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Sizes of a Symmetric Coterie

AMANE NAKAJIMA T

A coterie is a set of subsets in which any two of the subsets intersect and in which no subset
contains any other subset. A subset is called a quorum. Coteries are used in many distributed
algorithms such as distributed mutual exclusion and replicated data management. For dis-
tributed algorithms, symmetric coteries are desirable because they realize equal distribution of
load, responsibility, and information. In this paper, we show that a lower bound of the quorum
size of a symmetric coterie, whose quorum sizes are the same and in which each node appears
in the same number of quorums, is v#, where % is the number of nodes. When a further
condition is added, specifying that the size of the intersection of two distinct quorums is always
1, an upper bound of the coterie size of a symmetric coterie is . It is also shown that a finite
projective plane is an optimal symmetric coterie.

1. Introduction

Many distributed algorithms use logical
structures. In distributed mutual exclusion, re-
plicated data management, distributed commit
protocols, and name service, efficient algo-
rithms are derived by imposing a logical struc-
ture such as a tree,” a grid,?~® a symmetric
balanced incomplete block design including a
finite projective plane, 19 3  majority
group,'™? or combinations of them'®~'® on the
physical network. These algorithms use the
logical structure to form a quorum set. A node
that collects acknowledgments from a quorum,
which is a subset of nodes, can perform a
certain operation. Most algorithms use the
intersection property of a quorum set.

Garcia-Molina and Barbara formalized the
quorum set with the intersection property and
defined the coterie.*®'” They discussed domina-
tion, the maximum number of quorums in a
coterie, the relationship with vote assignment,
and other properties of coteries. Researchers
proposed many methods of constructing cote-
ries and analyzed them in terms of the quorum
size, the coterie size, the availability of a cote-
rie, and other measures. D 38 D-1918)-28) 1 gy
ever, most of their analysis involves one or
more instances of particular coteries such as
one based on a grid, and there has been little
work on the case in which the quorum size and
the coterie size are generalized.

In this paper, we give a lower bound of the
quorum size of a symmetric coterie in which the
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quorum sizes are the same and in which each
node appears in the same number of quorums.
We also investigate a stricter symmetric case,
in which the size of the intersection of any two
distinct quorums is always 1. We provide an
upper bound of the size of a symmetric coterie
in such a case. There are two reasons that we
concentrate on symmetric coteries. The first is
that symmetry is one of the most important
properties of distributed systems. Many dis-
tributed algorithms use symmetric coteries,
because the load, responsibility, and informa-
tion for the algorithm should be equally dis-
tributed to all nodes. When a tree-based coterie,
which is asymmetric, is used, the root node has
a greater load than the other nodes and can
become a bottleneck. Another example is a
coterie, {{1}}, under a set of % nodes numbered
from 1 to #. When the coterie is used in mutual
exclusion, node 1 becomes a central controller
and cannot support load balancing in mutual
exclusion. Our second reason for concentrating
on symmetric coteries is that the quorum size
and the coterie size vary widely when asym-
metry is allowed ; the quorum size of an asym-
metric coterie can be varied from 1 to #, and
the coterie size can be 1 and can be larger than
2"/n. For example, {{1}} is a coterie in which
the quorum size is 1 and the coterie size is 1.
The quorum size becomes # when a coterie is
{{1, 2, -, n}}. On the other hand, the coterie size
of the coterie {{1, 2}}, {1, 3}, ---, {1, #}} is n—1.
The rest of the paper is organized as follows.
Section 2 gives an overview of coteries and our
definitions of symmetry. Section 3 gives a lower
bound of the quorum size of a symmetric cote-
rie. We show that the quorum size cannot be
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less than %, where # is the number of nodes.
We also show that an upper bound of the cote-
rie size of a symmetric coterie is » when the
size of the intersection of any two distinct
quorums is 1. We also discuss the relationships
among the parameters of a symmetric coterie.
We give some examples of symmetric coteries
and discuss them in Section 4. We show that a
finite projective plane is an optimal symmetric
coterie in terms of the quorum size and the
coterie size. Our conclusions are stated in Sec-
tion 5.

