Vol. 35 No.11

Regular Paper

Transactions of Information Processing Society of Japan

Nov. 1994

Derivation of Efficient Pattern Matching Algorithms
by Fully Lazy Evaluation with Lazy Memo-ization

KEencH1 KANEKO T and MASATO TAKEICHI |

In fully lazy evaluation, every subexpression is evaluated at most once after all variables in it have
been bound. Hence we may regard that a fully lazy evaluator has an ability to perform partial
computation. According to this standpoint, we have shown that a fully lazy evaluator with lazy
memo-ization derives a program which corresponds to the Knuth-Morris-Pratt algorithm from a
fairly simple pattern matching program. In this paper, we inspect the derivation method of the KMP
algorithm carefully to apply it to a matching problem which has multiple patterns and we have
succeeded in obtaining a program which corresponds to the Aho-Corasick algorithm. The result is
also applicable to more complex pattern matching problems.

1. Introduction

Consel and Danvy have succeeded in deriva-
tion of the Knuth-Morris-Pratt algorithm?® from
a simple pattern matcher using a partial
evaluator.? Some researches have shown that
fully lazy evaluators with certain memo-ization
mechanisms derive comparable results.*® In this
paper, we first inspect derivation of the KMP
algorithm carefully to design a fairly naive
pattern matching program, then we derive an
efficient program by applying a fully lazy
evaluator equipped with the lazy memo-ization
mechanism to the program.

In section 2, we reconfirm the notion of partial
computation, fully lazy evaluation, and lazy
memo-ization. In section 3, we see derivation of
a program which corresponds to the KMP algo-
rithm to clarify how much information is neces-
sary in simple pattern matcher so that a partial
evaluator may derive the efficient one. Accord-
ing to this observation, we design a fairly simple
pattern matching program in section 4. Then we
apply a fully lazy evaluator equipped with lazy
memo-ization to the resultant program and
obtain an efficient program which has equivalent
ability to the Aho-Corasick algorithm in section
5.

i Department of Mathematical Engineering and Infor-
mation Physics, Faculty of Engineering, University of
Tokyo

2347

2. Preliminaries

2.1 Partial Computation

Partial computation is a notion which derives
from 1930’s. One of definitions of partial com-
putation is to specialize a generic program into
a more efficient one based on its operating
environment.

In general, we may define a partial evaluator
as a function [] which takes an n(>1)-variable
function f and a known datum k and returns a
function which is obtained by specializing the
first argument of f with respect to k. There
have been three idealistic requirements for a
partial evaluator TJ:

Soundness.] satisfies the equation [T f & x;

e Xp=f k Xp -+ X

Completeness. I computes all the parts

which depend on the known datum only.

Finiteness. For all f, k,and e, e,,if f k e,

.-+ e, terminates then] f k& also terminates.
However, it is impossible for any partial
evaluator to satisfy all of these requirements at
the same time.- A straightforward partial
evaluator usually satisfies the requirements of
soundness and completeness but finiteness.

2.2 Fully Lazy Evaluation

To say about fully lazy evaluation, we first
need to define ordinary lazy evaluation. Lazy
evaluation is a reduction strategy characterized
as follows:
® When a function application is evaluated, its

arguments are passed to the function body

2348 Transactions of Information Processing Society of Japan

without evaluating them. Evaluation of an

argument is caused by the first reference to the

corresponding parameter, and the evaluation

result is kept for successive references to the

argument.
When we have a language construct for
introducing local variables as

let x=(1++2) in (x+x)
we may regard such an expression as a function
application
\x—>x+x) (1+2),

and apply the evaluation mechanism described
above. In the rest of this paper, we assume this
with no explicit transformation. We write pro-
grams using the functional language Haskell.¥

Fully lazy evaluation is a variant of lazy
evaluation, and it is defined as follows:
® Every subexpression is evaluated at most

once, after all the variables in it have been

bound.
If an expression is evaluated in a fully lazy way,
its subexpressions are evaluated only once at the
first time their values are requested after the
variables in them have been bound and no more
evaluation for them will be taken henceforth.
Taking account of this feature, we may conclude
that a fully lazy evaluator performs partial com-
putation in a sense. We call such an evaluation
process fully lazy partial computation.

