos”). Historically, the
GEV has been mainly treated as a distribution
representing the extreme values for maxima (see
Jenkinson!®) ; here, however, the extreme-value
distributions for minima are discussed.

It is interesting to imagine what will happen if
we fit the F3P (or GEV) to data case 4.
Surprisingly, we can obtain the finite MLEs in
the F3P and the corresponding value of the
log-likelihood (= —27.444) is greater than that
(=—27.613) obtained by the limiting form of
the Weibull or Gumbel distribution. The MLEs
of the Fréchet parameters are 7 =9.396, § =
12.329, and 7=37.628 (for the GEV, 5=
0.7783, 7=28.032, and k=-0.0811). This sug-
gests that it is better to adopt the F3P as the
failure probability function than the W3P in a
pure likelihood sense in such cases, and that it
will be more advantageous to use the extreme-
value distributions together. This means that we
should use the GEV as a representative distribu-
tion for all three distributions.

It is intriguing that in Fig. 2, a contour plot
similar to that in Fig. 1, showing the likelihood
function of the GEV, seems to be smooth around
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the local maximum point and that the value of
the location parameter ¢ does not change much
even if the shape parameter &k varies greatly on a
equi-contour line. The latter property is very
different from the Weibull parameter pattern
(see Fig. 1). The location parameter y varies a
lot as the value of the scale parameter 3 changes.
This suggests that by adopting the GEV a search
for the local maximum of the likelihood function
in the Weibull or Fréchet distribution would be
easier, because of the more stable values.

4. Parameter Estimation in the GEV
Distribution Using the CM

4.1 Using the G2P’s MLEs

As mentioned above, the location parameter p
does not change the value of the log-likelihood
function in the vicinity of the local maximum
point in the GEV as much as the shape parame-
ter £ does. This also holds for the scale parame-
ter 6. Thus, these two parameters might be
useful for initial guesses in the iterative process
of searching for the MLEs of the parameters in
the GEV, provided we know the value of k. For
example, the following moment estimators might
be used :

o=k-s{I'(1+2k)— T 1+ k)}™'2,

—I(1+k)}, (6)

where m and s denote the mean and standard
deviation of the samples, but unfortunately we
do not know k. Only in the case where k—0
can we obtain the MLEs of the parameters in the
G2P, in which case equations (6 ) become

o‘:§s =0.779697s,

p=m+0.5772160, (7)
Using these initial values in the Newton-
Raphson process, we can obtain the MLEs, Goze
and ficop, easily.

The MLEs of the parameters in the G2P may
be useful as initial guesses for estimating the
MLEs of the three parameters in the GEV, but
this is not a very powerful technique. An ex-
ample will be given in Section 6. Rather, these
estimates will be useful as a starting point for the
continuation method.

4.2 Continuation Method

Continuation methods are known to be useful
tools in solving a system of m nonlinear equa-
tions f(6)=0 (see Kincade and Cheney!? and

—m O
p=m-+ k{l
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Allgower and Georg"). The Newton-Raphson
algorithm defined by an iteration formula such
as

9i+1:€iﬁ(.]i)—lf(€i)’ i=0,1,--- (8)
will often fail because poor starting values are
likely to be chosen, where J? denotes a Jacobian
of (7). Let us define a homotopy deformation
A 1[0, 1] X R™R™ such that

n0, 0)=g(0), h(1, 0)=f(6),  (9)
where g . R"—>R™ is a trivial smooth map hav-
ing known zero points, and 4is also smooth.
For example, /4 is defined as follows :

h(t, 0)=1f (0)+(1—={f(0)—f(0™)},

(10)

where 6@ is a solution when #=0; thus we can
expect a zero point at =1. We pursue a smooth
curve

e(s)=(1(s), 0(s)=h(0), (11)
with starting point ¢(0) =(0, #(0)) for a given
critical point §(0) of g, and starting tangent
¢(0)=(£(0), §(0)); s corresponds to the arc-
length on the curve ¢, and differentiation is done
with respect to s. By differentiating =0 with
respect to s, we obtain a system of equations

' (c(s)) ¢(s)=0, (12)
which is expressed more concretely as :
ofi dt | ofi d(91+ of d(92+__.
ot ds 06, ds = 06, ds
dﬁm
e
odf dt | 0f, d6 | of; db
or ds T30, ds T o6, ds
ofs dOn _
30, as %
Ofpn i, 3y a6, L dls
ot ds ' 96, ds " 96, ds
Afn AOn _
+ 30, ds =0. (13)

n (13), df;/ds can be obtained by setting || ¢ | =

1 and det<h£€§;2>>>0 (or<0), but it can also
be obtained by setting dt/ds=¢9 (where § is a
small number) ; & plays an important role, as
will be shown later. Then, we continue to trace
the curve ¢(s) until #(s)>1.