2. Definitions

2.1 Coteries

We give definitions and theorems on
coteries'® in Section 2. 1. A coterie is a set of
distinct subsets of nodes such that any two of
the subsets have at least one common node and
no subset contains any other subset. We provide
a formal definition :

Definition 1 Let U denote the set of nodes
numbered from 1 to n. A set of distinct subsets,
S, is a coterie under U iff

1. GES mmplies that G+ ¢, and that GSU

2. If G ,HES, then GNH*¢

3. There are no G, HES such that GCH.

We call the second property the intersection

property, and the third the minimality. A subset
G&S is called a quorum. Note that not all
nodes in {J must appear in a coterie. For exam-
ple, {{1}} is a coterie under U.
Theorem 1 The maximum number of quo-
rums in a cotevie under U is bounded by 2"
Theorem 2 There are coleries that have an
exponential number of quorums on n.

2.2 Conditions for Symmetry

We define two levels of symmetry :
Definition 2 A coferie is a level-one (LI)
symmelric coterie iff

1. All nodes in U appear in the coterie,

2. The sizes of quorums in the coterie are the

same,

3. Each node appears in the same number of

qUOYUMS.

The size of a quorum is the number of nodes
in a quorum. We call it the quorum size. We
also call the number of quorums in a coterie the
coterie size.

Definition 3 A coferie is a level-two (L2)
t-symmetric coterie iff

1. It is a level-one symmelvic coterie,

2. The sizes of the intersection of amy hwo

June 1995

distinct quorums ave the same, with value
t.

The first condition of the L1 symmetric cote-
rie seems too restrictive ; however, the condi-
tion can be relaxed when the coterie is applied
in practice. For example, let us consider a case
in which a system contains x nodes numbered
from 1 to x, and in which » nodes numbered
from 1 to y among the x nodes work as re-
plicated databases. An L1 symmetric coterie
under the set of the ¥ nodes can be created, and
all the x nodes use the created coterie. The
resulting coterie under the set of x nodes does
not satisfy the first condition, because the whole
system consists of x nodes ; however, the cote-
rie is useful in this case.

Although the definitions of the L1 and L2
symmetric coteries seem to be similar to that of
the balanced incomplete block design
(BIBD),?® they are in fact different.
Definition 4 A (v, b, », k, A)-balanced incom-
plete block design is an arrangement of v
distinct objects into b blocks such that each block
contains exactly k distinct objects, each object
occurs in exactly r different blocks, and every
pair of distinct objects a., a; occurs together in
exactly A blocks.

In a BIBD, two blocks do not always inter-
sect. For example, in the (9, 12,4, 3, 1)-BIBD

{{1,2,3},{4,5,6},{7,8,9},{1,4, 7},
{2,5,8},{3,6,9},{1, 5,9}, {2, 6, 7},
{3,4,8},{1,6,8}, (2,4, 9}, {3, 5, 7},

{1,2,3} and {4, 5, 6} do not have any common
objects.

A BIBD is called symmetric if v=25, which
also means »=+%. A symmetric BIBD (SBIBD)
is sometimes described with its parameters, (v,
k, A)-SBIBD. It is known that a finite projective
plane of order d is equivalent to a (d*+d+1,
d+1,1)-SBIBD.?

3. Sizes of a Symmetric Coterie

3.1 Lower Bound of the Quorum Size

In this section, we first give a lower bound of
the quorum size of an L1 symmetric coterie. We
then give an upper bound of the coterie size of
an L2 1-symmetric coterie.

Since we are dealing with an L1 symmetric
coterie, our assumptions are as follows :

1. There are » nodes numbered from 1 to #.

2. The number of quorums in the coterie (the
coterie size) is c.
The size of a quorum in the coterie (the
quorum size) is gq.

w
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4. Each node appears in s quorums in the
coterie.