To clarify how a fully lazy evaluator works as
a partial evaluator, we give an interpretation of
the process of partial computation in terms of
the lazy evaluation mechanism. There have been
proposed several algorithms for transforming
programs into ones suitable for fully lazy evalua-
tion in lazy environment.»”!9 These algorithms
are based on binding-time analysis of the vari-
ables and transform programs into ones in the
same language as the originals. The idea behind
these algorithms lies in the fact that we can make
use of ordinary lazy evaluators for fully lazy
evaluation. That is, evaluating the transformed
program in an ordinary lazy way leads to fully
lazy evaluation of the original program. The
lambda hoisting algorithm!® transforms original
programs into the fully lazy normal form in
which all the maximal free expressions are hoist-
ed to the outermost level so as to be bound as
soon as the variables in them are bound. Once
transformed by lambda hoisting, lazy evaluation
of the resultant program achieves fully lazy

Nov. 1994

evaluation of the original program. In im-
plementing an interpreter for lazy evaluation, the
use of environment structure is convenient for
maintaining the association of variables with
their evaluation results. If we want to obtain
evaluated results in the form of the source lan-
guage, environments can be expressed directly in
terms of local declarations.

To understand our fully lazy partial computa-
tion by an example, consider a function second
which takes a list as its argument and returns the
second element of the list. We may define the
function second by partially parametrizing a
dyadic function nth as

second=nth 2

nth n xs=cond (n= =1) (hd xs)

(nth(n—1) (t1 x8)).

The function nth takes an integer n and a list Xs
and returns the n-th element of the list xs. A
conditional function cond is introduced to illus-
trate the effect of fully lazy evaluation.

cond True=condTrue

cond False=condFalse

condTrue e0 el=e0
condFalse e0 el=¢el
After lambda hoisting, the definition of the func-
tion second is transformed into as follows:
second
=let nth=\n— >let a=cond(n= =1)
and b=nth(n—1)
in \xs— >a(hd xs)
(b (tl x8))
in nth 2.
If we force evaluation of second by supplying a

-list of sufficient length, the subexpression (nth

2) is replaced by the evaluation result and the
definition of second changes into as follows:
second
=let nth=\n— >let a=cond(n= =1)
and b=nth(n—1)
in \xs— >a(hd xs)
(b(tl x8))
in let a=condFalse
b=let a=condTrue
and b=nth(1—1)
in \xs— >a(hd xs)
(b(tl x8))
in \xs— >a(hd xs) (b(tl x8)).
If we look this expression carefully, it turns out
that the expression is equivalent to

Vol.35 No.11

\xs— >hd (tl xs).

From this example, we have learned an essen-
tial features of fully lazy partial computation.
Our fully lazy evaluator performs calculation of
redices which depend only on the known datum
n and it leaves a residual program. In other
words, the evaluator performs nothing but par-
tial computation.

As mentioned above, a straightforward partial
evaluator may not satisfy the requirement of
finiteness. There are cases in which it fails to
terminate computation. In contrast to this, our
fully lazy partial evaluator satisfies the require-
ments of soundness and finiteness. It also fulfills
the completeness condition to a considerable
degree.

2.3 Lazy Memo-ization

Lazy memo-ization is a simple and effective
technique which is proposed by Hughes.® In our
implementation, when a memo-ized function is
evaluated, a special function closure is returned
in which argument-result pairs will be stored.
When the system encounters the closure with
some argument, it evaluates the argument to
weak head normal form and searches it from the
stored pairs in ‘eq” manner. If found, it reuses
the result. Otherwise, it takes the same evalua-
tion steps as for a normal closure then stores the
argument-result pair.