Obtaining a series of 8% by marching, using
differential equations (13), is very similar to
obtaining a series of 4’ by using the Newton-
Raphson algorithm, but equation (8 ) is totally
different from equation (14) of the continuation
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algorithm in which a wide convergence region
can be expected (see Section 5).
GUHD = gD — 5. (J)LF(H®), j=0,1, -,
(14)
Thus, adopting the continuation method de-
scribed in this paper is quite advantageous,
because minor changes to the computer codes of
the Newton-Raphson algorithm yield major
improvements in convergence.
4.3 Solving the Likelihood Equations
In order to solve a system of likelihood equa-
tions for the GEV, a slight modification of the
above method is applied. The form of equation
(10) is
dlog L/do
(A2, 0, 11 k)):<810g L/&t)
dlog L/ ok
dlog L/ oo
+(tﬁ1)<alog L/8/z> , (15)
olog L/ok/ oo u po)
and equation (13) at step j becomes
Flog L d’log L ¢*log L
do® opdo  okdo
Flog L dlog L ¢*log L
dodn oy’ okou
log L 3*log L *log L o
“oook  opok  ok® TRV
(da(s)/ ds)

du(s)/ ds

dk(s)/ds
olog L/do

8<810g L/&/J.) , (16)
olog L/ok/ (c,u®,z0)

n
where the likelihood function is L= ]:[1 d‘;

(n: sample size) and the likelihood equations
are

F(x;)

dlog L/d5=0,
olog L/ou=0, (17)
dlog L/ ok =0.

Thus, ¢(s) can be traced by solving (16) and
updating the parameters (§Y"V=0" +sign
(8)-(dd/ds)?) successively until #(s)=1. The
sign of § at step j should be chosen so that log
LY VY<]og LY ; this is a new treatment for
solving likelihood equations, and is not seen in
the ordinary continuation method.

If the sign of the Hessian, D=det(5"log L/
00.06,), induced from the log-likelihood func-
tion does not change from the starting point ¢(0)
until the final point ¢(Smna), # is called regular.
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For example, 4 is regular and the sign of D is
always positive when we consider the two-
parameter Weibull distribution. However, 4 is
not always regular in the case of the GEV, and
the determinant sometimes changes its sign.
Thus, certain treatments are necessary under
such conditions. When D >0, ¢(s) is likely to
climb down the likelihood function ; so we are
forced to change the direction of ¢(s) by setting
the sign of §to be negative until D becomes
negative. When D@ >0 and D"“*P <0, the sign
of § should be switched to the reverse side, and
the starting point §© should be replaced with
the point §*" as a new starting point. Then,
¢(s) can continue to climb up the likelihood
function. This is the point of the algorithm.

4.3 Selecting the Starting Point

Where the starting point is selected in the
continuation method is important. The use of
the MLEs in the G2P as the starting point seems
to be natural, since the G2P is the embedded
model of the GEV, and the estimation of the

MLEs in the G2P is rather easy. However, they

cannot be used directly as a starting point for

(69, 4, k©®), because the Hessian is not de-

fined at k=0. Instead, we find the MLEs of the

GEV in the very vicinity of k=0, say k=k©

=0.01. The initial value of the GEV for £ in

the Newton-Raphson iteration are &gor and fap.
Therefore, the algorithm is as follows:
4.4 Algorithm

Step 1; Obtain the MLES, Geop and figep, in the
G2P, using the initial guesses odp and s
given by (7). We alter the notation from
Gezr and figep to oo and py, respectively, for
simplicity.

Step 2 ; Use gpand o as initial values of the
starting point, and alter the notation (g, (£, €)
to (0@, @, k@)=9®  where ¢ is a small
number, say 0.01.

Step 3 ; Solve equation (16). If DY <0, then
set § to be positive ; otherwise, set § to be
negative. Obtain the next point by calculating

HUHD= 99 +sign(8)-(dh/ds)?,

1D = 1) 4 5.
If DY<0, DYV <0 and tY*P <1, then repeat
this step. If DY'<0, DY*Y<0and V9 >1,
then search for the MLEs of § in the GEV
model by the three-parameter Newton-
Raphson method, using the initial point §¥*V.
If the parameters converge, then cease ; other-
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Fig.3 Frequency of estimate k obtained by Monte

Carlo simulation.

