Vol.36 No.9

Transactions of Information Processing Society of Japan

Regular Paper

A Scheduling Strategy for Tasks with Precedence
and Conditional Execution

Hipenort NakazaTo,! Jane W. S. L 't and Taswnan Kiv Tt

A program in a computer system can be divided into program segments, or tasks. Tasks
typically have precedence relations among them. Execution flow control constructs in pro-
gramming languages, such as IF and CASE statements, cause conditional task execution. In
other words, a task may dispatch one sequence of tasks in one condition and the other sequence
of tasks in the other condition. When there are such conditional task sequence executions in
a time-critical system, we need to consider schedules for all possible combinations of task
sequences in order to guarantee the deadlines assigned to the task set. The number of schedules
we need to consider increases exponentially with the number of conditional task sequences. In
order to solve this difficulty, we adopt a three-stage scheduling strategy which has been
proposed for VLSI design. First, the original task precedence relation with conditional
execution is transformed into a task precedence relation without conditional execution. Then,
the transformed task set is scheduled. Finally, the schedule of the transformed task set is
transformed back to a schedule of the original task set. In this paper, several transformation
algorithms are proposed for the first-stage. The performance of the algorithms are compared

Sep. 1995

through simulations.

1. Introduction

When segments of programs, which we call
tasks, are executed on a computer, precedence
relations exist among them. The precedence
relations can be described by a directed graph
called a precedence graph. In a precedence
graph, nodes correspond to tasks. We denote a
task (and anode) by .. If there is an edge from
node 7; to node z;, task r; cannot start until task
; completes. ; is called an immediate successor
of r.. Conversely, z; is an immediate predecessor
of 7;. A node may have more than one outgoing
edge. Such multiple outgoing edges can have
two meanings. One meaning is that all succes-
sors must be executed. The other meaning is
that only one of the'successors is to be execut-
ed. We say that the outgoing edges expresses an
AND constraint in the former case and an OR
constraint in the latter case. A node (task)
whose outgoing edges express an OR constraint
is called a fork node (task). Figure 1 is an
example. In this precedence graph, task 7, has
two immediate successors, and its outgoing
edges express an OR constraint. We represent
an OR constraint by an arc between edges.
With such an OR constraint, either the tasks in
the left subgraph or the tasks in the right

T Oki Electric Industry ‘
1 Department of ‘Computer Science University of
Illinois B
111 Lattice Semiconductor Corporation

2161

subgraph are to be executed, but never both.
We call each subgraph whose source node is
pointed by an edge representing an OR con-
straint a conditional branch. By a source node,
we mean a node without predecessors in the
subgraph: Task z has two outgoing ‘edges, and
the edges here represent an AND constraint.
All immediate successor tasks of 7, need to be
executed after z,’s completion:in this case.

OR constraints make deterministic sched-
uling for time-critical systems difficult. Since
we do not know which conditional branch will
be executed until the execution of each fork
task completes, we must consider all possible
combinations of tasks that are to be executed.
Complexity of scheduling increases
exponentially with the number of fork tasks.

Suppose a set of tasks which forms a prece-
dence graph with OR constraints has one dead-
line. On a single processor system, we can test
whether the task set is schedulable before the
deadline in polynomial time of the number of
tasks. We can transform the problem of deter-
mining the schedulability. of tasks with the OR
constraints into a problem of finding the longest
path in an acyclic directed graph. The longest
path problem is solvable in polynomial time of
the number of tasks.®® If the task set is execut-
ed on a multi-processor system and the task set
has resource constraints, the scheduling prob-
lem is already NP-Hard' without OR
constraints.”*»'» The OR constraints impose

2162 Transactions of Information Processing Society of Japan Sep. 1995
Conditional Conditional
Branch 1 Branch 2

12,2)

(1,2,2)

(rj1.552:7j3): Resource Vector

Join node

Conditional
Block

Fig.1 Example of precedence graph.

additional difficulty on the scheduling problem.

For the multi-processor scheduling with
resource constraints and OR constraints, we
adopt a three-stage scheduling strategy
proposed by Kim et al.” In the first stage, a
given precedence graph with OR constraints is
transformed to a precedence graph without OR
constraints. We thenschedule the tasks as if
their dependencies are defined by the prece-
dence graph without OR constraints. In the last
stage, we transform the resultant schedule.into
a schedule of the original set of tasks. Because
of the way the graph without OR constraints is
generated, it is always possible for us to do the
transformation in the last stage. In this paper,
we concentrate on the first stage; we can use
any known .algorithm for scheduling tasks
without OR constraints in the second stage, and
the transformation in the third stage is straight-
forward.