Some kind of hashing technique is used for
storage of argument-result pairs. Hence we may
make assumption that the search from the stored
pairs is finished in constant time.

3. Derivation of the KMP Algorithm

Consel and Danvy have derived a program
which corresponds to the KMP algorithm from a
fairly simple pattern matching program. Kane-
ko and Takeichi have obtained a comparable
result from the program of Consel and Danvy by
a fully lazy evaluator. Holst and Gomard have
also derived the KMP algorithm by a fully lazy
evaluator from a simple program using the list-
splitting technique.

The common technique of these approaches is
that they prepare a failure function for the fail-
ure case of pattern matching. The function
calculates shift amount of the pattern from infor-
mation of the substring matched the pattern so
far. We call the substring the already matched
substring (AMS). Then the approaches gener-

Derivation of Efficient Pattern Matching Algorithms by Fully Lazy Evaluation 2349

ate more efficient programs by specializing the
failure function with all possible AMS’s. In the
approach of Holst and Gomard, the AMS itself
is passed to the failure function. The approach
of Consel and Danvy passes the whole pattern
and the length of the substring obtained by
subtracting the AMS from the pattern. These
arguments have equivalent information to the
AMS itself. In the next section, we design a
failure function which takes the AMS as its
argument.

To derive a program which has power of the
KMP algorithm, these approaches utilize the
information of the mismatching of characters
which leads the pattern matching to failure.
However, we do not use it here. If we define a
function which takes two arguments, p and s,
and judges whether s is a prefix of p or not.
prefix p s

=cond (null s)True

(cond (null p) False
(cond((hd p)= =(hd s))
(prefix (t1 p)
(tl s))
False))
Then we may define the simple pattern matching
function as follows:

kmppt
=let gsa
=cond (prefix p(s+ +[a]))
(s+ +[a]nil
and f s

=cond (null s)nil
(cond (prefix p(tl 8))
(tl s) (£(tl 8)))
and loop s t
=let ns=g s[hd t]
in cond (ns= =nil)
(loop(f s)t)
(loop ns(tl t))
in loop nil t.
Lazy memo-izing the functions g and f with
respect to their arguments, the function kmp is
specialized to a more efficient one which pro-
duces the comparable result to the KMP algo-
rithm.

4. Design of a Simple Pattern Matching
Function

4.1 Problem
Let us formalize the pattern matching prob-

2350 Transactions of Information Processing Society of Japan

lem. We assume that a string is a list of charac-
ters. We use some identifiers to represent special
values. That is, the identifiers K, P, p, t, s, and
a have following meanings.

K the original list of patterns,

P an arbitrary list of patterns,

p one of the patterns,

t current view point of the original text,

S an AMS, and

a an arbitrary character.

Then we define the problem as follows:
Problem: For given K and t, find all patterns
included in K which appear in t.

4.2 Goto Function

In derivation of the KMP algorithm, it is easy
to make an AMS. But in this case, it is not so
because there are several patterns. Hence we
have to introduce a new function g. This func-
tion g takes three arguments, a list of patterns P,
an AMS s, and a character a. Then g returns a
new AMS s+ +[a] if it is included as a prefix of
some pattern of P, otherwise it returns a null
string nil which represents failure. For example,
if we invoke g followingly

g["he","she”,"his","hers”]"h" 'e’
then the value "he” is returned.

An auxiliary function g0 is defined locally in
the body of g. It takes two arguments, a pattern
P and a string s. If the string s is the prefix of
p, it returns the rest of the pattern p, otherwise
it returns nil. For example, if we invoke gO as
g0 "he"” "h", the value "e” is returned.

