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A New Software Reliability Growth Model Predicated on
Counting Processes for Instruction Execution

MasAMI NoRro,! KuNio GoTo' and KATSUSHIGE SAWAKI'

We have developed a new software reliability growth model based on counting processes for
instruction execution in software. Our model defines the reliability of the program at time ¢, R(¢),
as

_ 43
R(1) —Z];IS exp[ a+tp
where

S ={G. L, C,0},G, L, C,O denotes global, local, communication, and others, respectively ;

a is the total number of faults ;

p: is the probability that failure occurs at the first execution of a class-i instruction, proportional

to the number of faults in class-/ instructions (we call p: the initial probability of failure);

A is the rate of instruction execution ; and

g: is the probability that an instruction execution is of class-i.

Through analysis using the proposed model, we conclude that higher software reliability can be
achieved with data abstraction techniques than with functional decomposition, under reasonable
assumptions. We note also that the exponential NHPP model is a special case of our theoretical

Aqiz}

model, and that the results of our model therefore agree with those of the NHPP model.

1. Introduction

A number of software reliability growth
models (SRGMs) have been proposed to mea-
sure quantitatively the reliability of large-scale
software through statistical analysis of defect
behavior.#»M:9-12 In these traditional models,
software is treated as a black-box entity, and its
defect behavior is only macroscopically ob-
served. In general, and in particular for non-
homogeneous Poisson process (NHPP) models,
the following characteristics hold :

1) Formulas are based on a process that

counts overall failures of target software.

2) Different types of failure are not distin-

guished.
These characteristics of NHPP models ensure
simplicity, and, as a result, the models can be
easily applied to real projects. However, the
internal structure of software should be consid-
ered in order to evaluate the reliability of vari-
ous types of software, or the reliability of soft-
ware written by using different modern tech-
niques. Therefore, microscopic models that
represent internal software structure are needed.
The software engineering community has

T Department of Information Systems and Quantita-
tive Sciences, Nanzan University

2623

developed several productive principles and
paradigms over the last decade. In particular,
the object-oriented paradigm has been a great
success, and has been successfully applied to real
projects.¥ One of the most important principles
of the object-oriented paradigm is the concept of
data abstraction.® The object is the construct
employed for data abstraction. Since it protects
its internal data from illegal or undesirable
accesses from outside, the data abstraction tech-
nique is said to enhance software reliability.
This leads to one of the most important ideas of
the object-oriented paradigm: well-structured
software, which is designed as a set of abstract
data, has high reliability.

Traditional SRGMs measure the quality of
software structure in terms of the total number of
faults, which is one type of estimated parameter.
Unfortunately, the cause-and-effect relationship
between the structure and the reliability of the
target software is not captured by the estimation
of other parameters, because the models are
formulated from a bird’s eye view. In other
words, while it is possible to discuss how reli-
able the software is, there is no way to know
how much the integrity of the code’s structure
contributes to reliability. Thus a major applica-
tion of traditional SRGMs has been to estimate
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the total number of faults in the target software.

If we develop an SRGM that represents the
internal structure of the software in detail, the
values of various parameters estimated from the
defect behavior will naturally yield measures for
the quality of the target software structure. With
such a model, we can analyze the causes and
types of faults, in addition to estimating the total
number of faults. Therefore, the model can be
more actively used to control the software devel-
opment process, as demonstrated by Yamada
and Takahashi,'® and by Basili’s TAME.V

Following the discussion above, we propose a
new SRGM® that represents the structure of the
target software. Our model has, in concrete
terms, the following features :

1) Instruction execution is assumed to be a

counting process.

2) The instructions in the code are catego-
rized into several classes.

3) A set of parameters for the model can be
used to measure the quality of the target
software structure.