In the first stage, multiple tasks may be
combined into. a single task, which we call a
union task. In other words, one node may repre-
sent more than one task after the transforma-
tion. We call the set of tasks represented by one
union task the original tasks of the union task.
Only one among all the original tasks of each
union task will actually execute. Since which
task will execute is unknown;a priori when the
tasks are scheduled, we must allocate the union
task the resources required by all of its original
tasks. Some of the resources allocated to a
union task are wasted at run time when its
origina] task that executes does not need all the
allocated resources. On a single processor sys-
tem, we need not be concerned about wasting
resources because the wasted resources cannot

be used by other tasks anyway. However, on a
multiprocessor system, we should minimize the
wasted resources. We may be able to execute
more tasks simultaneously by minimizing wast-
ed resources and satisfy deadlines in case of
time-critical systems. Minimizing wasted
resources is the same as maximizing the usage
of resources shared by original tasks combined
into a union task. We call these resources shar-
ed by original tasks conditionally sharved
resources. One objective of the transformation
is to maximize the usage of conditionally shar-
ed resources.

By combining more than one original tasks
into one union task, we may lengthen the logest
path of the precedence graph. Lengthening the
longest path may postpone the completion time
of the task set. This is not desirable in time-
critical systems. We should keep the longest
path short through the transformation. This is
another objective of the transformation. How-
ever, probability to increase the usage of the
conditionally shared resources grows if we
lengthen the longest path. We need to-trade off
between the two objectives.

This study is inspired by research on sched-
uling of computation steps in VLSI
design.®»™11:1% Since the target of their algo-
rithms is VLSI design, they assume each unit of
execution requires only one resource. In a com-
puter system, tasks may require more than one
resource. Our model handles this case. In real-
time systems research Gillies and Liu® studied
AND/OR precedence constraint. However,
their OR constraint is on incoming edges of a
node while ours is on outgoing edges.

In the next section, we formally define our

Vol.36 No.9

model of tasks, precedence relations, and
resource requirements. In Section 3, we propose
a criterion of a good transformation. Section 4
describes several transformation algorithms. A
simulation study to evaluate these algorithms
and the results on their relative performance
are presented in Section 5. Section 6 concludes
the paper.

2. System Model

A precedence graph with AND and OR con-
straints has three types of nodes: fork nodes,
join nodes, and operation nodes. A fork node
has more than one conditional branch as succes-
sors. In other words, a fork node is a node with
an OR constraint. The node 7, in Fig. 1 is a fork
node. The conditional branches of a fork node
join together at a join node. The filled node in
Fig.1 is a join node. Join nodes are used for
notational convenience and have zero execution
time. The set of conditional branches between a
fork node and the corresponding join node,
together with the join node and the fork node, is
called a conditional block.

If a programming language construct such as
a GOTO statement that can transfer execution
flow to an arbitrary position is used in a condi-
tional statement, the join node for the condi-
tional statement may be located far down the
precedence graph and conditional blocks may
not be properly nested. However, programs can
always be written without GOTO statements.
We assume that GOTO statements are not used
and conditional blocks are properly nested in
this paper.

Nodes other than fork nodes and join nodes
are called operation nodes. An operation node
may have many immediate successors and
multiple outgoing edges. All immediate succes-
sors of an operation node must be executed. A
task that corresponds to a node can be one
operation or a sequence of operations as long as
the execution time of the task is known. In this
paper, we assume tasks represented by fork
nodes and operation nodes have unit execution
times.

The tasks are not preemptive, i.e., once a
task starts execution, the execution cannot be
interrupted. In addition to non-preemptive
tasks with identical execution times, this model
can be applied to characterize tasks that have
arbitrary execution times and are preemptive
at discrete points. The unit execution time in
this model is the time slice in which no preemp-

A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2163

tion is allowed. Then, a task can be split into
many unit execution time tasks with straight
line precedence constraints.

In addition to the processors, each task may
require resources of different types. There are
m types of reusable resources including. proces-
sors. Let o, be a resource of j-th type. Task z;
requires 7, units of resource p,, 7: units of o,
and so on. The resource requirements of task ;
are given by its resource vector (7,4, 71, -, Vim).
In Fig. 1, node z; is labeled by this vector. While
a task accesses a resource, the other tasks
cannot use the resource. In other words, a task
need exclusive access to a resource in our
model. After the task finishes accessing the
resource, the other tasks can use it.

3. Transformation

A transformation algorithm transforms a set
of conditional branches in a precedence graph
into a subgraph without conditional branches.
We now describe the underlying transformation
process and the objective function to be opti-
mized.

The basic step of the transformation is to
select two nodes in different conditional
branches in a conditional block and combine
the two nodes into one node in the precedence
graph. In other words, two original tasks are
combined into one union task. The immediate
successors of the original tasks are the immedi-
ate successors of the union task, and the imme-
diate predecessors of the original tasks become
the immediate predecessors of the union task.
The resource requirement of the union task is
the union of the resources required by the
original tasks. By repeating the combining
process of tasks, we can combine the condi-
tional branches in each conditional block into
one unconditional branch. The transformation
starts from the inner-most conditional block
and proceeds to the surrounding outer condi-
tional blocks if conditional blocks are nested.

