6R-7

TERILEF 2 A 50 BFiE&

£ 7218) 2EAR

Efficient Privacy Preserving Query Processing using GPGPU
Chongjie Li' Toshiyuki Amagasa®™ Hiroyuki Kitagawa' '

1. Introduction

Data privacy has been a major concern in nowadays
information systems, and hence privacy preserving
query processing is becoming a hot research area in
the last several years. For this, Agrawal et al.[1]
propose a method to execute query operations, such as
intersection, join, and aggregation, among different
data sources using third parties without disclosing
sensitive data. Although it makes it possible to ensure
the privacy during query processing, it is suffered
from expensive processing cost.

Meanwhile, GPGPU (General-Purpose computation
on Graphics Processing Units) has gained its
popularity these years because of its great power in
mathematical computation, and its rapid growth also
leads to more attention.

In this paper, we try to apply the functionality of
GPGPU to speed-up this privacy-preserving query
processing scheme. Specifically, we exploit CUDA,
which is a programming environment for GPGPU, and
discuss how the original method can be implemented
using the functionality. We also demonstrate the
feasibility of the proposed implementation by
experiments.

2. Related Work

2.1 Privacy preserving query processing

Agrawal et al.[1] proposed a method for privacy-
preserving query processing using third parties. Based
on the Shamir’s secret sharing method [2], the
algorithm generates a degree-k random polynomial
q(x) to encrypt data values. The encrypt data values
are then forwarded to respective third parties
according to the encrypted values, for subsequent
processing (Figure 1 a and 1 b). Since data values are
encrypted and processed in a distributed environment,
it is possible to perform query processing without
disclosing the detailed values.

However, computing polynomials and set
intersections takes time, which are major cost factor in
this algorithm. So, in this work, we attempt to speed
up the processing by utilizing GPGPU.

T College of Information Science, University of
Tsukuba.

! Graduate School of Systems and Information
Engineering, University of Tsukuba

¥ Advanced Research Building B, University of
Tsukuba, Tennodai, Tsukuba, 305-8573 Ibaraki,
Japan

1-811

2.2 Algorithms on GPU

Due to the highly parallel nature of GPU, it shows
higher performance in many areas other than graphic
processing.

For this reason, many algorithms based on GPU
have been proposed. Bitonicsort [3] is an example of
such algorithms. The basic idea is to apply fixed
number of compare and swap operator to realize
sorting. More detailed introduction can be found in
Govindaraju et al.[3].

Since GPU program is memory-bonded, many
researches have been done to reduce memory
access time. Coalesced read and write [4] fully
utilizes hardware bandwidth by contiguous memory
access.

We attempt to exploit these techniques to
accelerate the query processing algorithm.

3. Proposed Method

3.1 Overview

As shown in the following figure, the method is
divided into mainly three phases. The phases 1 and 2
are shown in Figure 1(a), and phase 3 is shown in
Figure 2(b). Among them, 1 and 3 are done by the
data sources and the clients, respectively, while 2 is
done in trusted third parties. If we look into each
process, phase 1 and 3 are costly to perform. For this

reason, we try to utilize GPU for these parts.
D1 X1=2 X2=4 (1

v |
23 fl2e | —[1 [t

26
ol
Q2 2.Computation
a7]

lo |t
—_]h
E

23
9 26 56 [T1s3
27

Figure 1 (a) distribution and computation
D1

| 5]
- pe—F e 4
o |

p2 3.Final Computation < Q2
| B
26 |.[1 S
] B

Figure 1 (b) final computation

3.2 Basic method

In phase 0, the data need to be sorted for subsequent
process. We simply use bitonicsort in the CUDA-SDK
[4] to accomplish this phase. We then encrypt the

Copyright © 2010 Information Processing Society of Japan.
All Rights Reserved.

TR F A5 50 BFEiLE

721D 2EAR

secret value by the function f(q(x),v), where q(x) is the
randomly chosen polynomial. (For privacy concerns,
we can also let coefficient of q(x) be a function of v.)
As can be seen, this is one of the computationally
intensive parts. We assign each thread of GPU for a
different value and compute the polynomials in
parallel. Also, we store the temporary result in shared
memory to reduce the access latency. In case of large
data size which does not fit in the shared memory, we
arrange the data into threads with balance.

In phase 2, the only thing for each third party to do
is comparing the share-values. Since they are already
sorted, this phase can be done in linear time with ease.

Finally, in phase 4, we just compare the result returned
from the third parties. We use similar mechanics as phase
0 in which the operations are replaced by logical AND
operator (“&”).

3.3 Discussion

In the encryption, the encrypted value may become
too big to fit in the range of integer numbers, which
result in false match. However, most GPU just support
single-precision numbers. A possible workaround is to
implement integers with arbitrary precision, e.g.,

BiglInteger{ char digitsy MAXDIGITS]; }
In this implementation, we do not need to stick around
numeric numbers, that is, we can use arbitrary strings
as each around numeric numbers, that is, we can use
arbitrary strings as each digit. For example, we can
define the pattern as (a-z|0), thus a 27-based system
can be used to generate the corresponding numeric
values: “abcde”= (12345)y; = (533795)1¢, sure a 32 or
64 based system can be introduced for simplicity or
for purpose of adding (A-Z) etc.

4. Experimental Evaluation

Our algorithm is tested on environment as:
Core(TM) i7 2.80GHz cpu and 4GB memory;
NVIDIA GeForce T220 GPU having 48cores, and
memory size of 1275MB.

80
48
40
35
2 s
é 25
E 20
15
1w
3
4 & 16 32 84
table th /thousnad tuples
& cpum < G%U_

@m 2 Total ime comparison f

Figure 2 shows the total time of GPU and CPU
realization of 3 phases excluding time for data transfer
between clients and third parties and memory

1-812

allocation. As can be seen from the graph, the
advantage of GPU realization revealed when tuple
size exceeds 16K.

;F@ure 3 (2 CPU

Figure 3 (b) GPU

While graph 3 (a) and (b) indicates the time
breakdown of CPU and GPU realization, respectively.
We can see that the most compute-intensive part for
CPU realization is sorting and distributing, while for
GPU realization, the time of memory allocating and
coping is also a significant cost.

5. Conclusion

In this study, we propose an efficient privacy
preserving query method among multiple data sources.
With the help of GPU, we gain a lot of time efficiency
comparing with CPU-based realizations. Also our
method supports the type of string and allows
computing done in high precision. For future work we
plan to improve the time of sorting, and dealing with
situations while participants are more than two. Also
the algorithm for high precision realization is probably
to be optimized.

Acknowledgements This research has been supported
in part by the Grant-Aid for Scientific Research from
JSPS(#21700093).

References
[1] Fatih Emekci, Divyakant Agrawal, Amr EI Abbadi,
Aziz Gulbeden, Privacy Preserving Query Processing

Using Third Parties, Proceddings of the 22rd
International Conference on Data Engineering
(ICDE’06).

[2] Divyakant Agrawal, Amr El Abbadi, Fatih
Emekci,Ahmed Metwally.Database Mangement as a
Service: Challenges and Opportunities. Proceedings of
the 2009 IEEE International Conference on Data
Engineering

[3] N. K. Govindaraju, J. Gray, R. Kumar, and D.
Manocha, “Gputerasort: High performance graphics
coprocessor sorting for large database management,”
in Proceedings of ACM SIGMOD International
Conference on Management of Data, 2006.

[4] NVIDIA CUDA (Compute Unified Device
Architecture),http://developer.nvidia.com/object/cuda.
html.

Copyright © 2010 Information Processing Society of Japan.
All Rights Reserved.