The function g is defined as follows.
g=let g0 ps

=cond (null p)nil
(cond
(null 8)p
(cond
((hd p)= =(hd 8))
(80(tl p) (t1 8))
nil))
in\P—>\s—>\a—>
cond (null P)nil
(let np=g0(hd P)s
in cond
(null np)
(g(tl P)s a)
(cond
((hd np) = =a)
(s+ +[hd np])
(g(tl P)s a)))

Nov. 1994

4.3 Failure Function

In preparation for failure cases, we introduce
a function f. The function f takes one argument,
that is, an AMS s. Then it returns a new AMS.
For example, if we invoke f as f "sh” with K=
["he”,"she”,”his","hers”], then a new AMS
"h" is returned.

An auxiliary function fO is defined locally in
the body of f. It takes a string s as its argument.
The string 8 must not be null. So it is divided
into s=s14 +[a]. Then fO returns a pair cons
sl a. For example, if we invoke fO as fO "sh",
then cons "s" 'e’ is returned.

The function f is defined as follows.
f=let fO s

=cond (null(tl s))
(cons nil(hd s))
(let p=fO(tl s)
in cons(cons(hd s)
(hd p))
(t1 p))
in \s— >cond (null(tl s))nil
(let p=f0s; ns=f(hd p)
and nsl=g K ns(tl p)
in cond
(null nsl)
(cond
(null ns)nil
(g K(f nsl)
(t1 p)))
nsl)

4.4 Output Function

To report the matched patterns, we define a
function o. It takes one argument s which is an
AMS and returns the list of patterns included at
the end of the AMS. For example, if K=["he",
"she”,"his","hers”] and we invoke 0 as o
"she”, then a list of patterns ["she”,”he”] is
returned.

We define an auxiliary function 00 locally in
the body of 0. The function o takes two argu-
ments, a list of patterns P and a substring s.
Then 00 returns a pattern if it is equal to the
substring. Otherwise, it returns a null string nil.

The function o is defined as follows.
o=let o0 P s

=cond (null P)nil
(cond (equal(hd P)s)
[hd P]
(00 (tl P)s))
in \s— >cond (null s)nil

Vol.35 No.11

Derivation of Efficient Pattern Matching Algorithms by Fully Lazy Evaluation 2351

ac K t=let g=let g0 p s=cond(null p)nil
(cond(null s)p

(cond((hd p)==(hd s))

(go(tl p)(tl s))nil))

in \P->\s->\a->cond{(null P)nil

(let np=g0(hd P)s
in cond(null np)(g(tl P)s a)

(cond((hd np)==a)(s++[hd npl)
(g(tl P)s a)))

and f=let fO s=cond(null(tl s)){(cons nil(hd s))
(1et p=fo(zl s)
in cons(cons(hd s)(hd p)) (t1 p))
in \s->cond(null(tl s))nil
(let p=f0 s; ns=f(hd p); nsi=g K ns(tl p)
in cond(null nsi)

(cond(null ns)nil

(g X(£f ns1)(tl p)))ns1)

and o=let o0 P s=cond(null P)nil
(cond(equal(hd P)s)[hd P](o0(tl P)s))
in \s->(cond(null s)nil((o0 K s)++(00 K(f s))))
and loop s t out=cond(null t)out
(let ns=g X s(hd t)
in cond(null ns)

in loop nil t nil

(cond(null s)(loop nil(tl t)out)
(loop(f s)t out))
(loop ns(tl t)(out++(o ns))))

Fig. 1 The naive pattern matching functional program ac.

((c0 K s)++ (o (f8))

4.5 Loop Function

The function loop takes three arguments.
They are an AMS s, the current top of the text
1, and the set of the patterns out. The identifier
out represents the accumulation of the output
function. Then it returns the set of patterns
which appear in the original text.
loop s t out=cond (null t)out

(let ns=g K s(hd t)

in cond(null ns)

(cond (null s)
(loop nil(tl t)out)
(loop (f s)t out))
(loop ns(tl t) (out++ (o ns))))

4.6 Simple Pattern Matching Function

Using the auxiliary functions defined above
subsections, we may define a simple pattern
matching function ac. Figure 1 shows the func-
tion ac. We start the loop function with initial
values, nil, t, and nil for the AMS, the text, and
the output accumulation, respectively.

