Vol.35 No.9

Regular Paper

Transactions of Information Processing Society of Japan

Sep. 1994

Combinatorial Algorithms Using Boolean Processing
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The backtracking technique has been used to solve various problems of generating all combinator-
ial objects. A feature of this technique is that the conditions attached to the problem and the search
for solutions are closely related. Thus, in order to obtain all solutions efficiently, it is necessary to
discover suitable data structures for each problem. In this paper, we propose a new general technique
for solving combinatorial problems by describing the conditions and searching for solutions separate-
ly. First, we describe the conditions attached to the problem by using Boolean functions. Next, we
construct a binary decision diagram (BDD), representing Boolean functions by using an efficient
BDD manipulator. Finally, we traverse the BDD and obtain all the solutions. By applying this
technique to many combinatorial problems, we have discovered that the conditions attached to a
problem can be briefly described by Boolean functions, and that all the solutions can be obtained

efficiently.
. tion of BDD to combinatorial problems is dis-
1. Introduction . . .
cussed in this paper for the first time.
How to manipulate Boolean functions The technique separates the description of the

efficiently is an important problem in such appli-
cations as formal design verification, test genera-
tion, and logic synthesis. Since efficient manipu-
lation and representation of Boolean functions
are closely related, various methods of represent-
ing Boolean functions have been proposed.

A binary decision diagram (BDD) is a graph
representation of Boolean functions.”»? A shared
binary decision diagram (SBDD) is an im-
proved version of a BDD.®1® Both have excel-
lent properties for realizing efficient manipula-
tion of Boolean functions. Recently, BDD
manipulators have been implemented on
workstations'®1” and widely used.

The backtracking technique has been used to
solve various problems of generating com-
binatorial objects.’? A feature of this method is
that the conditions attached to the problem and
the search for solutions are closely related.
Thus, in order to obtain satisfactory solutions, it
is necessary to make efforts to discover suitable
data structures for each combinatorial problem.

In this paper, we introduce a new technique
for solving combinatorial problems by using
BDD. This technique is essentially different
from the backtracking technique. The applica-
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11 Department of Information Science, Faculty of Engi-
neering, Kyoto University
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conditions and the search for solutions. First,
we describe the conditions attached to the prob-
lem by using Boolean functions. Next, we con-
struct a binary decision diagram (BDD) re-
presenting Boolean functions by using an
efficient BDD manipulator. Finally, we traverse
the BDD and obtain all the solutions.

By applying this technique to various prob-
lems of generating combinatorial objects, we
have discovered that the conditions attached a
problem can be briefly described by Boolean
functions, and that all the solutions can be
obtained efficiently.

Since the description of the conditions and the
search for solutions are separated in this tech-
nique, we can easily obtain solutions by chang-
ing the conditions. In other words, this tech-
nique is suitable for examining the solutions
corresponding to various conditions within a
short period of time.

This process corresponds to solving NP prob-
lems directly by using Boolean expressions. A
BDD can be considered to be a new data struc-
ture or database.

Recently various applications of BDDs have
attracted attention, and some interesting reports
have been published.»=>»7:8:18)-22)

One paper®? discusses combinatorial optimi-
zation problems that are represented by arithme-



1662 Transactions of Information Processing Society of Japan

tic expressions, and solves them by using the
arithmetic Boolean expression manipulator
BEM-II.7

This paper is organized as follows:

Section 2 describes the BDD and SBDD.
Section 3 describes a fundamental generating
algorithm (the algorithm generating all the
r-combinations of the set {1, 2, ---, n}) 10131140
Section 4 describes the following combinatorial

problems:
1. The problem of generating all the
r-permutations of the set {1, 2, -+, n}!V
2. The problem of generating all the
r-partitions of the set {1, 2, -+, n}i1®

3. The problem of generating all the bal-
anced incomplete block designs®
Section 5 describes the following graph prob-
lems:
1. The problem of generating all the graphs
in which each node has some edges
2. The problem of finding all the paths of
length 7.
Section 6 concludes the paper.

2. Binary Decision Diagram (BDD) and
Shared Binary Decision Diagram
(SBDD)

We assume that a Boolean function with »
variables X, X,, -+, X, is denoted by f (x;, Xz, -+,
X»). When some variables x; of function f with
n variables xi, x,, ---, X, are replaced by 0(1),
the function f is called a restriction of f.

Using the Shannon expansion,'® we can give a
function f around variable x; by

S (X1, oy Xy e, X)
=X/ (O, o0, Xeot, 1, Xiwr, oo, Xn)
+ X f (X1, e, Xty 0, Xipn, oo, Xp)

We now consider a graphical representation
of a Boolean function f (x;, Xz, **+, X,).

A Binary Decision Tree (BDT) is a binary
tree with nodes of two types: terminal nodes and
nonterminal nodes. Terminal nodes are labeled
0 or 1. Nonterminal nodes are labeled with one
of the Boolean variables xj, X3, --, x,. Every
nonterminal node has exactly two outgoing
edges, which are labeled 0 and 1, and called the
0-edge and the l-edge, respectively.