In the case where the instruction execution
obeys a Poisson process, let us preview a for-
mula obtained in the next section for the reliabil-
ity of the software at time ¢, R(¢) :

_ D:
R() =1 exp| —, 2 zqu
where

S={G, L, C, 0}, G, L, C, O denotes global,
local, communication, and others, respec-
tively,

a is the total number of faults,

p; 1s the probability that failure occurs at the
first execution of a class-/ instruction, pro-
portional to the number of faults in class-i
instructions (we call p; the initial probabil-
ity of failure),

A 1s the rate of instruction execution, and

g; is the probability that an instruction execu-
tion is of class-i.

Using this formula, we compare the reliability of
software designed by data abstraction with that
of software designed by functional decomposi-
tion. We conclude that the former is generally
more reliable.

The rest of the paper is organized as follows.
Section 2 describes the proposed SRGM and
justifies the formula above. In Section 3, the
reliability of software designed by data abstrac-
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tion is compared with software designed by
functional decomposition. We discuss the valid-
ity of our SRGM in Section 4.

2. A Software Reliability Growth Model
Based on Instruction Execution

In this section, we develop an SRGM for

sequential-processing software in two steps :

1) We derive a reliability function of the
given time ¢ for a single class of instruc-
tions, as in traditional models.

2) We categorize the instructions into several
classes to represent the structure of the
code, and then extend the model to the
general case.

Throughout the paper, we make the following

two assumptions :
Once a failure occurs, it is always detect-
ed.
A single failure is always caused by a
single fault.

That is, an event of a failure occurrence is

equivalent to that of fault detection.

2.1 The Basic Model

In general, an SRGM yields a continuous-time

formula. Since failure may take place at any
moment of time, it is natural to build our SRGM
as a continuous-time model. First we focus on’
the series of time instants of instruction execu-
tion and derive a discrete-time formula. Then,
using a Poisson process, we translate the
discrete-time formula into the corresponding
continuous-time formula for the case in which
instruction execution may occur at random.

2.1.1 Instruction Execution and Failure

Figure 1 illustrates the basic assumptions of

the relationships among instruction execution,
occurrence of failures, and the probability of
failure occurrence. Let us define a random
variable, O; as follows :

Epochi 1 9 3 4 5 6 7 38

O; 000 1 0 1 1 0 0

o K

0

Fig. 1 Relationship between instruction execution, fail-
ure occurrence, and its probability in software.
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1 if a failure occurs and is detected
O,—{ at the epoch i ;

0 otherwise
where the epoch 7 is the time instance of the i-th
execution of instructions. @; represents the
probability of failure occurrence at the epoch i,
and its value decreases as the reliability grows.
It is assumed that the probability of failure
occurrence depends solely on, and is directly
proportional to, the number of remaining faults.

The figure assumes the following scenario :

1) In epoch 3, a failure occurred, and there-
fore (O;=1) was detected. The fault that
caused the failure was detected and correct-
ed, and the total number of faults was
reduced by 1. The probability of failure
occurrence @ was reduced.

2) In epochs 5 and 6 failures also occurred,
the corresponding faults were corrected,
and the probability was reduced.

2.1.2 The Mean Value Function for Fail-

ures in Discrete Time

Let p be the initial probability of failure

occurrence, that is,
p=Pr{One of faults in the code is executed}
(the total number of faults)
~ (the total number of instructions)
X (constant).
Then, «; is defined as:

p+ E[the number of remaining faults
in the code at the epoch 7]
(the total number of
faults in the code)

(a—H,)
Yy P (0)
where a is the total number of faults in the code.
The mean value function, H;, is
H;= E[the number of faults detected up to
the epoch i(the number of faults
corrected through the epoch i —1) .
To derive H,, let Q;(k) be a probability mass
function :
Q; (k) = Pr{the number of faults detected
through the epoch i—1=k}.
Then, the expectation of & becomes H;:
H=2 k-Q;(k) (the mean value with
A= respect to k).
Note that we have the following recurrence
equation, Q;(k):