5. Fully Lazy Evaluation and Lazy Memo-
ization

For instance, if we define ack followingly:
ack=ac ["he”,”she”,”his”,"hers”]
to evaluate it under fully lazy environment, we

may expect that some specialization with the
patterns proceeds while applying ack to several
texts. However, the function ack is very
inefficient because it is necessary to recalculate
these auxiliary functions for each character of
the text even after specialization. The following
argument shows that we can improve it consider-
ably by introducing lazy memo-ization to store
calculation results.

Let us consider to lazy memo-ize the argu-
ments of the auxiliary function g in the function
ac obtained in the previous section and evaluate
it under fully lazy environment. Then it is
achieved to keep uniqueness of each AMS. The
word uniqueness means that all occurrences of
each AMS share same memory address in com-
puter.

For example, if we invoke g with arguments
["he","she","his","hers”] and "h"” as P and s,
respectively, then the function closure which is
equivalent to the following function is returned
and stored by memo-ization mechanism:
let P=["he","she",--]; s="h"
in \a— >cond (null P)nil

(let np=g0(hd P)s
in cond(null np) (g(tl P)s a)
(cond((hd np)==a)
(s++[hd np])

2352 Transactions of Information Processing Society of Japan

?r’ > S)
? g? Hheu “her“ Hhersll
’h) llhll
(]// \ ’g?
i 23 1) '] P
,S’ llsll
\ ’g?
’h? gpn Hghe!
Fig.2 The transition rule generated by the function g.
llhel! l|herl| llhersll

ngh! ighe!

All the transition arrows to the null string "* are omitted.

Fig.3 The transition rule generated by the function f.

Nov. 1994

(g(tl P)s a))).
If we apply this function to a character 'e’,
because of full laziness the stored expression is
transformed into as follows:
let P=["he","she",::-]; s="h"
in \a— >condFalse nil

(let np="e"
in condFalse(g(tl P)s a)
(cond(’e’= =a)"he”

(g(tl P)s a)))

The most important change is that the subexpres-
sion (s++[hd np]) is replaced by its evalua-
tion result "he”. This means that if we invoke g
with unique arguments [“he”,”she”,"his”,
“hers”], "h”, and ’e’ as P, s, and a, respectively,
then the unique AMS "he” is always returned.
Taking account of the fact that only the function
g generates the AMS’s, we may conclude that
full laziness and lazy memo-ization keep their
uniqueness. Again if we apply the function g to
the same arguments ["he”,”she”,"his”,”hers”]
and "h”, the above function is returned. If we
apply it to a character which is not 'e’, the test
(’e’= =a) returns F'alse and the subexpression
(g (tl ps)s a) is expanded to generate another
transition choice.

Consequently, if we apply the function ack
defined in the previous section to many texts, the
specialization of g with the patterns ["he”,

"she”,"his","hers”] proceeds enough to pro-
duce the transition rule shown by Fig.2. We
find that it is equivalent to the goto function in
the Aho-Corasick algorithm.V The failure and
output functions are also derived by lazy memo-
izing the arguments of the functions f and o.
Figure 3 shows the transition rule generated by
the failure function f specialized with the pat-
terns.

6. Complexity

In estimation of the complexity of the expres-
sion (ack t), Aho and Corasick put a restric-
tion that the set of characters a’s is finite and
small.? Using this fact, they show that the
expressions (g K s a), (f s) and (o s) are
calculated in O(1), and (ack t) in O(n) where
n is the length of the original text t. Adopting
this restriction, it is possible to lazy memo-ize all
the cases of the third argument of g. Hence,
after the function ack is evaluated enough to
produce a completely specialized version, the
expressions (g K s a), (f s) and (0 s) are
calculated in O (1) because their arguments are
lazy memo-ized. Then we may conclude that the
expression (ack t) is calculated in O(n).