All resources required by a union task may
not be used at run time because only one of the
original tasks is executed. Resources which are
not conditionally shared by all original tasks
may be wasted. Some combinations of original
tasks may lead to less wasted resources than
the others. As an illustrative example, suppose
that a system has 2 processors, 2 units of o, 4
units of o,, and 4 units of p,.If original tasks z,
and z; in Fig. 2 are combined into a union task
T, Twmn's resource vector is (1,3,3). Both

2164 Transactions of Information Processing Society of Japan

'(r“ JTj2:13): Resource Vector

Fig.2 Conditional resource sharing.

tasks 7, and 719, which are not in this condi-
tional block and have the resource vector (1, 1,
2), cannot be scheduled simultaneously with the
conditional block. However, if iz and z; are
combined and 1z, is left alone, 7, can be
scheduled simultaneously with 7, and execution
of the right branch (z—%—1,) canbe speeded
up. In the former transformation, either one of
0, Or o5 18 always wasted while at most one o,
may be wasted in the latter.

The length of the longest path in a condi-
tional block gives the minimum completion
time of the transformed conditional block.
Here, by the length of a path in the precedence
graph, we mean the number of nodes on the
path. The longest path does not include the join
node because a join node has zero execution
time. For example, the length of the longest
path of the conditional block in Fig. 1 is 6, and
completing this conditional block takes at least
6 units of time. Combining two. nodes may
lengthen the longest path. If we combine nodes
7, and 7, in Fig. 1, the precedence graph after
combining the two tasks is as shown in Fig. 3
and its longest path length is 7. The dashed
arrow in Fig. 3 is a precedence relation exists in
the original precedence graph. However, after
combining 7, and zj,, this relation need not be
expressed explicitly because the path r,— =1
— 112,10 implicitly expresses the precedence rela-
tion.

Suppose that there are two conditional
branches with the same longest path and
straight line precedence constraints. If we are
not allowed to lengthen the longest path, there
is only one way to combine the two conditional
branches. If we relax this restriction, we have
more choices in order to reduce wasted
resources. Lengthening the longest path, and
thus postponing the completion time of the

Sep. 1995

- Conditional
. Branch2

Conditional .
Branch1 |

Fig.3 Example of longest path length change.

conditional block, is not desirable especially in
time-critical systems. However, by reducing the
wasted resources, concurrently executing tasks
may finish early. The transformation algo-
rithms described in Section4 will attempt to
trade off between the wasted resources and the
longest path length.

We evaluate the goodness of combining two
tasks zx and 7y with resource vectors (71, #xs,
o, ¥xm) and (#31, 732, -+, #>m) By the cost func-
tion

Royn=a1Pusit+ @Puyet - + anPixsym
where Pix,y;=min(#x, 7v;) = Py.x); and a;s are
weights. If all ;s are equal to 1, R, is the
total number of resources conditionally shared
by txand . ;s are assigned by the system
designer. The more efficiently resource type p;
should be used, the larger a;is. zx and 7y can be
not only original tasks but also union tasks.

The resource sharing index of a transforma-
tion is given by the sum of RS, i.e.,

R= 2 Rx,»,

(e, m)ED@
where ®={(rx,) | 7x and z, are combined} is
the set of all union tasks in the resultant graph.
The more efficiently resources are used, the
larger R is. Let e he a parameter which is the
permitted maximum length of the longest path
in the resultant graph. The value e affects to
the latest acceptable time to complete execu-
tion of the conditional block. Since lengthening
the longest path increases the minimum comple-
tion time of the conditional block, we measure
the goodness of the transformation with R/e.
We call R/e the effectiveness index of the trans-
formation. A small longest path length or a

Vol. 36 No.9

large resource sharing index means large R/e
and a good transformation has a large R/e.
The algorithms described in the next section
attempt to find transformations with good
effectiveness indices for an acceptable value of
e.

4. Transformation Algorithms

In our algorithms, for each chosen value e,
tasks in the conditional branches are iteratively
combined while limiting the longest path length
to no longer than e, - For a given value e, the
time interval between the earliest time and the
latest time, relative to the completion time of
the fork node, when a task can be scheduled is
referred to as the #ime frame of the task. The
time frame of a task can be determined by
using the ASAP (as soon as possible) and
ALAP (as late as possible) scheduling
algorithms!®. Two tasks can be combined only
if their time frames overlap.

Specifically, the ASAP algorithm assigns
time 1 to the task without predecessor in a
conditional block, i.e, the fork task, and then,
time 2 to its imimediate successors and so on.
The ALAP algorithm first assigns time e to the
tasks whose immediate successor is the join
task of the conditional block, then, time ¢—1 to
their immediate predecessors and so on. For
example, when ¢=7, the time frames of tasks
in Fig. 1 are shown in Fig. 4.

We now describe several algorithms to
choose the tasks to be combined. The algo-
rithms can be divided into two classes. One
class contains algorithms that only utilize the
goodness of combining two tasks each time a
choice is made and disregard the effect of the com-

Conditional
Branch 1

[24]
122

ONO,
b dze

57 [5.6]
a0 o @02

Fork node

[3,5)
1,2,2)