;=
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Q.(k)="Pr{(k up to the epoch i—1) A (no
new failure occurs and no new
fault is detected in the epoch i
=1}
+Pr{(k—1 up to the epoch i—1)
A (a new failure is detected
in the epoch i—1)}
=Pr{no new failure occurs and no
new fault is detected in the
epoch i—1 | k up to the epoch i
—1}X Qi (k)
+Pr{[a new failure occurs and a
corresponding new fault is
detected in the epoch i — 1] A
[k—1 up to the epoch i —1]}
X Qi (k—1)
= (1 _a’i) M Qi—l(k) +a/in'fl(k7 1)>
(1)
where i =1,2,3,,k=0,1,2,---,aN(i—1),
and Q;(k) =0 otherwise. Note that we assume
that once a failure occurs, the corresponding
fault which causes the failure, and which is
always single, is always detected and fixed. That
is, to say that no new failure occurs means that
no new fault is detected.
Let Q*(z) be a probability-generating func-
tion Q;(k). That is,

0 (2) =3 Qi (k).
Equation (1) becomes

Q¥(z)=(1—a) Q *.(2) +azQ *:1(z)
:{(_1 —a;) +Clz’Z}Q *1(2)

0F(2) = IL{(1 - ) + 2} 07 (2).
Note that @;(0) =1 and Qi (z) =1, then,
O (z) =1 4

Qi*(z)zigz(l“an_'_a’nzy (2)
We have H; in terms of @, :
H1:0

=lim Zl] {ak ﬁ

(] _am+anzz)]’
m=2,m+k

(i=2). (3)

From equation (0),
o =p
. a_Hl'

a;=p a
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anZ n .
:pff——-:d' - (i=2). (4)
Now we take the difference as:

i1 — Ui = *"‘ZQH]

i1 ;.

va
I+ a

Hence,

di:—“‘%.
(1+4)

Again, from (0),
Hl.:a.{l —

Since £>(),
a

lim ;=0

i—oo

lim HZ-:a.

i—oo

The derivation so far does not depend on any
specific probability distribution of consecutive
instruction executions. Again, note that H; is a
mean value function of not only faults but also
failures, on the basis of our assumption.

2.1.3 The Continuous-Time Formula

If we assume that the executions of software
instructions are carried out according to a Pois-
son process with rate A, we have a quite simple
form for the reliability function. Since a Poisson
process is known to represent exponential inter-
arrival time at a service facility (in terms of
queuing theory), this assumption is reasonable
in most cases of instruction execution in soft-
ware.

Pr{the number of instructions executed in
i
time interval =i} = iﬁ}—t,)— e

Thus, the mean value function of failures at a

given time ¢ is

H(Z) 2 Hz+1

Hence,

H(l):a<l~exp{ a+p/1[D

The definition of failure rate is
dH (1)

B dt
dO=""F"

Then, substituting H (¢) in the expression, we

(M)

have
,/i‘

d(t)=
a- | D
Finally, we have the reliability, R(z)=

exp[fﬁt d(r) dr}:

R(1) :exp[ a+p/“]

2.2 Extension of the Basic Model for
Multiple Classes of Software Instruc-
tions

We now classify instructions into the follow-
ing four categories :

1. Global data access

2. Local data access

3. Inter-module communication

4. Others

Here, a module is defined as a set of subpro-
grams (procedures or functions) and/or data
definitions. A software system consists of multi-
ple modules. Inter-module communication is
defined as follows :

When an instruction in module M; is a call
to a subprogram p in module M,, inter-
module communication occurs between M,
and M,, and is defined to be the set of
actions that are the parameter passings of
p’s invocation, along with the return value
in the case of a function call.

Let p; be the initial probability of failure
occurrence, and let g; be the probability of
instruction execution, where suffixes such as G,
L, C, O mean global data access, local data
access, inter-module communication, and others,
respectively. Say pc denotes the initial probabil-
ity of failure occurrence in global data access. If
we assume the executions of the different types of
instructions to be independent of one another,
the failure rate can be obtained :

dt) =270

where
S={G, L, C,0}.
Reliability is defined as

R(t):llgsexp{ p pqu}
3. Data Abstraction versus Functional

Decomposition from the Perspective of
Our Model

+p ot

This section discusses the reliability of data
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Global data
Module 1 Global data
| access
=  Module 2
Inter-module
communication