By repeating the Shannon expansion of a
Boolean function f (x;, Xz, -, X,) recursively,
we can derive a BDT corresponding to f (x;, x,

=, Xp). We note that a restriction of f is
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X1 flXi,Xz,. .., Xa )
2N
b. ST Xi-1
X1, X2, ..., X1-1,0,...) XXz, ..o, Xi-1,1,...)

Fig. 1 Shannon expansion.

performed in decreasing order of the index of

variables.

The process is as follows:

Let node x be labeled x;, and let it correspond
to a Boolean function f (x;, X3, +++, X;, ---). We
assume that variables x;,;, ---, x, have already
been determined to be 0 or 1. A child of node
x is labeled x;.; and corresponds to f (x1, xg, -+,
X;-1, 0, -}, An edge to the child is a O-edge.
Another child of node x is also labeled x,_;, and
corresponds to a Boolean function f (x;, x,, -+,
X;-1, 1, ---). An edge to the child is a l-edge. A
graphical representation of this process in shown
in Fig. 1. When the variables x;, x,, ---, x, have
already been determined and the value of f(x,
Xz, +**, X) 18 0(1), a child of node x is a terminal
node labeled 0(1). We note that the root is
labeled x, and corresponds to a Boolean func-
tion f (X1, Xz, -+-, Xn).

We note that the path from the root node to
the terminal node labeled 1 corresponds to the
solution satisfying the equation f (xy, Xa, -++, X,)
=1. Ifa 1(0)-edge emerges from a node labeled
X; in a path, the 1 (0)-edge corresponds to x;=1
(Xl' :O) .

A Binary Decision Diagram (BDD) is defined
as a directed acyclic graph obtained from a BDT
by repeating the following transformations (1),
(2), (3), and (4) until they are not applicable.
Transformation (1) : When both the 0-edge and

the 1-edge point to the same terminal node,

delete the nonterminal node and both the

O-edge and the l-edge. The edge to this

nonterminal node is changed so that it points

to the terminal node.

Tranformation (2) : Share
graphs.

Transformation (3) : When both the O-edge and
the l-edge of the nonterminal node x point to
the same nonterminal node y, delete the
nonterminal node x and both the 0-edge and
the 1-edge. The edge to the nonterminal node
x is changed so that it points to the nonter-

isomorphic sub-
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)_(xX2X3+X1)"(2)~(3 ;(1+X:X3

X3 X3

Fig.2 SBDD representing three BDDs ( X1+ Xpx3, XXz,
X1 XaX3+ X1 X2 X3) .

minal node y.

Transformation (4) : Leave only one terminal

node labeled 0(1).

We also note that different BDTs representing
a Boolean function f (x;, Xz, -+, X,) are con-
structed by following different orders of the
index of variables. Therefore, different BDDs
are also obtained.

A Shared Binary Decision Diagram (SBDD)
is an improved version of a BDD. While a BDD
represents a single Boolean function, an SBDD
represents multiple Boolean functions by sharing
sub-graphs of BDDs representing the same func-
tion.

An example in which an SBDD is constructed
from three BDDs is shown in Fig. 2.

3. Fundamental Generating Algorithm
(an algorithm for generating all the
r-combinations of the set {1, 2, ---, n})

In this chapter, we consider how to generate
all the r-combinations of the set {1, 2, -, n}
(r-combination of n for short).

[Definition]

An r-combination of n is defined as an un-
ordered selection of » members of the set {1, 2,
-, nh.

The number of all the r-combinations of
n is well known as the binomial coefficient,
2Cr (n!/ (#'(n—1r)!)). We note that all
the r-combinations of #n are often used to
generate other combinatorial objects.

We will now derive the Boolean function
representing all the r-combinations of n. First,
we define Boolean variables xi, X3, -**, X, as
follows:
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i1 2 3 4 5

x:0 1 1 0 1

Fig.3 Boolean variables representing a 3-combination
of 5, 235.

[Boolean variables|
x;=1, if the number i is contained in an
r-combination of .
0, if the number i is not contained in an
r-combination of #z.
As an example, a 3-combination of 5, 235, is
represented in Fig. 3
Since the solution satisfying the equation
XeXs Xy Xs=11is xi=1, =1, x3=1, x,=0, xs=
0, the equation x;x,x3 X4 ¥5=1 corresponds to the
3-combination of 5, 123. Therefore, we can see
that the following equation represents all the
3-combinations of 5:
X1XoX3 Xg X5+ X1Xp X3 X4 X5+ X1 X X3 Xy X5

123 124 125
+ X1 f2x3x4X'5+ X1 X2X3 X4 X5 + X1 X2 X3X4X5
134 135 145
+ X1 X2 X304 X5+ X1XpX3 Xy X5+ X1X2 X3X4 X5
234 235 245
-+ X1 X2X3X4X5; 1
345