36 B4
(1,1,2) (1,3,2)

“6]
(1,1,2)

i Join node

ONE

A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2165

bination to other combinations. We call algo-
rithms in this class algorithms without total good-
ness estimation. The other class contains algo-
rithms that attempt to estimate the total good-
ness at the end of the transformation.
4.1 Algorithms without Total Goodness
Estimation
There are four algorithms in the class of
algorithms without total goodness estimation.
The first one is a straightforward and the sim-
plest algorithm in terms of complexity. This
algorithm is called Fork Random algorithm
and is summarized by the pseudo code below.
The algorithm randomly chooses one node with
level 2 and find all combinations that include
the chosen node. (The level of a node is the
shortest path length to the node from the fork
node. The level of the immediate successors of
the fork node is 2.) One combination is chosen
randomly and the nodes are combined. After
this first iteration, pairs are similarly found for
the rest of nodes with level 2. The algorithm
then proceeds to the next higher level nodes.
Time complexity of this algorithm is O(#?)
where # is the number of tasks.
Input : The given precedence graph G=(V,
E).
Output : The transformed precedence graph
without conditional branches.
Algorithm . (Fork Random)
Compute S=1{all nodes at level 2} ;
=2,
WHILE 7is less than the longest path
length of the conditional block DO
WHILE S is not empty DO
SET @ empty ;
Randomly choose 7; from S ;

Conditional
Branch 2

231
1,1,2)

3]
(12,1

{earliest, latest]: Time Frame

(11,Tj2.%;3): Resource Vector

67’
1.23)

Fig.4 Time frames.

2166 Transactions of Information Processing Society of Japan

Conditional
Branch 2

' Conditional
Branch 1

L 24 231
122 i (1,1,2).

[earliest, latest]: Time Frame
(rj1.rj2.1i3): Resource Vector

e=6

Join node

Fig.5 Example task set.

Find all zxs that are not in the same
conditional branch as z; and whose
time frames overlap with the time
frame of 7; ;

Add all combination (7, z)s into @ ;

Randomly choose a combination (z,
7y) from @, combine nodes 7% and T,
and replace them with a new node
T(xyy) »

Remove zx and 7, from S if they are in
S

END

1ei+1;

Compute S={all nodes at level 7} ;
END

In the example in Fig.5, Sis set to{z,)
initially. Time frames are computed assuming
e=6. Suppose 7 is chosen. @ includes (z,),
(, @), (@, »), and (&, »). The algorithm ran-
domly chooses one combination from @ and
combine the pair of nodes in it. The algorithm
may choose (n, r7) randomly. 1 is removed
from S and now S={z).

The second algorithm is similar to the first
one. As the previous algorithm, one node that
has level 2 is randomly chosen. The algorithm
finds all possible combinations that include the
node. Instead of choosing randomly from the
possible combinations, a combination (z, zy)
with the maximum goodness of combination
R, » is chosen. Ties are broken by combining
the nodes with the minimum difference of
levels. After this first iteration, we repeat the
above until combinations are found for all
immediate successors of the fork node. The
algorithm then proceeds to the next higher level
nodes. We call this algorithm Fork First algo-
rithm. The algorithm is summarized by a
pseudo code below. Time complexity of this

Sep. 1995

algorithm is O(mn?) where m is the number of
resource types and » is the number of tasks.

Input : The given precedence graph G=(V,

E).

Output : The transformed precedence graph

without conditional branches.

Algorithm . (Fork First)

Compute S={all nodes at level 2} ;
i=2;
WHILE 7 is less than the longest path
length of the conditional block DO
WHILE S is not empty DO

SET @ empty ;

Randomly choose z; from S ;

Find all zx’s that are not in the same
conditional branch as z; and whose
time frames overlap with the time
frame of z; ;

Add all combination (7, r.)s into @ ;

Compute R,y for all combination (z,
n)sin Q ;

Choose the combination (zv,) with
the maximum R,y from Q, com-
bine nodes zx and 1y, and replace
them with a new node zxy) ;

(If there are ties, a combination with
the minimum difference between
levels of 7x and 7, is chosen.)

Remove zx and 7, from S if they are in
S

END

i—i+1;

Compute S={all nodes at level 7} ;
END

In the example in Fig.5, S={n, &} for ;=2.
Suppose 2 is chosen. @ includes (1, %), (n,),
(22, 1), and (1, ©). When all @;s are 1 in the
definition Rix,y, the combinations (z,) and (z,
%) have the maximum R(x,»=6 among the com-
binations in @. Since the levels of %, ©, and
are 2, 3, and 4 respectively, we combine (z, 7).
The final result by this algorithm may be as
shown in Fig. 6 (a). The resource sharing index
R of this transformation is 18.

The third algorithm does not start by finding
combinations for nodes in level 2. Instead, it
computes R, for all possible combinations
and chooses the one with the largest R, We
call this algorithm Best First algorithm. Time
complexity of this algorithm is O(m#®). This
algorithm is the most expensive algorithm in
terms of complexity among the four algorithms
in this class.

Vol.36 No.9

Input . The given precedence graph G=(V,
E).

Output . The transformed precedence graph

without conditional branches.