Module T]
+Operations
Local data
access Inter-module
Local data \ communication
+Operations
Module

(a) Functional Decomposition Software

(b) Data Abstraction Software

Fig.2 Structure of software.

abstraction software and functional decomposi-
tion software*. We use the term data abstrac-
tion software for software designed by using the
abstract data type technique,® or an object-
oriented design method such as Booch’s.?) Soft-
ware developed by using the design method of
functional decomposition is called functional
decomposition software. The sets of parameters
for both types of software are defined according
to the SRGM proposed in the previous section.
Finally, their reliabilities are compared under
several well-accepted assumptions.

3.1 Data Abstraction Seftware and Func-

tional Decomposition Software

The structure of functional decomposition
software and data abstraction software is illus-
trated in Figs.2(a) and (b), respectively. As
shown in the figure, functional decomposition
software consists of a set of global data and
modules that are sets of subprograms. Data
abstraction software, on the other hand, is com-
posed of modules that have internal local data

* We do not want to draw the general conclusion that
data abstraction techniques are always superior to
functional decomposition design methods in all
cases. Nor do we insist that the techniques and
methods cannot be combined. Our intention is to
show that information-hiding realized by data
abstraction techniques enhances software reliability.
To make the discussion clearer, we made extreme
assumptions that information-hiding is achieved in
full in data abstraction software and is not achieved
at all in functional decomposition software. In
practice, data abstraction techniques can be incor-
porated in a design process that follows a func-
tional decomposition method, and vice versa.

and operations (procedures and functions) for
accessing the internal data. No global data exist
in data abstraction software.

3.2 Which Is More Reliable ?

Let p{ be the initial probability of failure
occurrence and let g/ be the probability of
instruction execution, in which i€ S={G, L, C,
O} and jeT={d,f}. G,L,C, and O denote
global, local, communication and others, as
before. Let d denote data abstraction software
and let /' denote functional decomposition soft-
ware. For example, p¢ is the initial probability
of failure occurrence at the time of global data
access in functional decomposition software.

Let d,(¢) and dy(t) show the failure rates of
data abstraction software and functional decom-
position software at time ¢. That is,

d
dy(t) = 27%"’;{ U

S ]

pi
(1) & a+ﬁ-f’7‘q"f'

Assumptions Made for Comparison
The following assumptions are made for com-
parison of these two types of software :
1. Assumptions about the probability of
instruction execution :
la) Data abstraction software does not have
global data in its components.
It is assumed that the data structure is
completely hidden in each module of
data abstraction software.
1b) Functional decomposition software has
global data that are accessed by multiple
modules.
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Table 1 Initial probability of failure occurrence and probability of instruction execution.

Global data access Local data access ‘ Communication Others -
Initial probability of P &=0 pi:p{ pé=p% Po=r}
failure occurrence A pi=p9 ph=p¢ ph=p9 p
Probability of q6=0 gi=q1+q] q¢=qc+q’ 76=4%
instruction execution =g¢ ctque q{ q {: p {):q g
Since we assume that data abstraction Ad=d, (1) —a’f(t).

is done only in a limited way in func-

tional decomposition software, its
global data are accessed by multiple
modules.

lc) Functional decomposition software real-

izes a part of the inter-module communi-

cation in data abstraction software
through data flow via global data.

Global data in functional decomposi-

tion software can thus be categorized

into two types: the first type due to

incomplete abstraction ; and the sec-

ond type due to data flow via the data.

2. Assumptions about the initial probability of

failure occurrence :
2a) The initial probability is O if it is for
instructions never executed (p&=
because g&=0.)

2b) The initial probabilities of failure occur-

rences in local data access, inter-module

communication, and others are the same.
We assume that both types of software
are designed and coded by program-
mers with the same level of skill.
Hence, there is an equal chance of
faults being introduced in code for
these three types of instructions. As a
result, all of their initial probabilities
will be equal.