We denote a Boolean function representing all
the j-combinations of i+ j by fi;(x;, X -

s

X:47). The Boolean function f;; (xi, Xz, =+, Xi15)
satisfies the following recurrence relation:
[Boolean function ]
Theorem 3. 1
Joi (X1, X, oy xp) =x0x0x; (G=1)
3. 1.1)
Sro(Xy, Xz, oo, X)) =X X%, (i=1)
(3.1.2)
ﬁ,j(xh X, *0, xi+j)
= fri1(X1, Xo, oo, Xivjo1) Xitj
F i (X1, Xa, o0r, Xio1) Xiws
(izl,j=1) (3.1.3)
Proof. Equations (3. 1. 1) and (3. 1. 2) are

obvious. We will let U denote the set including
all the j-combinations of i+;. The set U can be
divided into two subsets ¥ and W such that V'
AW=¢, VIUW=U. A combination included
in the subset J must contain the value i+j.
Thus, the Boolean function representing all the
combinations in V is f ;1 (X1, Xo, +++, X;pj-1) X
X:;+;. A combination included in the subset W
does not contain the value i+4j. Thus, the
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Boolean function representing all the combina-
tions in V' is fi_1,; (X1, X, **+, Xipj-1) Xivj;. From
these facts, we can derive the recurrence relation
(3. 1. 3).

Example: Boolean function f;;(x;, X,

Joa(x) =x1, fio(x) =%

Jo2 (X1, X2) = x1%, fi1 (20, X2) = X1Xa+ X, X,
Soo (X1, X0) = X1 X,

Sos (X1, Xo, X3) = X1%X3

Sr2(x1, Xz, X3) = X106 X3+ 01 XXz + X1 X2
Sor (X1, Xo, X3) =X Xp X3+ X1 Xa+ Xy XpXy
Soo (X1, Xo, X3) = X, X X3

Thus, all the j-combinations of i+ can be
obtained by means of the following algorithm
3.1

Algorithm 3. 1

Step 1: Construct the BDD representing all
the j-combinations of i+j by
using the above recurrence rela-
tion.

Step 2: Traverse all the paths of the BDD
from the root corresponding to f; ;
(X1, X, *»+, X;;) to the terminal
node labeled 1.

We note that there is a one-to-one correspon-
dence between the path from the root to the
terminal node labeled 1 and the j-combination
of i+j. If a 1-edge emerges from a node labeled
X; in a path, then the number i is contained in a
Jj-combination of i+ j. If a 0-edge emerges from
a node labeled x; in a path, then the number i is

9

fo,a(X1,Xz,%X3) i, 2(X1,X2,X3)
i !

X3 X3

Sep. 1994

not contained in a j-combination of i+ .
Theorem 3.2
The number of nodes used to construct the
BDD representing the Boolean function f; ;

(X1, Xp, +++, X:14;) 1s less than or equal to jj
+it+j.
Proof. In order to obtain the Boolean func-

tion f;;(x1, Xz, -+, Xi4;), it is sufficient to com-
pute the Boolean function f,,,{(x1, X2, ***, Xyip)
(0=u<i, 0Zv<j) by using the recurrence
relation of Theorem 3. 1. Since the Boolean
function fy,, (X1, X, *+-, X44,) Tequires one node,
we use (i+1)(+1)—1=ij+i+j nodes to
construct the BDD.

" As an example, we show an SBDD represent-
ing Boolean functions f;;(x, Xz o+, xi0,) (154
+j=3,0=<i,0=j) in Fig. 4.

Lastly, we will mention two important com-
binatorial objects that are often used to generate
other combinatorial objects.

One is the set of ways of selecting at least »
members from the set {1, 2, -+-, n}. The Boolean
function representing these ways is

f;z—r,'r (xl, T, xn) +f;t—r—1,r+1 (xl, i
Fort fon (oo, Xa) =1
As an example, for n=4 and r=2,
a2 (1, oo, Xy) Fhs(x, -y Xy)
+ fo.0 (1, +++, Xa)
= X1X X3 X4+ X1 XpX3 X+ X1 X X34
T X1 X053 Xyt X1 Xa Xy + X XoXs Xy
= X1 X2 X3 X4+ X1 X0 X3 Xg + X1 XaXa Xy
+ X1 XoX3 X4+ X1 X2 X3X4

.y Xn)

fo.1(X1,X2,%3)  f3,0(X1,%X2,X3)

Fig.4 SBDD representing Boolean functions f;,; (x1, xs,
e X)) (1204753, 014, 05)).
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= XX X1.X3 -+ XX+ XXzt Xo Xy + X3 Xy
=1

The other is the set of ways of selecting at
most » members from the set {1, 2, -+, n}. The
Boolean function representing these ways is

Jro (X1, oo, Xn) + fr-r (X1, 0y Xn)
+e +ﬁz——r,7‘(x17 e, Xp) =1

As an example, for n=4 and r=1

Lo (X1, oo, X) F fao(xy, =, X0

=X1 X X3 X4F X1 X X3 X4+ X XoX3 X4
+ XX X3 X+ X1 X X3Xy

= X\ X X3+ X X Xy + XX Xy -+ Xp X3 X4
=1

[Experimental results]

For some n are r, we have computed the
number of nodes used to construct the BDD
representing all the r-combinations of n. We
have also measured the running time required to
construct the same BDD, coded in C, on a Sony
bigNEWS workstation (16 MB). The results are
shown in Table 1.