Algorithm : (Best First)

SET S={(z;, ;) | time frames of r;and ;
overlap and z; and z; are not in the
same conditional branch} ;

Compute R, for all (z, ;) in S ;

WHILE S is not empty DO

Combine nodes r; and r; with the maxi-
mum R(;:,j) s
(If there are ties, choose the combination
with the minimum difference of levels)
SET S={(z, t;) | time frames of r; and ¢
overlap and z; and z; are not in
the same conditional branch} ;
Compute Ry,j for all(z;, 7;)in S ;

END

In the example in Fig.5, Sis set to {(z,),
(n, »), (&,), (&, n), (5, ©), (&,), (55, m), (3,
T9), (Ts, Tlo), (T4, Z’7>, (T4, Z's), (T4, 2'9), (2'4, Tm), (Z's, Z'e),
(m,), (w5, w), (s,), (1, 10)}. After computing
Ry for all (z, r)€S, we find Run=61is the
maximum. We combine 7 and . This step is
repeated until possible combinations are
exhausted. The final result by this algorithm is
shown in Fig. 6 (b). The resource sharing index
R of this transformation is 18.

The fourth algorithm is an approximation of
the third algorithm. Instead of finding the
maximum R, the algorithm finds a combina-
tion for the task with the maximum resource
requirement first. In this algorithm, we sort
task 7;s according to their resource require-
ments. The resource requirement of z; is

Ri:(l’ﬂ’i1+ cee - Am¥ im,

where @;s are the same as in the definition of
Rix,». The algorithm starts by finding all pos-
sible combinations for the task rx that has the
largest resource requirement R.. We choose
combination (zx, zy) with the largest R.». We
call this algorithm Largest First algorithm.
Time complexity of this algorithm is O(m#n?).

Imput - The given precedence graph G=(V,

E).

Output - The transformed precedence graph

without conditional branches.

Algorithm : (Largest First)

Construct a sorted list L of tasks {#, z, -,

Tn} such that Ri=Ry=--=R» ;
WHILE L is not empty DO
Remove a task from the front of L and
name the task z; ;

A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2167

Set Q={r;| r;/s time frame overlaps with
the time frame of r; and 7; and 7
are not in the same conditional
branch} ;

Compute R, for all 7;in @ ;

Combine nodes r; and 7; with the maxi-

mum R j ;

(If there are ties, choose the combination

with the minimum difference of levels)

Remove z; from L ;

END

Using the example in Fig. 5, we note that L is
initially set to{w, @, &, T, 2, T, T, T, To). The
first r;is mand @ is set to {n, &, &, B}. Rez=D5,
R(B,S):S, R(s,4)=5, and R<8,5)=4. Since
differences in levels between 7 and ©, between
wand , and between s and yare 2, 1, and 0
respectively, we choose wand zsas the first
combination. 7 is removed from L and now L=
{z;, 1o, , 15, T, T, 7). This step is repeated for
the first task in L, The final result by this -
algorithm is shown in Fig. 6 (c). The resource
sharing index R of this transformation is 17.

4.2 Algorithms with Total Goodness Esti-

mation

In this class of algorithms, we select the most
promising combination by estimating the value
of the resource sharing index R if the combina-
tion were indeed selected. In contrast, only the
goodness F(x,y of a combination is used as the
selection criteria in the Fork First, Best First,
and Largest First algorithms.

The estimation of R when tasks z; and 7; are
combined is denoted by R(z, 7;). We use the
probability that a task will be scheduled at a
particular time within its time frame to com-
pute this estimate. The probability is derived by
the same way as the force-directed scheduling
algorithm'® does. The force-directed scheduling
algorithm assumes that the task is-equally like-
ly to be scheduled at any time #in its time
frame. Hence, the probability for a task z; with
a time frame of length % to be scheduled at any
time ¢ in its time frame is1/k. For example,
suppose a task r; has a time frame [2, 5], then o
may be scheduled at time 2, 3, 4, and 5, with
each probability 0.25.

The estimation of R is computed according
to

Rz,)= é min(Alx(1))+ afzglrrvlin(A%(1)+

+am2m1n(A x(1)).
In this equation Az(t) Decal (), where

2168 Transactions of Information Processing Society of Japan

Sep. 1995

(a) Fork First

(b) Best First

(c) Largest First

Fig.6 Transformation results.

Qx={z;| r; is in z-th conditional branch}and
7x(¢)is the probability with which task ris
scheduled at time ¢ if r; and z; are combined.
ram:(t) is the expected number of resource 01
used by 7 at time ¢. Therefore, A¥¢)is the
expected number of resource p, used at time ¢ if
x-th conditional branch is taken. By taking the
minimum of A(#) over all branches, we find the
number of resource p; utilized at time 3 which-
ever branch is taken. By maximizing R(r;, 7;),
we are maximizing the expected number of
conditionally shared resources.

It is also possible to have the same variety of
algorithms in this class as in the class where
algorithms do not estimate the total goodness :

® combining from the fork node (Fork First

with Est), :

@® combining the best match first (Best First

with Est), and

® combining the largest resource require-

ment first (Largest First with Est).

We use the names inside the parentheses to
refer to the algorithms. The pseudo code de-
scribing each of the algorithms with the total
goodness estimation is the same as that for the
corresponding algorithm without the estima-
tion, which is given in the previous section, the
only difference being that R(r, ;) is used
instead of R(.». Time complexity of computing
R(z:, ;) is O(emn) while complexity of comput-
ing R, is O(m). Therefore, time complexities
of Fork First with Est, Best First with Est, and
Largest First with Est are O(emn®), O(emn?),
and O(emn®), respectively.