Table 1 summarizes, in accordance with the
above assumptions, the initial probability of
failure occurrence and the probability of each
instruction being executed. In the table, g,
represents the probability of data flowing via
global data, and g; represents the probability of
accessing global data that have been declared as
a result of incomplete data abstraction in func-
tional decomposition software.

Let Ad be the difference between the failure
rates of data abstraction software and functional
decomposition software ; that is,

Adz

a—{—p‘qu 2 a+1)f/1qz

pi—

pt
“(atpd (a+pf) @A,

* (a+p5) (a+p£) aAqe. (3)

The denominator of each term of equation
(5) is positive, and the parameters a, A, ¢, and
gc also may take only positive values. The
numerators, therefore, determine the sign of 4d.
The value of 4d is always negative, for the
following reasons :

. pé>pf, because the possibility of faults
being introduced into instructions that
access local data is smaller than in code
employing global data access. That is,
abstracted data are decomposed into smal-
ler chunks than global data, and these
chunks are protected from illegal access
from outside. Hence, faults are easily
introduced into instructions that reference
global data.

2. pt> pé, because faults are more likely than
in inter-module communication to be
introduced in code that has data flow via
global data, which makes use of side-
effects.

In accordance with the above the discussion,
we can objectively draw the following conclu-
sion :

The data abstraction technique contributes
lo the achievement of highly reliable soft-
ware.

4. Validation of Our Model

Our Model and the NHPP Model
Our SRGM can be considered as a refinement
of the exponential NHPP model® in which the
mean value function of failures is represented as
H(t)=a(l—e ")
when we define b as
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b a+p/1.

That is, our SRGM explains the failure behav-
tor of software more precisely than the
exponential NHPP model does. The
exponential NHPP model is, from real project
experience, said to explain the failure behavior
of large-scale software. From this fact, and the
discussion in Section 3, we can draw the follow-
ing conclusion :

Data abstraction is a useful technique for
enhancing the reliability of large-scale
software.

How Can We Demonstrate the Usefulness

of Our Model ?

The next task is to demonstrate the practical-
ity of our SRGM. We plan to take the following
general approach to demonstrate this :

1. Gather failure data from a real project.

2. Estimate the parameters of the SRGM.

3. Validate the model by matching the esti-
mated values of the parameters (particular-
ly the total number of faults) and the
actual set of values observed.

At present, a data set from real projects
(preferably from a third party) detailed enough
to be applicable to our SRGM is not available.
Meanwhile, we are attempting to validate the
model by simulation. The steps in our simula-
tion experiment are as follows :

1. Generate pseudo-failure data based on a

Gonpertz curve.

. Estimate the parameters of our SRGM,
using the data generated.
3. Validate the method by comparing the
estimated total number of faults with the
value obtained in the first step.

[\

5. Conclusion

In this paper, we have developed a new
SRGM that represents the executions of software
instructions as counting processes. Using this
SRGM, we discussed whether data abstraction
techniques contribute to the design of highly
reliable software, and concluded that they do.
This is shown formally under well-accepted
assumptions in software development. That is,
we have lent some objective support to well-
known folklore existing among many good soft-
ware developers.

Our future research will include the following
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topics :
I. Further refinement of the model.
We made the assumption that a failure
occurrence is equal to a fault detec-
tion. We will refine the model for the
following weaker assumption :
A combination of multiple faults
may cause one failure.
- Failure occurrence is distinguish-
able from its detection.
2. Generalization of the model.
In the process of our model formula-
tion, described in Section 2, we
assumed that instruction executions
follow a Poisson process. More
generalized distributions, such as non-
homogeneous Poisson processes, can
be used to formulate a more general-
ized model.
3. Derivation of a family of models.
In the current form of our SRGM, we
assume that @; is proportional to the
remaining faults, as in Section 2. A
different expression for @ would
result in a family of models based on
our model formulation framework.
This is reflected in the fact that vari-
ous NHPP models can be derived by
defining the mean value function of
failures in different ways. Thus, our
SRGM is a meta-model in which the
key parameter is «;.
4. Demonstration of the usefulness of our
SRGM by means of real project data.
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