We call ¢ quorums in the coterie @i, @s, -+, Q.
Theorem 3 A lower bound of a quovum size
of an L1 symmetric cotervie is Jn.
Proof There are ¢ quorums in the coterie and
each quorum contains ¢ nodes ; hence, the total
number of nodes in all quorums is c¢g. We can
count the number of nodes in all quorums in a
different way ; there are » nodes and each node
appears in s quorums. Therefore,

cq=ns. (1)
Since any two quorums intersect,
|Q:N Q=1 (2)
Because the size of a quorum is always g,
|Qz\ =q. (3)
From Egs. (2) and (3),
§§|Qiﬂ@\}c(c~l)+cq. (4)

Since each node appears in s quorums, each
node appears in s? intersections of @; and Q;
when all combinations of . and @, are consid-
ered. Let 7; denote the number of times in
which node 7 appears in Q:NQ; (1<3, j<¢).
Then we get

g]_éJsz Qj|:§fizﬂsz, (5)
From Egs. (4) and (5), we obtain
ns*zc’ te(g—1). (6)

Equality holds when the 1.1 symmetric coterie
is an L2 1-symmetric coterie. When n=1, {{1}}
is 'the only L1 symmetric coterie. Thus, ¢=1
when n=1. It is obvious that ¢=>=2 when »>2.
Therefore,

ns?=c? (7)
Equality holds only when n=1. Next, we get
s= (8)
From Egs. (1) and (8), we obtain the result
_ns. n, ¢ _
a==_= N (9)

Thus, a lower bound of the quorum size of an
L1 symmetric coterie is v#, and ¢=+#% holds
only when n=1.

This is an important result. In distributed
mutual exclusion and replicated data manage-
ment, efforts have been made to create a sym-
metric coterie with a smaller size of quorums.
Proposals include a majority group whose quo-
rum size is [(n+1)/2]'"'? a finite projective
plane whose quorum size is almost +#,2 a
grid-based coterie whose quorum size is 2vn
— 1,29 and another grid-based coterie whose
quorum size is almost v27.® Theorem 3 shows
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that it is impossible to create an L1 symmetric
coterie whose quorum size is less than v7z. A
coterie whose quorum size is smaller than vz
can be constructed when the conditions for an
L1 symmetric coterie are broken. However, in
this case, the constructed coterie becomes
asymmetric and some nodes bear a greater load
than others. For example, in a tree-based cote-
rie, the quorum size can be log # ; however, the
root node is included in all the quorums, and
therefore the root node becomes a bottleneck.

It is interesting that the lower bound does not
depend on ¢. The relationship between ¢ and ¢
in an L2 l-symmetric coterie is discussed in
Section 3.2. However, in an L1 symmetric
coterie, there is no relationship between ¢ and ¢
except Eq. (1).

3.2 Upper Bound of the Coterie Size

We gave a lower bound of the quorum size of
an L1 symmetric coterie in Section 3.1. When
we impose on an L1 symmetric coterie the
condition that the size of intersection of any
two distinct quorums is always 1, we can obtain
more results related to symmetric coteries. In
Section 3. 2, we show that an upper bound of the
quorum size of an L2 1-symmetric coterie is #.
We also investigate the relationship between
the quorum size and the coterie size of an L2
l-symmetric coterie and show that a finite
projective plane is an optimal symmetric cote-
rie.
Lemma 1 In an L2 I-symwmetric cotevie, every
pair of distinct nodes appears in one or no
quorum.
Theorem 4 An upper bound of the coterie size
of an L2 1-symmelric coterie is n.
Proof From Definition 2, each node appears in
s quorums. Let the quorums that contain node 7
be Qi1, @iz, @i s. Since the quorum size is
q,

JZSIIQZ-.J- =gs. (10)