4.3 Schedule Generation

Given a precedence graph with OR con-

straints, we transform the graph into one with-
out OR constraints using one of the algorithms
explained in Sections 4.1 and 4.2. Then, the
tasks in the transformed precedence graph are
scheduled using some classic scheduling
algorithms®® that are applicable to task sets
with precedence relations and resource require-
ments, and without OR constraints. Finally,
from the schedule of the union tasks, we
extract the schedule of the original tasks in
order to execute tasks.

Suppose the task set in Fig.5 is given. We
assume the system is a single processor system
here in order to depict the process of extracting
the schedule of the original tasks from the
schedule of the union tasks. Using the Largest
First algorithm, we transform the precedence
graph into the one in Fig. 6 (c). Using the
HLFET algorithm,” we may schedule the trans-
formed task set as schedule (a) in Fig. 7. From
this schedule, we can extract either schedule
(b) or (c) in this figure. Schedule (b) is used if
the conditional branch 1 in Fig. 5 is taken. and
schedule (c) is used if the conditional branch 2
is taken. These schedules can be easily extract-
ed from schedule (a) by picking up tasks in the
corresponding conditional branch.: Time 6 in
schedule (b) is idle, i.e., if the conditional
branch 1 in Fig. 5 is taken, we must keep the
processor idle at time 6.

5. Simulation

To evaluate the algorithms, we performed a
set of simulations. When there are many condi-
tional blocks in a precedence graph, the inner-
most conditional block is transformed first and

Vol.36 No.9 A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2169
UnionTasks @ | U |26 |61 ws | 9] T |
Reverse @
Transformation
idle
) /

oalalslwlsl
Original Tasks or

(c)|11|16’t7118119[r10—|

| |

| | | | >

! I

T > time

Fig.7 Schedule.

Table 1 Task generation parameters.

Longest path length

L longest

Nresource_wpes The number of resource types

MinNg: The minimum number of resource type-¢
maxNr: The maximum number of resource type-7
minNsranc» ~ The minimum number of AND branches in

each conditional branch
maxNorancr ~ The maximum number of AND branches in
each conditional branch
avgLlurancn Average AND branch length
AL yranch Variance of AND branch length

avgPrign: srancn Average probability to shorten the longest
path in the right branch

the transformation proceeds to outer condi-
tional blocks. Therefore, we only need to com-
pare performance on a single conditional block
to compare transformation algorithms.

5.1 Task Set Generation

We compare the transformation algorithms
on synthesized task sets with two conditional
branches. Each task set is generated according
to the following algorithm :

Input : Parameters in Table 1.

Output - A task set with two conditional

branches.

Algorithm : (Task Set Generation)

Read the longest path length of the condi-
tional block from input and assign the
path length to the left conditional
branch ;

Generate resource requirements of nodes
on the longest path ;

Generate the number of AND branches N
in the left conditional branch ;

FOR 7=1TO N, DO
Generate branch length and resource

requirements of nodes on the branch ;
Decide a node to branch out ;

Decide a node to merge in ;

(A branch merges on a node in the
branch where the branch has branched
out.)

END

Generate the longest path length of the
right conditional branch ;

Generate resource requirements of nodes
on the longest path in the right condi-
tional branch ;

Generate the number of AND branches Nz
in the right conditional branch ;

Generate Nk branches for the right condi-
tional branch.

The task set generation parameters are sum-
marized in Table 1. Longes: is the longest path
length of the conditional block to be generated.
Lionges: s assigned to the left conditional
branch. We use 10 and 20 as Linges: in our
simulation. These values are chosen arbitrary
but two values are chosen to compare the effect
of different Liongest. Nresource swpes 1S the number
of resource types in the system. In the simula-
tion, Nresource tes=3. Resource requirements of
nodes are generated using a uniform random
number generator with its minimum and maxi-
mum numbers given as parameters. #inNg; and
maxNg; are the minimum and the maximum
number of resource type 7 to be used by a gener-
ated task. Uniform distribution is chosen to
reflect variety of resource requirements of
tasks. The number of AND branches in each
conditional branch is generated by a uniform
random number generator with given maxi-
mum and minimum value. % Npranex and
maxNorancy are the minimum and the maximum
number of AND branches in each conditional
branch to be generated. minNorancs is set to 1
and maxNeyrancr is changed. An AND branch is a

2170 Transactions of Information Processing Society of Japan

sequence of tasks with straight line precedence
constraints. The length of an AND branch is
generated by a truncated normal random num-
ber generator in order to control the mean and
variance separately. avgl sranch and AL sranc, are
an average and a variance of AND branch
lengths. ALsrancy is set to 1 and avgLlerancs i
varied. The nodes where AND branches go out
and merge in are chosen randomly from nodes
which do not lengthen the longest path. The
longest path length of the right branch is gener-
ated by a binomial random number generator.
We chose binomial distribution so that the left
branch always has the longest path and the
longest path length of the right branch is cor-
related to the longest path length of the graph.
avgPrigns vranen 1S the average probability to
shorten the longest path in the right branch. In
the simulation, the right branch is one node
shorter than the left branch with 59 chance.