It is interesting that a large number of combi-
nations can be represented by a small number of
nodes contained in the corresponding BDD. All
the r-combinations of n are often used to gener-
ate other combinatorial objects.

Obviously, the number of nodes in BDD
depends on the problem. Moreover, depending
on the assignment of Boolean variables and the
order of index of Boolean variables, the number
of nodes in BDD varies greatly. Thus, the
number of nodes in BDD reflects the complexity
of the problem and the quality of the method.

Table 1 Number of Boolean variables and ,C, and the
number of nodes used to construct the BDD
representing all the r-combinations of #, and
the running times required to construct the
same BDD (times in seconds).

Number of Number of Running
n 7 variables 2Cr nodes time

100 50 100 0.10089x 10%° 2599 0.4
200 100 200 0.90549 x 10%° 10199 1.0
300 150 300 0.93759x10%° 22799 2.1
400 200 400 0.10295x 1020 40399 4.8
500 250 500 0.11674x10'° 62999 5.2
600 300 600 0.13511x 1080 90599  10.9
700 350 700 0.15857x 1021 123199  16.3
800 400 800 0.18804x 102 160799  21.9
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4. Various Combinatorial Problems

4.1 The Problem of Generating All the
r-Permutations of the Set {1, 2, ---, n}

[Definition |

An r-permutation of the set {I, 2, -+, n}
(r-permutation of n, for short) is defined as an
ordered arrangement of » members of the set {1,
2, ---, n}. The number of ways of arranging
out of n distinct objects is denoted by P (n, r)
and shown to be n!/(n—r)!.

[Boolean variables]

For 1Sisr, 1£j<n,

x;,;=1, if the i-th number is j.
0, if the i-th number is not j.

As an example, a 4-permutation of 5, 3152, is
represented in Fig. 5.

[Condition|

[Condition 1]

In an r-permutation of n, the i-th number is
one of the numbers 1, 2, ---, n. This condition is
described by Boolean variables as follows:

For any row i (1<i<r), only one variable in
arow [ is assigned 1, and the others are assigned
0, among n variables x;;(1<j<mn). The
Boolean formulas for this condition, A (i) (I1<i
<r), are

A (i) = fr-11 (xz',l,xz',Z;

s Xin)

[Condition 2]

In an r-permutation of », the number j
appears at most once. The Boolean formulas for
this condition, B (j) (1<j<n), are

B (]) :ﬁv1,1(x1,js X255 % xr,j)
+fro(Xns, Xeog o0y Xrj)
=1

[Boolean function]

From conditions 1 and 2, we can obtain the
following Boolean function representing all the
r-permutations of #:

<LI=IZA(’-)>'<.,IJ7ZBU>>:1

x; 1 2 3 45
1:0 0 1 0 0
2:1 0 0 0 0
3:0 0 0 0 1
4:0 1 0 0 0

Fig. 5 Boolean variables representing a 4-permutation
of 5, 3152.
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Table 2 The number of Boolean variables and P (n, r)
and the number of nodes used to construct the
BDD representing all the r-permutations of »
and the running time required to construct the
same BDD (times in seconds).

Number of Number of Running
n r variables P(n, r) nodes time
I 1 1 1 1
2 2 4 2 6
3 3 9 6 23
4 4 16 24 72
5 5 25 120 201
6 6 36 720 522
77 49 5040 1291
8 8 64 40320 3084 0.5
9 9 81 362880 7181 1.1
10 10 100 3628800 16398 2.8
11 121 39916800 36879 7.0

[Experimental results]

For some # and 7, we have computed P (n, »)
and the number of nodes used to construct the
BDD representing all the r-permutations of .
We have also measured the running time
required to construct the same BDD, coded in C,
on a Sony bigNEWS workstation (16 MB). The
results are shown in Table 2.

4.2 The Problem of Generating All the

r-Partitions of the Set {1, 2, ---, n}

[Definition |

An r-partition of 7 is defined as a subdivision
of all elements in the set {1, 2, -+-, n} into r
disjoint subsets Sj, S», +--, S». We consider the
problem of generating all the r-partitions of n.

SNS;=¢(i+]), Si+p(1<i=sr),

Usi={1, 2, = n}

It is well known that the number of all the
r-partitions of n is the Stirling number of the
second kind, S (n, r):

S(n, r) :<Zﬁ0(—l)i,Ci(r—i)”)/r!

[Basic idea]

We assume that an r-partition of # consists of
7 subsets Sy, Sz, ---, S;. By inserting the element
n-+1 into one of the r subsets, we can construct
r-partitions of n-+1:

SiU{n+1}, Sy -, Sy
S, SsU{n+1}, Ss, -, Sy

Sy, Sz, o, Sy U n+ 1}

Sep. 1994

{1,2,3,1)
{1,2,3} {1,2,3}{4}

(1,2,4)}{3}
E E {1,2){3,4}
{1,2} {1,213} (1.2}(3}{4}
(1.3, 412}
E E (1,832, 4}
{1,332} {1,342){4)
(1} (1,43(2.3)
E E {132,3,4}
{13{(2,3} {1}{2,33{4)
{132} (1,43(2}(3}
{13(2,43(3)
{13213, 4}
{1{2}{3} (1H23{3){4}

Fig.6 Tree corresponding to all the r-partitions of
n (1£n<4, 1<r<n).