From Lemma 1, nodes other than node 7 appear
in one or no quorum of @i, Qiz -, Qss,
because node 7 appears in every quorum of
Qi1, @iz, Qs Thus, node i appears in s
quorums and the other n—1 nodes appears in
one or no quorum of Qs 1, Q. 2, -, @: s Hence,
we get

il@»,j\éwnﬂ. (11)
From Egs. (10) and (11), we obtain
n—1>s(g—1). (12)

From Theorem 3, ¢>+v#n when #>2. Hence,
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when n=>2, we get

SR = L, (13)
from Eq. (12). Equation (13) is also true when
n=1, because {{1}} is the only L2 l-symmetric
coterie in the case where #=1, and its parame-
ters are n=c=g=s=1. From Eqs. (1) and (6),
and discussion in the proof of Theorem 3, we
get

ns’=cgs=c*+c(g—1), (14)
because the coterie is an L2 1-symmetric cote-
rie, and therefore,

c—1=¢g(s—1). (15)
From Egs. (9), (12), (13), and(15), we get

c-n<s—qg<(Yn+1)—Vn=1. (16)
Since ¢ and » are integers, we obtain

c<n. 17
Therefore, an upper bound of the coterie size of
an L2 1-symmetric coterie is #. (]

Corollary 1 In an L2 1-symmelric colerie, g =
s.
Proof From Egs. (1) and (17), we get

g=s, (18)
when a coterie is an L2 1-symmetric coterie.
]
In a BIBD, Fisher’s inequality
b=v, 19)
r=Fk, (20)

holds. It is interesting to compare Egs. (17) and
(19), and Eqgs. (18) and (20). In an L2
1-symmetric coterie, # is the number of nodes,
¢ is the number of quorums in a coterie, ¢ is the
number of nodes in a quorum, and s is the
number of quorums in which a node appears. In
a BIBD, » is the number of objects, b is the
number of blocks in a design, % is the number of
objects in a Dblock, and » is the number of
blocks in which an object appears. Thus, # of
an L2 1-symmetric coterie corresponds to v of a
BIBD, c to b, g to &, and s to ». In a BIBD, the

equation

bk=vr, 2n
which corresponds to Eq. (1), holds, as does the
equation

r(k—1)=Av—1), (22)

which is similar to Eq. (12).2¥ However, the
directions of the inequality signs in Egs. (17)
and (19) are opposite. The same is true for Egs.
(18) and (20).

Theorem 5 In an L2 1-symwmetric coterie, the
larger the quorum size becomes, the smaller the
coterie size becomes, when n is fixed.

Proof As we have shown, there is only one L1
symmetric coterie in which n=c=¢g=s=1,
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when #=1. The coterie is also an L2
1-symmetric coterie, because there is only one
quorum in the coterie and no intersection of
two quorums exists. Therefore, the theorem is
true when #=1. Hence, we assume that #=>2,
and thus ¢ > V7.

From Egs. (1) and (6), and since the size of
the intersection of any two distinct quorums is
always 1, we get

v .

n(%f—) =c?tc(g—1), (23)
which gives

g, o
When we define #(q) by

_nlg—1)

flg)= C—n (25)

we obtain
_1)2 _

Flg)=—2 ;2_2“3 ). (26)
Since #=2 and ¢ > 7,

F(g)<0. 27

Thus, the theorem is also true when #>2. []

As can be seen from Eq. (24), the coterie size,
¢, can be calculated from the quorum size, g,
and the number of nodes #, not from the num-
ber of quorums, s, in which a node appears.
When # is given, and ¢ and ¢ are decided, then
s is determined by Eq. (1).

In L2 1-symmetric coteries, when # and one
of ¢, ¢, and s are given, the other two parame-
ters can be calculated from Egs. (1) and (24).
However, since all the parameters must be
integers and Egs. (1) and (24) are necessary
conditions, it is difficult to find valid parameters
of L2 1-symmetric coteries.

Corollary 2 A lower bound of the quorum size
of an L2 1-symmetric cotevie is

<1+¢’1+4(h’—”'1§>/2.

Proof From Egs. (17) and (24), we obtain

This lower bound is larger than v» when #>2.
The lower bound is equal to v# when n=1.