5.2 Simulation Results

Since the effectiveness index of a transforma-
tion, R/e, may be very different from task set
to task set, we compare difference of the value
R/ein order to compare performance of the
algorithms instead of R/e itself. We use Fork
Random algorithm described in Section 4.1 as
the basis of the comparison. The value we
compare is defined by

c=FR_ (R produced by Fork Random)
e e

The simulation result shown in Fig.8 is
produced. with the parameter set in Table 2.
The values shown in the figure are averages.
The 95% confidence intervals are less than 0.05
on each side of the plotted values.

The value R/e by Fork Random with the
same parameters is shown in Fig. 9. The inter-
vals shown above and below the plots are 959%
confidence intervals. The decrease of R/ein
Fig. 9 is more than the increase of Gin Fig. 8.
Therefore, the maximum R/eis likely to be
achieved with the minimum e for all the algo-
rithms. In this sense, the value e to be used is
not very important. We only need a little larger
value e than the longest path length of the
conditional block.

Among all the algorithms, Best First that
does not use the total goodness estimation
performs best. The second best algorithm,
Largest First, also does not use the estimation.
If we compare the two classes of algorithms,
with and without the estimation, each algo-
rithm without the estimation works better than

Sep. 1995
1.0 =
08 4ot
0.6 -
] :
~———— Fork First
———%—— Best First
02 . —4—— Largest First
i . ——— Fork First with Est
——=#— Best First with Est
: . ——+— Largest First with Est
0 T T T T
10 11 12 13 14 15
€
Fig.8 Simulation result 1.
Table 2 Simulation parameters.
Ltongzst 10
Nresource_types 3
minNg: 1
maxNg: 2
minNgz 0
maxNg2 3
minNrs 0
maxNr3 4
minNeranch 1
maxNorancn 4
ClUngranch 2
ALbTﬂ!ZCh l
avgPrignt_vrancn 0.95
R/e
4
3.5 5=
3 i
px
2.5 s
2
1.5
1
0.5
0
11 12 13 14 e

Fig.9 R/e by fork random.

the respective counterpart with the estimation.
Without the estimation, algorithms seek the
most gain on the value R in each step of trans-
formation. On the other hand, algorithms with
the estimation ignore immediate gain while
they try to maximize R at the end. The result
shows that we can expect better return by being
greedy. This result is preferable because we can
save computation by skipping the estimation.
Among algorithms without the estimation,
Best First works best as expected. On the other

Vol.36 No.9

hand, Largest First with Est works better than
Best First with Est. Largest First with Est not
only looks for good final R but also considers
immediate gain by finding a combination for the
task with the maximum resource requirements.
Since seeking immediate gain is preferable for
a good performance, this property of Largest
First with Est provides better performance
than Best First with Est.

Considering the confidence interval, we can
not find any significant performance difference
between Fork First with Est and Best First
with Est algorithms. Also, their performances
are among the worst in the six algorithms. This
result suggests that the total goodness estima-
tion we used is not a very good estimation. The
estimation can be improved by using accurate
7x(t), the probability with which task zxis
scheduled at time /. However, improving the
estimation increases complexity. Since the
transformation is the only one of three stages in
our scheduling process, spending much time on
this stage is not a good choice in our opinion.

Figure 10 shows the average longest path
length after the transformation for given e, The
algorithms without the estimation produce
almost the same longest path length as given
e, Onthe other hand, the algorithms with the
estimation produce shorter longest path length
than given e as e increases. When R(z, 7) is
computed, the expected number of condition-
ally shared resources at each time ¢, 1<¢<e,
ie., rgin(Aif(t)), is summed up. Lengthening the

x B

longest path means that some nodes are forced
to have no combination candidates. Contribu-
tion of such a task to R(z,z;)is zero unless
other union tasks happens to be executed with
it at the same time. Also, lengthening the long-
est path lengthens time frames, and consequent-
ly decreases m(#). These two factors reduce
R(z;,7;) when the longest path is lengthened.
Since all possible combinations are considered
by Best First with Est algorithm, the algorithm
eliminates the combinations that lengthen the
longest path. With Fork First with Est and
Largest First with Est algorithms, the chance
to eliminate such combinations is less because
these algorithms consider a limited set of com-
binations at each step of transformation proc-
ess. When a combination for 4 node is searched
in Fork First with Est algorithm, all nodes at
lower levels than the node in quéstion have
already found their combinations. On the other

A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2171

15

longest path length
>
]

.. —&—— Fork First
———— Best First
-——— Largest First

10 A4---- i..o.............. ——+—— Fork First with Est
——=—— Best First with Est
——+—— Largest First with Est

10 11 12 13 14 15

Fig.10 Average longest path length.

1.0 4

0.8 -+

——e—— Fork First
———— Best First
: ———— Largest First
02 - e ————— Fork First with Est
: : —=—— Best First with Est

: : —+—— Largest First with Est
0 T T T T T T T
20 21 22 23 24 25 26 27 28

04 -

€

Fig. 11 Simulation result 2 (Longer path length).

hand, some nodes at lower levels may not have
found their combinations when a combination
for a node is searched in Largest First with Est
algorithm. Therefore, it is more likely for the
longest path to be lengthened in the former case
than in the latter case. For this reason, Fork
First with Est has tendency to lengthen the
longest path.