[N

Xi5 Sl Sz Sg

l: 1

2: 0 1

3: 0 0 1
4: 1 0 0

Fig.7 Boolean variables representing a 3-partition of

4, {1, 4}{2}{3}.

By adding a singleton {#+1} to a r-partition of
n, we obtain an (r+1)-partition of n+1:
S, So, 0oy Sy, {n+1}
Thus, all the 7-partitions of » can be represented
by a tree, as shown by the example in Fig. 6
(1£n<4, 1<r<n).
[Boolean variables]
For 1=i<n, 1=j<min(i, r),
x;;=1, if the element 7 is included in the
subset S;.
0, if the element / is not included in
the subset S;.

As an example, a 3-partition of 4, {1, 4}{2}{3},
is shown in Fig. 7.

[Condition |

[Condition 1]

In an r-partition of #n, the number i is
contained in the subset S;, one of the subsets .Sy,
Sz, -+, S7;.  This condition is described by
Boolean variables as follows:

For any row i (1£i<n), only one variable in
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arow i is assigned 1, and the others are assigned
0, among variables x; ;(1<j<min(i, r)). Thus,
the Boolean formulas for this condition, A4 (7) (1
Zign, m=min(i, 7)), are
A(D) = frn-11 (xz',l, Xi2y "

=1

[Condition 2]

In an r-partition of #, if the number i is
included in the subset S}, then at least one of the
numbers j—1, j, -+, i—1 has to be included in
the subset S;_;.

This condition is described by Boolean vari-
ables as follows:

If the variable x;; is assigned 1, then at least
one of the variables in a column j—1, x, ;. (j
—1=k=i—1) is assigned 1. Thus, the Boolean
formulas for this condition, B (i, j) 2<j<r, j
<i=n), are

B (i, J) =Xu;+ X151 Xt F X0

[Condition 3]

In an r-partition of n, at least one of the
numbers 7, 41, ---, n has to be contained in the
subset S,. This condition is described by
Boolean variables as follows:

At least one of the variables x;,,(r <i<n) has
to be assigned 1. Thus, the Boolean formula for
this condition, C (), is

C (i‘) :xr,r+xr+l,r+"' + Xn,r
=1

[Boolean function]

From conditions 1, 2, and 3, we can obtain
the Boolean function representing all the
r-partitions of #:

[Experimental results]
For some n and 7, we have computed S (7, »)

s xz‘,m)

Table 3 The number of Boolean variables and S (n, »)
and the number of nodes used to construct the
BDD representing all the r-partitions of # and
the running time required to construct the
same BDD (times in seconds).

Number of Number of Running
n r variables S(n, r) nodes time
10 5 45 0.42525X10° 170 0.2
20 10 155  0.59175x10* 1365 2.6
30 15 345 0.12879x10% 4585  22.6
40 20 610 0.16218x10% 10830 103.2
50 25 950  0.74538x 10% 21100 350.7
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and the number of nodes used to construct the
BDD representing all the r-partitions of n. We
have also measured the running time required to
construct the same BDD, coded in C, on a Sony
bigNEWS workstation (16 MB). The results are
shown in Table 3.

4.3 The Problem of Generating All the

Balanced Incomplete Block Designs

[Definition]

Let A={a, a, ---, a»} be a set of v objects. A
k-subset of A4 (a subset containing k objects of
the set 4) is called a block. A balanced incom-
plete block design of A(BIBD for short) is
defined as a collection of b blocks, By, Bs, -+-, B,,
satisfying the following three conditions:

1. Each object appears in exactly » of the b

blocks.

2. Every two objects appear simultaneously

in exactly A of the & blocks.

3. k<

[Example]

For b=10, v=6, r=35, k=3, A=2, 12 solu-
tions exist. One solution is as follows:

Bi={a, a, as}
Bgz{al, day, a4}
B:={a,, as, as}
Bi={a, a,, a}
Bi={a, a, a5}
Bs={a, as, as)
B7:{az, Qy, as}
Bsz{az, as, as}
B9:{a3, ay, as}
Bm:{as, a, as)

[Boolean variables]

For 1=i<h, 1<,

Xij G Q2 Q3 Qi A3 Qg
Bi: 1 1 1 0 0 O
By 1 1 01 0 0
B;: 1 0 1 0 1 0
B;: 1 0 0 I 0 1
Bs: 1 0 0 0 1 1
Bs: 0 I 1 0 0 1
B;: 0 1 0 1 1 0
Bs: 0 1 0 0 1 1
By: 0 0 1 1 [ 0
By: 0 0 1 1 0 1

Fig.8 Boolean variables representing a solution B, =
{an, @, a5}, Bo={a, as, ai}, Bs={a1, as, as}, Bs=
{ab ay, ae}, B5={a1; as, a6}7 B6={az, as, as}, B;=
{az, Ay, ﬂs}, Bs:{az, as, as}, Bg:{a& ay, as}, By
={as, as, as}.
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x;;=1, if an object a; is contained in the
block B;.
=0, if an object a; is not contained in
the block B;.