As Aho and Corasick have pointed out, the
failure function f is not optimal. Though it does
not affect the complexity, they have shown two

Vol.35 No.11 Derivation of Efficient Pattern Matching Algorithms by Fully Lazy Evaluation 2353
AMS character -> new AMS
i)h’ _> ”hll’ Is) _) llsll
upn rg? > ”he", h? -> ”h“, 2i0 -> "hi", ’g? -y hgw
IXSI) Ih? _) ”Sh”,)S) _) l|sll
"he" ’h? -> "n", ’r? => "her", ’s’ -> 'sg"
llhi!l ’h’ ._> Hh“,)S) _> l|hisl|
“sh e’ => “she", ’h’ -> "h", i’ => "hi", ’g’ -> "g®
Yher" ’h? -> "h", ’s’ -> "hers"
"hig" ’h? -> "Sh“, ’g? => gt
“she" ’h? => “h”, ‘r? -> "her“, ’g? => ugh
"hers" ’h’ -> “sh", ’s’ -> 'g"

The null string " is returned for combinations which do not appear in this figure.

Fig.4 The transition rule generated by the function d.

ways to improve the algorithm. The first one is
to define a new failure function f1 as follows:
fl=let h P s
=cond
(null P)True
(let ns=g0(hd P) (f 8)
and h1=h(tl P)s
in cond
(null ng)hl
(cond
(null(g K s
(hd ns)))
False hl))
in \s—>let fs=f s
in cond (null fs)nil
(cond(h K s)
(f1 fs)fs).
This new failure function eliminates unnecessary
failure transitions while still remain unnecessary
character comparisons. The second one is to
define a new function 4:
d=\s—>\a—>
cond (null s) (g X nil a)
(let gk=g K s a
in cond (null gk)
(d(f s)a)gk).
and change the definition of the function ac as
follows:
ac K t=let g=---
and f=---
and o==---
and d=---
and loop s t out
=cond (null t)out
(let ns=d K s(hd t)
in loop ns(tl t)
(out++(ons)))
in loop nil t nil.
The function d corresponds to the deterministic

Table 1 Beta reduction steps required to
evaluate ack "ushers”.

Deterministic No No Yes Yes
Memo-ized No Yes No Yes

First 3213 | 2559 | 3230 | 2674
Second 2725 193 2755 161

automaton generated by the goto function g and
the failure function f. Figure 4 shows the
transition rule generated by the function d. 1In
either case, lazy memo-ization of arguments
achieves same result of Aho and Corasick.

To check the power of fully lazy partial com-
putation, we show the results of an experiment
in which we define ack=ac K where K=
["he","she","his”,"hers”] and evaluate ack
"ushers” twice. Table 1 shows the beta reduc-
tion steps required to obtain the complete result
["she”,"he","hers”]|. We use the function d for
the deterministic case. The memo-ization of the
functions plays an important role. In memo-ized
cases, the first evaluation causes good specializa-
tion of the function ac with respect to the list of
patterns K and the reduction steps reduce to less
than 10 percents in the second evaluation.
While the reduction steps reduce to only
85 percents in not memo-ized cases. On the
other hand, the difference that the transition
function is deterministic or not does not have
much influence on the result in this case.

7. Conclusion

We have succeeded in derivation of a non-
deterministic version of the Aho-Corasick algo-
rithm by fully lazy evaluation and lazy memo-
ization from a fairly simple pattern matching
function. All what we have to do is to prepare
the failure function and the AMS’s to decide the

2354 Transactions of Information Processing Society of Japan

actions in failure cases. We may apply this
technique to more complex pattern matching
problems. For instance, we may introduce the
so-called don’t-care character or the negation
characters into patterns by changing the goto
and failure functions. In these problems, the
already matched subtexts must be stored because
it is impossible to restore it from already
matched subpatterns in failure cases.