For distributed mutual exclusion and re-
plicated data management algorithms, it is
preferable that a coterie should have a smaller
quorum size, because the quorum size deter-
mines the number of messages required for the
algorithm. A coterie with a large number of
quorums is also preferable, because it makes a
coterie more available. Hence, in an optimal
symmetric coterie,
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1. The size of a quorum is as small as pos-
sible,

2. The number of quorums is as large as
possible.

Definition 5 Awn L2 1-symmetric colerie is
optimal when its quorum size is minimum and
its coterie size 1S maximum.
Theorem 6 A finite projective plane is an
optimal L2 1-symmetric coterie.
Proof From Theorems 4 and 5, an optimal L2
1-symmetric coterie is an L2 1-symmetric cote-
rie in which ¢=#n. When a finite projective
plane is used as a coterie, it becomes an 1.2
1l-symmetric coterie that satisfies c¢=n. Its
quorum size achieves the lower bound in Corol-
lary 2. Therefore, a finite projective plane is an
optimal symmetric coterie. O
We conjecture that the quorum size of an L2
symmetric coterie becomes larger when the size
of intersection of two distinct quorums becomes
larger. In many cases, the quorum size deter-
mines the number of messages required for a
distributed algorithm. Hence, an L2 1-
symmetric coterie is an optimal coterie in
terms of the number of messages if our conjec-
ture is true.

4. Examples of Symmetric Coteries

In this section, we look at five examples of
symmetric coteries. They are all L1 symmetric
coteries, and two of them are L2 1l-symmetric
coteries.

4.1 Majority Group

A set of all distinct subsets that contain [(#n
+1)/2] nodes becomes a coterie. We call it the
majority group. This is created by using the
voting method.'!? In a majority group,

¢=nCl2t1] (29)
q:[ %;11 (30)
=l 25| o @

A majority group is not an L2 f{-symmetric
coterie, because the size of the intersection of
two distinct quorums is between 1 and [(z+1)
/21—1.

4.2 Finite Projective Plane

Maekawa first used a finite projective plane
in a quorum-based algorithm.? A finite projec-
tive plane exists when

n=p*+p+1 (p is a power of a prime).
(32)

In a finite projective plane,
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c=p+pt+l=n (33)
g=p+1=[Vn] (34)
s=p+1=[Vn] (35)

This is an L2 1l-symmetric coterie. In a finite
projective plane, ¢ realizes the upper bound in
Theorem 4, and ¢ realizes the lower bound in
Corollary 2.

4.3 Maekawa’s Grid-Based Coterie

Maekawa proposed a coterie construction
method using a grid.? Let us arrange # nodes in
a vnXyn grid. A quorum contains all nodes in
any one row and all nodes in any one column. In
this coterie,

c=n (36)
g=2/n—1 (37)
s=2/n—1. (38)

This is not an L2 ¢-symmetric coterie, because
the size of the intersection of any two distinct
quorums is either two or .

4.4 Cheung, Ammar, and Ahamad’s Grid-

Based Coterie

Cheung, Ammar, and Ahamad proposed
another grid-based coterie.® They also used the
VnxXyn grid. A quorum contains all nodes in
any one column and one node in each of the
other columns. In this coterie,

c=yn'" (39)
g=2/n—1 (40)
s=%~@“7(21/%~1). (41)

This is not an L2 #-symmetric coterie either,
because the size of the intersection of two
distinct quorums is between two and 2+# —2.
4.5 Agrawal and Jalote’s Grid-Based
Coterie
Agrawal and Jalote constructed a symmetric
coterie.® Their coterie exists when
74:@ (e is a positive integer).
(42)
Let arrange » nodes in an ¢ X e matrix, G, such
that
. e(z‘~1)—lz'(z'+1)+j, for i<j
gi,j—{ 2
@, for i=j
(43)
We then create ¢ quorums such that the i-th

quorum contains all nodes in the z-th column
and all nodes in the z-th row. In this coterie,

c=e=[/2n (44)
g=e—1=[V2n -1 (45)
s=2. (46)