As an example, the above solution is re-
presented in Fig. 8.

[Condition]

[Condition 1]

Each block B;(1<i<b) has k objects. We
consider all the subsets with k objects. Thus, the
Boolean formulas for this condition, U (i) (11
<b), are

U(i) :f;)wk,k (xi,h Xi,25 °°
=1

[Condition 2]

Each object a;(1<j=<v) appears in exactly »
of the b blocks. Thus, the Boolean formulas for
this condition, V' (j) (1£j=<v), are

V() =fomrir (X155 Xags 05 Xb,5)
=1

[Condition 3]

Every two objects appear simultaneously in
exactly A of the b blocks. Thus, the Boolean
formulas for this condition, W (j, m) (1=j<v,
j<m=v), are

W(j, m) :f})—/l,/l(xl,jxl,ms Xa,5X2,ms *"*s Xp,iXb.m)

=1

[Condition 4]

In order to avoid the repetition of the same
balanced incomplete block design of A, we
arrange B, Bs, ---, B, in lexicographical order.
Since B;(1<i<b) are represented by {x;1x:5,
--+, X; ), this condition is described by Boolean
variables as follows:

For any i(1=i<b),

If x;17% X411, then x;; is assigned 1 and X411
is assigned 0.

X1 DX + X1 Xip11=1

If X, =x;41,; and X;p7F X;41,2, then X is as-

signed 1 and Xx;.1 is assigned O.
Xi1PXii11+ X 2@ Xii1,2 T X2 Xi412=1

If X1 =Xi1, Xiz=Xig12°°7 Xio-1=Xit1,0-1
and X;,3 X:41,» then X, is assigned 1 and x;.41,0
is assigned O.

Xi 1D Xip11+ Xe 2B Xi41,2
et X 1D X101
+ Xi, 0@ Xie1,0 + X5 Xi1,0=1

Thus, the Boolean formulas for this condition,

Z () (1<i<b) are
v m—1
2 = (8 @) + 5o

m=1

i xi,v)
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Table 4 Numbers of Boolean variables, of BIBDs, and
of nodes used to construct the BDD represent-
ing all the BIBDs, and the running times
required to construct the same BDD (times in
seconds) .

Number of Number of Number of Running

b v r k A variables BIBDs nodes time

106 5 3 2 60 12 463 0.7

129 4 3 1 108 840 23922 16.8

129 8 6 5 108 840 23737  113.0

77 3 31 49 30 622 0.7

77 4 4 1 49 30 627 0.5
+Xi,mfi—,1,m>:1

[Boolean function]

From conditions 1, 2, 3, and 4, we can obtain
the Boolean function representing all the bal-
anced incomplete block designs.

b 12 -1 v
(oo )-(f o) (111 w6 m)
i=1 ot J=1 J=lm=7+1
<[11 Z@)=1

[Experimental results]

For some b, v, r, k, A, we have computed the
number of balanced incomplete block designs
and the number of nodes used to construct the
BDD representing all the balanced incomplete
block designs.

We have also measured the running time
required to construct the same BDD, coded in C,
on a Sony bigNEWS workstation (16 MB). The
results are shown in Table 4.

5. Various Graph Problems

5.1 The Problem of Generating All the
Graphs in which Each Node Has Some
Edges

[Definition]

The number of nodes is denoted by n. We
consider how to generate all the undirected
graphs with the restriction that node i (1<i< n)
has n; edges. We assume that the edge a= (i, j)
(i%]).

[Example]

For n=5, m=1, m=2, m=2, ny=2, ns=1:
There are seven graphs.

The solutions are shown in Fig. 9.

[Boolean variables]

For 1<i<n, 1£j<n,

x;;=1, if node i and node j are adjacent.
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solution (1) solution (2) solution (3) solution (4)
2 4 2 4 2 14 2 4
1 /M 1\ 17 E 1~
3 5 3 5 3 5 3 5
solution (5) solution (6) sofution (7)
2 4 2 4 2 4
3 5 3 § 3 5

Fig.9 The solutions of an example.

xi; 1 2 3 4 5
1 o 1 0 0 0
2 1 01 0 O
3: 01 0 1 O
4: 0 0 1 0 1
5: 0 0 0 I O

Fig. 10 Boolean variables representing a solution (1)
in Fig. 9.

0, if node i and node j are not
adjacent.

As an example, the solution (1) in Fig. 9 is
represented in Fig. 10.

