3M-5

HRAEF22 70 B2ER2

Bidirectional XML Transformation with Bi-X*

Dongxi Liu Yasushi Hayashi

Keisuke Nakano

Zhenjiang Hu Masato Takeichi

Department of Mathematical Informatics, University of Tokyo

Abstract

Bi-X is an expressive bidirectional XML transforma-
tion language, featuring that one program can be executed
in two directions. In one direction, a Bi-X program trans-
forms source XML documents into target XML documents,
while in the other direction, it transforms the updated tar-
get documents together with original source documents
into updated source documents. In this paper, we give a
summary of the language Bi-X and introduce some appli-
cations of using Bi-X.

1 Introduction

XML is a widely used format of exchanging data over
network. When an XML document is exchanged between
different systems, it always needs to be transformed, and
the target document may have different structure and con-
tent. For example, a source XML document may be trans-
formed into a smaller HTML document, so that this target
document can be displayed in web browsers and contain
only interesting contents to users.

There have been many languages, such as XSLT and
Java, designed specially to or with libraries to support XML
transformation. These languages reduce the burden of pro-
grammers to develop XML transformation programs. How-
ever, they cannot provide help for maintaining content con-
sistency between the source and target XML documents
if the latter are changed. For example, we transform a
source XML document into a target document with an
XSLT transformation, and later, we notice a data error in
the target document and naturally make a correction to
that data, resulting in inconsistent source and target doc-
uments. Unfortunately, the XSLT transformation we used
cannot help solve this problem. In this paper, we introduce
the bidirectional XML transformation language Bi-X de-
veloped in our PSD project. Bi-X programs can not only
implement XML transformation as the existing transfor-
mation languages but also offer the ability to synchronize
the source and target XML documents after transforma-
tion.

Bi-X is a bidirectional language in the sense that a pro-
gram can be executed in two directions. In one direction
(forward direction), the program transforms a source XML
document into a target XML document, while in the other
direction (backward direction), the program takes as input
the target document and the original source document and
produces a new source document. If the target document
is changed, backward execution will reflect these changes
into the new source document.

This work is supported by Comprehensive Development of e-
Society Foundation Software Program of the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

Main = <xseq><xchild/> GetTitles SetTitles </xseq>
GetTitles = <xmap><xif>Py Xy <xconst/></xif></xmap>
where Py = <xwithtag>sec</xwithtag>
Xo = <xseq><xchild/><xmap> Xy </xmap></xseq>
Xoo = <xif><xwithtag>title</xwithtag><xid/><xconst/></xif>
SetTitles = <xlet><var>$titles</var><xseq>X; X,</xseq></xlet>
where X; = <xconst><titles/></xconst>
X, = <xsetcnt><xvar>$titles</xvar></xsetcnt>

Figure 1: Bi-X Code For Section Titles

There have been several bidirectional transformation
languages [1, 2]. Compared with these exsiting bidirec-
tional transformation languages, Bi-X is quite expressive
and we have demonstrated its expressiveness by using it to
interpret XQuery, which is a powerful functional language
for querying XML data [3].

2 An Example of Bi-X

Suppose you are revising a paper, which is stored in
the following XML document.
<paper>
<title>Bi-X</title>
<sec>
<title>Introduction</title>
<paras><txt>textl</txt></paras>
</sec>
<sec>
<title>An Example</title>
<paras><txt>text2</txt><fig>fig2</fig></paras>
</sec>
<sec>
<title>Bi-X</title>
<paras><tab>tab3</tab><txt>text3</txt><paras>
</sec>
</paper>
Depending on your particular situation, you may revise
the paper in different ways. For example, you may go out
of your office for a walk and hence it is convenient for you
to revise only the section titles, for example, with your
mobile phone, since the whole paper may be too big to be
put into your phone. For this purpose, we could generate
the following small document for you by the Bi-X code in
Figure 1.
<titles>
<title>Introduction</title>
<title>An Example</title>
<title>Bi-X</title>
</titles>

On this target document, you can edit the titles, delete
titles and insert new titles. After going back to your of-
fice, you just need to execute backward the code in Figure
1 and those changes on the small document will be auto-
matically reflected into the document of the whole paper.
For example, if you change the second title from “An Ex-
ample” into “An Example of Bi-X", then after backward
execution the title of the second section in the paper is
also changed into “An Example of Bi-X”; if you insert a
new title element containing the string “Applications”
after the third title, then after backward execution the up-
dated paper will include the fourth section, which contains

95-395

X = <xid/> | <xconst>Val</xconst> | <xchild/>
| <xsetent>X; ... Xp</xsetent> | <xif>P X; Xo</xif>
| <xseq>X;..Xn</xseq> | <xmap>X</xmap>
| <xlet<var>Var<var>X</xlet> | <xvar>Var</xvar>
| <xfunapp> <name>fname<name>
<args>X) ... X,<args></xfunapp>
P = <xwithtag>str</xwithtag> | <xeq>X; X2</xeq>

Figure 2: Bi-X Constructs

the newly inserted title element but no paras element
since the updated target document does not provide such
information.