This is an L2 1-symmetric coterie.
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4.6 Discussion

Let us look at two L2 1-symmetric coteries, a
finite projective plane and Agrawal and Jalote’s
coterie. The quorum size of the latter is larger
than that of the former and the coterie size of
the latter is smaller than that of the former.
This is what we showed in Theorem 5. The
relationship between the quorum size and the
coterie size does not hold in the case of L1
symmetric coteries. In both Maekawa’s grid-
based coterie and Cheung, Ammar, and
Ahamad’s grid-based coterie, the quorum size is
2Vn—1. However, the former has » quorums in
the coterie, and the latter has v#"" quorums in
the coterie. The latter is a better coterie
because it has higher availability. In both cote-
ries, the number of quorums in which a node
appears is calculated from Eq. (1). As we
stated in Section 3, in L2 1-symmetric coteries,
when # and one other parameter are given, the
other two parameters are determined automati-
cally. This is not true in L1 symmetric coteries.
For example, whereas Maekawa’s grid-based
coterie and Cheung, Ammar, and Ahamad’s
grid-based coterie have the same value for =
and ¢, they have different values for ¢ and s.

As stated in Theorem 4, an upper bound of
the coterie size of an L2 1-symmetric coterie is
7 ; however, we can construct an L1 symmetric
coterie with a larger coterie size. For example,
the majority group has[(»+1)/2] quorums, and
Cheung, Ammar, and Ahamad’s coterie has
Jn'™ quorums. In a majority group, in
Maekawa’s grid-based coterie, and in Cheung,
Ammar, and Ahamad’s grid-based coterie, the
sizes of the intersection of two distinct quorums
are not the same. In this case, the cost of an
algorithm for distributed mutual exclusion
sometimes depends on which nodes issue
requests. Hence, there is a trade-off between
symmetry and coterie size.

Among the five symmetric coteries in Section
4, some of the majority groups and some of the
finite projective planes are ND-coteries.'® How-
ever, the quorum size of the majority group is
large. Though a tree-based coterie? is an ND-
coterie,’® it is not good with respect to symme-
try, because the root node is contained in each
quorum and has a heavy load. There are few
coteries that satisfy all the desirable condi-
tions : symmetry, nondomination, small quo-
rum size, and large coterie size. An example of
such a good coterie is a finite projective plane of
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order 2, whose parameters are n=c=7, g=s=
3. This is also an ND-coterie.

5. Conclusions

We have defined L1 and L2 symmetric coter-
ies; an L1 symmetric coterie is a coterie whose
quorum sizes are the same and in which each
node appears in the same number of quorums,
and an L2 ¢-symmetric coterie is an L1 symmet-
ric coterie in which the size of the intersection
of any two distinct quorums is ¢. We have
shown that a lower bound of the quorum size of
an L1 symmetric coterie is y7. L1 symmetric
coteries are used in distributed algorithms such
as distributed mutual exclusion and replicated
data management. The quorum size is an
important measure of a symmetric coterie,
because it determines the number of messages
required for the algorithm. Our theorem implies
that it is impossible to create a fully distributed
quorum-based algorithm that requires less than
V7 messages.

We have also shown that an upper bound of
the coterie size of an L2 1-symmetric coterie is
n. If a coterie is asymmetric, the coterie size
can be larger than 2"/n. Generally speaking,
the larger the coterie size is, the higher the
availability of the coterie is. Therefore, it is
useful to know an upper bound of the coterie
size. We have discussed the relationship among
the parameters of an L2 1-symmetric coterie ;
as the quorum size increases, the coterie size
decreases. Thus, the optimal L2 1-symmetric
coterie is the one with the smallest quorum size
and the largest coterie size. We have shown
that a finite projective plane is an optimal L2
1-symmetric coterie. We also examined our
results by discussing five examples of symmet-
ric coteries.
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