[Condition]

[Condition 1]

No edges (i, i) (1=<i<n) exist. The Boolean
formulas for this condition, 4 (i) (1=<i<n), are

A() =X,
=1

[Condition 2]

From the property of the undirected graph, we
have the condition that x;;=x;,; The Boolean
formulas for this condition, B (i, j) (1=<i<n, i
<jZn), are

B (i, J) = X:,,Dx;,:
=1

[Condition 3]

Each node i (1=i<n) has n; edges. This
condition is equivalent to n;-combinations of
{x:1, Xi2, -**, Xin}. Thus, the Boolean formulas
for this condition C (i, n;) (1Li<~n), are

C(i, ny) :ﬁz—ni,ni(xz‘,b X2 °%s xz’,n)
=1

[Boolean function]

From conditions 1, 2, and 3, we can obtain the
Boolean function representing all the graphs
with the restriction that each node has some
edges.
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Table 5 Numbers of Boolean variables, of graphs satis-
fying the condition that n,=r (1=<i<n), and
of nodes used to construct the BDD, and the
running times required to construct the same
BDD (times in seconds).

Number of Number of Number of Running

n r variables graphs nodes time

g8 1 28 105 291

g8 2 28 3507 1628 0.3
g8 3 28 19355 3684 0.4
8 4 28 19355 3684 0.4
8 5 28 3507 1628 0.3
& 6 28 105 291

g 7 28 1 28

9 1 36 0 0

9 2 36 30016 4596 0.7
9 3 36 0 0 1.3
9 4 36 1024380 22102 1.7
9 5 36 0 0 1.4
9 6 36 30016 4596 0.7
9 7 36 0 0

9 8 36 1 36
10 1 45 945 1080 0.3
10 2 45 286884 12197 2.0
10 3 45 11180820 59070 6.2
10 4 45 66462606 117055 9.5
10 5 45 66462606 117055 10.1
10 6 45 11180820 59070 6.6
10 7 45 286884 12197 2.3
10 8 45 945 1080 0.4
10 9 45 1 45

n n—1 7 n
(Ha0)-(T 11 860)(Hcwn)
=1 i=1j=7+1 =1

=1

[Experimental resuits|

For some n and k, we have computed the
number of graphs satisfying the condition that
n,=k(1£i<n), and the number of nodes used
to construct the BDD. We have also measured
the running time required to construct the same
BDD, coded in C, on a Sony bigNEWS worksta-
tion (16 MB). The results are shown in Table 5.

5.2 The Problem of Finding All the Paths

of Length r

[Definition |

It is assumed that an undirected graph G=
(N, E), where each edge has a weight 1, is
given. This problem is to find all the paths of
length » from node 5 (a starting node) to node
d(a destination node). We note that a path
does not contain any loops.
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[Example]

For a graph G= (N, E), N={1, 2, 3,4, 5, 6,
7,8,9L E={(1,2), (1,4), (2,3), (2,5), (3,6),
4,5, 4,7, (56), (5 8), (6,9, (7,8), (8,
9N}, s=1, d=9.

All the paths of length 6 from node s(=1) to
node d(=9) are

(1,2,54,7,8,9), (1,2,3,6,5,8,9),
(1,4,7,8,56,9), (1,4,5,2,3,6,9).

They are shown in Fig. 11.

[Boolean variables]

For 0<i<r, |<j<n,

x;,;=1, if the i-th node in the path is node
J.
0, if the i-th node in the path is not
node j.

We note that the Oth node is a starting node.

As an example, a path of length 6 from | to 9,
(1, 2,5,4,7,8,9) is shown in Fig. 12,

[ Condition ]

[Condition 1]

The starting point is node s. Thus, the vari-
able x,s is assigned 1, and the other variables
X, (1£j<s—1, s+1<j<n) are assigned O.
The Boolean formula for this condition, 4{n),
is as follows:

A (n) = X1 Koz Xo,s-1X0,6X0,511°** Xo,n
=1

[Condition 2]

The destination is node 4. Thus, the variable
Xr,q 1s assigned 1 and other variables x, ; (1 <j<
d—1, d+1<j<n). The Boolean formula for
this condition, B (n), is as follows:

fse1 f2

.............

7 8 d=9 7 8 d=9 7 8 d=9
Fig. 11 All the paths of length 6 from 1 to 9.

—reeeey 0: 10000000 0
ts=1 |2 i3 101000000 0
: : 220 0001000 0

------ i 33 00010000 0
4 5 g 48 0 0 0 00 0 1 0 0

H : 5 000000 0 1 0
—_— 6: 0 0 0 0 00 0 0 1
7 8  d=9

Fig. 12 Boolean variables representing a path of length
6 from1t09, (1,2,54,7,8,9).
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B(n)= Xri1Xr2 X a—1Xr,aXr,qe1 Xron
=1

[Condition 3]

The i-th (I1=i<r—1) node in the path of
length r is selected from nodes j(1<j<n). The
Boolean formula for this condition, C (i) (1<i
=r—1), is as follows:

C (i) =for1{Xxi1, Xi, *
=]

[Condition 4]

The node j is included in a path of length 7 at
most once.