Number of simulation trials=1000, =20

wise go to Step 4. If DY >0and DY*+V >0,

then repeat this step. If DY >0 and DYV <0,

then go to Step 4.

Step 4 ; Reset tY*Y=0 and go to Step 3.

In these steps, the first and second derivatives
of'log L and Fisher’s information matrix can be
obtained as in the method described by Prescott
and Walden'®»'7,

5. Computational Results

It was of no interest to recompute the MLEs of
data sets from the literature, because we already
knew the results. Instead, a Monte Carlo simula-
tion was used, in which random data are drawn
exactly as in Hirose®, where n =10, 20, 50, 100,
B=2,3,5,8 (Weibull), and the number of trials
for each case is 1000. The MLEs could not be
obtained for some data samples from the litera-
ture, even with better initial values. Failures in
finding the MLEs seem to be caused by either
non-regular conditions or diverging conditions.
However, the computing results obtained by the
proposed method are astonishing. For all the
data sets tried, the local MLEs are always
obtained if they exist, on condition that k<1.
See Fig. 3 for the frequency distributions of the

estimates of the parameter k when n=20. This
is confirmed by comparing the results obtained
by the continuation method with those obtained
by the grid search method. When n=20, for
example, and f=8 (k=0.125), 22.1% of the
estimates are regarded as being from the Fréchet
distribution, even if the original random vari-
ables are taken from the Weibull distribution ;
when f=2 (k=20.5), 11.3% of the estimates are
at the corner, g=1.

6. Discussion

The proposed method is of great value from a
practical point of view, because it allows the
local MLEs to be obtained automatically from
any data. Other optimization schemes have
sometimes failed to consistently obtain the local
MLEs, even if the computing time is faster. The
other algorithms tried are as follows :

(1) Direct use of the three-parameter
Newton-Raphson method from the initial
point ((71, [, kl)k;:().[)b When ‘k‘ <0.5
and n=20the optimal value may be
obtained, but the method often fails.
When | k| >0.5 it usually fails to obtain
the MLEs. For instance, when #=20 and
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Table 4 Success rate of convergency
using the direct method.

n fB=2 pB=3 pB=5 p=8
10 0158 0.327 0454 0.518
20 0.064 0.238 0.5316 0.650
50 0.006 0.104 0.304 0.742
100 0.0 0.039 0432 0.819

Log-likelihood functions from curves C and C’.
C: log L|d, r:optimized
C’: log L|g, :from equations(0)

£=2 (k=0.5), the success rate was only
6.4% (see Table 4).

Use of a curve C’obtained by using
equations (6 ) for a given k. C’ consists
of a set{(o, i, K)ER, 6> 0, 1+ k{(x
—u)/o)}> 0] equations (6) hold}.
However, it is not a good approximation
of the curve C, where C consists of a set
{(o, 1, K)ER, 6> 0, 1 +k{(x—p)/0)} >
0] dlog L/9o=0, dlog L/dp=0}.  For
instance, Fig.4 shows the difference in
the log-likelihood functions for the curve
C and the curve C’, where samples are
taken from Rockette et al.!®

Use of a grid search method parameter-
ized by k. First, we construct a curve C
using the curve C” as initial points for the
two-parameter Newton-Raphson method.
After finding the grid point on the curve
C at which the log-likelihood is maxi-
mum, we search for the optimal point by
using the three-parameter Newton-
Raphson method. However, this is time-
consuming and tedious. For example,
when n =100 and =3, the computing
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time required by the grid search method
is more than 2.5 times longer than that
required by the continuation method,
where the number of grids is 201 in —1<
k<1.

7. Concluding Remarks

A stable and efficient parameter estimation
method wusing the generalized extreme-value
distribution and the continuation method has
been explored. From the initial starting point
given by Gumbel’s maximum likelihood esti-
mates, an approximated optimal point in the
generalized extreme-value distribution is
obtained by the continuation method, and far
more accurate local maximum likelihood esti-
mates are obtained by the three-parameter New-
ton-Raphson method. Using this newly devel-
oped scheme, we can automatically obtain the
existing local maximum likelihood estimates in
three kinds of extreme-value distribution with-
out numerical failure. In addition, the most
appropriate distribution in the sense of likeli-
hood is determined automatically. Although the
method explained is applied only to complete
data, this algorithm can easily be extended to
censored data.
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