Holst and Gomard have succeeded in deriva-
tion of the Knuth-Morris-Pratt algorithm by
fully lazy evaluation and the strict memo-ization
technique. They also accumulate the AMS’s to
estimate the amount of shift. Their approach
may derive a comparable algorithm to our
result. But the main difference is that the trick is
embedded in the system in our approach while
they have to pay attention to change the func-
tionality of memo-ized functions and generate
the domains of arguments.

Acknowledgement We would like to express
special thanks to Dr. Akutsu of Mechanical
Engineering Laboratory. He offered us the
motivation for this study and gave us useful
comments and suggestions for an earlier draft of
this paper. This work is partly supported by the
Grant-in-Aid for Scientific Research (C) (Grant
No. 06680306) and the Grant-in-Aid for Encour-
agement of Young Scientists (Grant No.
06780239) of the Ministry of Education, Science
and Culture of Japan.

References

1) Aho, A.V. and Corasick, M.J.: Efficient
String Matching: An Aid to Bibliographic
Search, Comm. ACM, Vol. 18, No. 6, pp. 333-340
(1975).

2) Consel, C. and Danvy, O.: Partial Evaluation
of Pattern Matching in Strings, Inf. Process. Lett.,
Vol. 30, No. 2, pp. 79-86 (1989).

3) Holst, C. K. and Gomard, C. K. : Partial Evalu-
ation is Fuller Laziness, Proc. of the Symposium
on Partial Evaluation and Semantics-Based
Program Manipulation, ACM SIGPLAN
Notices, Vol. 26, No. 9, pp. 223-233 (1991).

4) Hudak, P.et al.: Report on the Programming
Language Haskell, 4CM SIGPLAN Notices, Vol.
27, No. 5, Section R (1992).

5) Hughes, R.J. M. : Super-Combinators—A New
Implementation Method for Applicative Lan-
guages, Conference Record of the 1982 ACM

Nov. 1994

Symposium on LISP and Functional Program-
ming, pp. 1-10 (1982).

6) Hughes, R.J.M.: Lazy Memo-Functions,
Functional Programming Languages and Com-
puter Architecture, Jouannaud, J. -P. (ed.), LNCS
201, Springer-Verlag, pp. 129-146 (1985).

7) Kaneko, K. and Takeichi, M.: Relationship
between Lambda Hoisting and Fully Lazy
Lambda Lifting, J. Inf. Process., Vol. 15, No. 4,
pp. 564-569 (1992).

8) Kaneko, K. and Takeichi, M. : Derivation of a
Knuth-Morris-Pratt Algorithm by Fully Lazy
Partial Computation, Advances in Computer
Science and Technology, Vol. 5, pp. 11-24 (1993).

9) Knuth, D. E., Morris, J. H. and Pratt, V.R.:
Fast Pattern Matching in Strings, SIAM J.
Comput., Vol. 6, No. 2, pp. 323-350 (1977).

10) Takeichi, M.: Lambda-Hoisting: A Transfor-
mation Technique for Fully Lazy Evaluation of
Functional Programs, New Generation Comput-
ing, Vol. 5, pp. 377-391 (1988).

(Received January 13, 1993)
(Accepted July 14, 1994)

Keiichi Kaneko is Research
Assistant in the Department of
Mathematical Engineering and
Information Physics, Faculty of
Engineering at the University of
Tokyo. His main research inter-
estes are in functional program-
ming, parallel programming, and partial compu-
tation, He received a B.E. in Mathematical
Engineering from the University of Tokyo, and
an ML.E. in Information Engineering from the
University of Tokyo. He is a member of IPSJ.

Masato Takeichi is Profes-
sor in the Department of Mathe-
matical Engineering and Infor-
mation Physics, Faculty of
Engineering at the University of
Tokyo. His main research inter-
ests are in functional program-
ming, parallel programming, and constructive
algorithmics. He received a B.E. and an M.E.
both in Mathematical Engineering from the
University of Tokyo, and a D.Eng. in Informa-
tion Engineering from the University of Tokyo.
He is a recipient of the IPSJ Award of the year
1985. He is a member of IPSJ.