The Boolean formula for this condition, D ()
(1£j<n), is as follows:

D () =fra(Xo,5, X5 =y Xr5)
+ fra0(Xog Xug oo X )
=1

[Condition 5]

We denote the set of nodes adjacent to node j
by adj(j). Let adj(j) ={j, jo ***, ju}. One node
must be selected from the set adj(j). Therefore,
if the i-th node is node j, then the (i 1) th node
is selected from the set adj(j).

The Boolean formulas for this condition, E (i,
NO=isr—1, 1<j<n), are as follows:

E (i, ) = Xu;+ fr11 (Xis10 Xis10s =% Xit1,m)

=1

[Boolean function]

From conditions 1, 2, 3, 4, and 5, we can
obtain the Boolean function representing all the
paths of length #:

A(n)-B () -@jcu))

(oW )- (L EG »)=1

i=0y=

" xi,n)

[Experimental results]

We have considered how to find all the paths
of length r from the starting point (I, 1) to the
destination point (m, n) in Fig.13. It is
assumed that the distance between points is 1.

The shortest path is defined as a path of length
r such that no path of length #(#<r) exists.

For some m and n, we have examined the
number of all the shortest paths and the number

(1,1)

(m, n)

Fig. 13 Sample graph.
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Table 6 The number of Boolean variables and the Table 8 Numbers of Boolean variables, of Hamilton
number of all the shortest paths and the cycles, and of nodes used to construct the
number of nodes used to construct the BDD BDD representing all the Hamilton cycles, and
representing all the shortest paths and the the running times required to construct the
running time required to construct the same same BDD (times in seconds).
BDD (times in seconds). Number of .
 Number of ‘ . NuTnber of Hamilton Number of P'\unmng
Number of e Number of  Running m n r  variables cycles nodes time
m n r  variables paths nodes time 2 2 4 16 2 16
2 2 2 12 2 12 3 3 9 81 0 0 0.4
3 3 4 45 6 80 3 4 12 144 4 215 1.5
4 4 6 112 20 268 0.7 3 515 225 0 0 4.2
4 5 17 160 35 426 1.3 4 4 16 256 12 779 6.7
4 6 8 216 56 620 2.9 3 6 18 324 8 753 14.5
5 5 8 225 70 666 3.4 2 10 20 400 2 400 23.9
5 6 9 300 126 968 6.3 4 520 400 28 2095 25.5
5 7 10 385 210 1326 13.0 37 21 441 0 0 27.1
6 6 10 396 252 1388 15.1 2 11 22 484 2 484 39.6
6 7 11 504 462 1900 26.8 2 12 24 576 2 576 68.7
6 8 12 624 792 2492 53.1 3 8 24 576 16 2153 83.4
7 7 12 637 924 2572 57.5 4 6 24 576 74 5460 80.7
7 8 13 728 1716 3372 91.9 5 525 625 0 0 64.6
7 9 14 882 3003 4280 164.6 2 13 26 676 2 676 107.9
8 8 14 960 3432 4380 151.2 39 27 729 0 0 108.4
Table 7 The number of Boolean variables and the of nodes used to construct the BDD representing
number of all the longest paths and the num- all the shortest paths. We have also measured
ber of nodes used to construct the BDD re- the running time required to construct the same
presenting all the longest paths and the run- BDD, coded in C, on a Sony bigNEWS worksta-
ning time required to construct the same BDD i (16 MB). The results are shown in Table 6.
(times in seconds). The longest path is defined as a path of length
Number of Niﬁ?ﬁiﬂfﬁ Number of  Running r s?ch that no path of length ¢(¢>r) ?xists.
m 7 variables paf’hs nodes time For some m and n, we have examined the
number of all the longest paths. The results are
2 2 2 12 2 12 .
303 8 81 2 140 04  ShowninTable7. .
34 144 4 386 14 Since a cycle of length r is equal tg a path of
5 713 196 ) 196 2.7 length » sgch 'that the starting node is the same
3 05 14 225 g 859 4.6 as the destination node, we can find all the cycles
4 4 14 224 1 1491 5.0 of length 7 by using this Boolean function with
2 8 14 240 8 444 4.5 some modifications. We have computed all the
2 9 17 324 1 324 13.3 Hamilton cycles in Fig. 13. The results are
3617 324 16 1670 15.7 shown in Table 8.
2 9 17 324 1 324 13.4 .
210 18 380 10 716 19.4 6. Conclusion
4 519 400 20 3152 29.0 We have proposed a new technique for solv-
372 441 32 2955 38.0 ing combinatorial problems by separating the
2 12 484 ! 484 39.1 description of the conditions and the search for
2 1222 506 12 1052 36.7 solutions. This technique is essentially different
4 6 22 552 256 11482 77.8 from backtracking.
3 8 23 576 64 4874 81.0

First, we describe the conditions attached to
the problem by using Boolean functions. Next,
we construct a binary decision diagram (BDD)



1672 Transactions of Information Processing Society of Japan

representing Boolean functions by using an
efficient BDD manipulator. Finally we traverse
the BDD and obtain all the solutions.

By applying this technique to many com-
binatorial problems, we have discovered that the
conditions attached to the problem can be brief-
ly described by Boolean functions, and that all
the solutions can be obtained efficiently.
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