3 Language Constructs in Bi-X

Bi-X contains a collection of constructs for writing
bidirectional XML transformation programs. Some con-
structs are given in Figure 2. Each construct is an XML
element. Below, we will explain those constructs.

The constructs xid and xconst implement identity
and constant transformation, respectively. The constant re-
turned by xconst is its argument Val. XML elements can
be deconstructed by xchild and constructed by xsetcnt.
That is, xchild returns the content of the source element,
and xsetcnt sets the new contents computed by its ar-
gument transformations X; (1 < i < n) into the source
element.

The conditional construct xif executes X; if P holds,
otherwise executes X;; the predicate xwithtag holds if
the source data of xif has the tag specified by its argu-
ment str, and the predicate xeq holds if its two argument
transformations return identical XML data.

A sequence of transformations can be composed by us-
ing xseq, which executes its argument transformation se-
quentially with the output of the preceding transformation
as the input of the succeeding one. The construct xmap
apples its argument transformation onto each item in the
source data, and their results are concatenated in order as
the transformation result.

The construct x1let binds the source data to the vari-
able Var and then executes its argument transformation,
and the bound variable can be referenced by xvar. This
variable binding mechanism contributes much to the ex-

pressiveness of Bi-X.

The function call is implemented by the xfunapp con-
struct. A function is declared in the form below, where
fname is the function name, Var; the parameters and X the
function body.

<function name="fname"
argl="Varl" ... argn="Var2">
X
</function>
Functions can be reused by different transformation
programs by putting them into Bi-X libraries. A library
is imported into a Bi-X program by either of the follow-
ing XML processing instructions. The second form is for
accessing a library over network.
<%import library = “filename”? >
<%import library = “URI’? >
Bi-X is a typed language. The types in Bi-X have the
same expressiveness as the widely-used Document Type

Definition (DTD). Given the type of source data and a Bi-
X program, the Bi-X interpreter automatically infers the
type of the target document. Moreover, it guarantees if
the source data conforms to the declared type, then the tar-
get document generated by forward execution also has the
inferred type for it, and if the updated target data is well-
typed, then after backward execution, the updated source
data is also well-typed.

During type inference, Bi-X interpreter annotates some
constructs with type information. These type information
will play a role of guiding backward executions when up-
dated target data includes inserted elements. For example,
xif is annotated with the view types of its two branches
and during backward transformation these types will be
used to determine which branch will be used to process
the newly inserted target data when this data does not have
corresponding source data to check the predicate of xif.

The implementation of Bi-X is available publicly at
[4], where a user manual describes all language constructs
and type definitions in Bi-X.

4 Applications of Bi-X

We have applied Bi-X in several applications. Our ex-
perience demonstrates that Bi-X can be used in practical
applications that need bidirectional transformation. Three
applications are introduced below.

Vu-X [5] is a WYSIWYG web site maintainer based
on bidirectional transformation. We have generated all
web pages of our lab from a central XML document by
using Bi-X transformation. By this way, those web pages
can be maintained conveniently with Vu-X.

XQuery is a powerful functional language for query-
ing XML data. We have used Bi-X as a target language
to interpret XQuery [3], and hence provided a way of ad-
dressing the view update problem of XQuery.

PSD and PSD Schema are structured documents or
schema for structured document with computation embed-
ded to maintain data dependency within documents. We
have used Bi-X as a language to express such embedded
computation [6]. Therefore, we can maintain mutual data
dependency within structured documents.

References

[1] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the view update prob-
lem. In POPL, 2005.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A pro-
grammable editor for developing structured documents based on
bidirectional transformations. In PEPM, 2004.

[3]1 Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional in-
terpretation of xquery. In PEPM, 2007.

Bi-X. http://www.ipl.t.u-tokyo.ac.jp/ liu/BiXQuery.html.

Keisuke Nakano, Dongxi Liu, Yasushi Hayashi, Zhenjiang Hu, and
Masato Takeichi. Bidirectional transformation based web publishing
support system Vu-X. In IPSJ, 2008.

Yasushi Hayashi, Dongxi Liu, Keisuke Nakano, Zhenjiang Hu, and
Masato Takeichi. An extended schema for describing dependencies
in structured documents. In JSSST, 2007.

[2

—

[4
[5

—_—

[6

—

5-396