Next, we lengthen the longest path length
L iongest to 20 and kept other parameters, except
avgL vrancr, at their values in Table 2. The value
G becomes as in Fig. 11. The 95% confidence
intervals are less than 0.05 on each side of the
plotted values. We change avglirencn to 4 so
that the average length of AND branches has
the same ratio with the longest path length as in
the case of Fig.8. Figurell has the similar
characteristics to Fig. 8.

As eincreases, G of an algorithm with the
estimation increases more than G of an algo-
rithm without the estimation in Fig. 11. This
characteristics present in Fig. 8 also. The larger
the value e is, the more possible combinations
to consider at each step of the transformation

2172 Transactions of Information Processing Society of J apan

124
1.0 4
0.8 -
O 06 -
04 - e Fork First
' ~———x--+— Best First
¢ ——a—— Largest First
02 - e Fork First with st -
: : ——=—— Best First with Est
0 ——+—— Largest First with Est
T T ¥ T

10 11 12 13 14 15

Fig.12 Simulation result 3 (More branches).

——— Best First.
| ; : ——— Largest First
02 oW Fork First with Est -
: © ——=—— Best First:with Est
——+—— Largest F%rst with Est
¥

10 11 12 13 14 15

Fig.13 Simulation result 4 (Longer branches).

process exist. Choosing a certain combination
may eliminate good combinations that the algo-
rithm may encounter later. Algorithms with-
out the estimation perform more combinations
that eliminate good future combinations than
algorithms with the estimation. Since large e
provides many possible combinations, the effect
of poor choices of the algorithms without the
estimation at early stages becomes significant.
For this reason, the performance of algorithms
with the estimation improves more than algo-
rithms without the estimation as e increases.
When the number of AND branches is in-
creased, i.e., marNoranc» =8, or AND branches
are lengthened, i.e., avglsrancn=4, the value G
becomes as shown in Fig. 12 or Fig.13. Other
parameters are the same as Table 2. The 95%
confidence intervals are less than 0.05 on each
side of the plotted values. The difference
between the algorithms with and without the
estimation becomes clearer than in Fig. 8. With
more AND branches or longer AND branches,
there are more possible combinations as with
larger e. However, in contrast to the case where
eis large, lengthening the longest path is

Sep. 1995

not allowed in this case. Consequently, with
many or long AND branches, the algorithms
without the estimation are less likely to choose
a combination that makes some nodes impos-
sible to find a combination than with large e.
Also, by having more possible combinations,
the algorithms : without the estimation have
more chance to find larger R, at each step of
the transformation process. Increasing the num-
ber of AND branches and lengthening AND
branches create a situation in which the algo-
rithms without total goodness estimation work
well.

In summary, Best First works best and Larg-
est First is the second best. The performance
of Largest First with Est improves as e
increases. Fork First with Est and Best First
with Est work poorly in all cases. Besides all
algorithm mentioned above, Fork Random algo-
rithm works worst. However, Best First
algorithm is expensive in terms of complexity.
Computation time of Best First algorithm
increases in the third power of the number of
tasks while computation time of Largest First
algorithm increases quadratically with the num-
ber of tasks. From this observation, Best First
algorithm may not be the best choice when the
task set is large. Largest First algorithm is
effective with less computation.

6. Conclusion

In this paper, we propose several strategies to
transfer a task precedence graph with condi-
tional execution to a graph without. The trans-
formation simplifies deterministic scheduling of
tasks with conditional execution and resource
sharing. The scheduling is performed in three
stages. In the first stage, conditional execution
is eliminated from the precedence relation.
Then, the transformed task set, which does not
have conditional execution anymore, is
scheduled using a classical scheduling algo-
rithm that is applicable to a task set without con-
ditional execution. Finally, the schedule for
the transformed task set is projected to, the
schedule for the original task set. This paper
describes detail of the first stage.

We have found that greedy algorithms work
better than algorithms that attempt to maxi-
mize expected final results. The best algorithm,
Best First algorithm, is somewhat expensive in
terms of complexity. However, there is an
alternatiye algorithm, Largest First algorithm,
which is less expensive than Best First algo-

Vol.36 No.9

rithm and produce fairly good results.

Several issues need to be investigated in
future research. In our algorithms, nested condi-
tional blocks are handled from innermost block
and we only need to look at a single conditional
block at a time. This approach reduces com-
plexity of the algorithms and is an advantage of
our algorithms. However, if we can incorporate
some global view and utilize the global informa-
tion, performance of the transformation may be
improved in case of nested conditional blocks.

We have not considered the scheduling algo-
rithm and assumed some scheduling algorithm
is used to schedule the transformed task set.
However, we may be able to schedule the origi-
nal task set more effectively by transforming it
to a task set with a certain property or there
may be a scheduling algorithm better suited for
scheduling the transformed task set. Studying
the coupling between the transformation stage
and the scheduling stage is another direction
for the extension of our work.

Acknowledgement This research was
supported in part by the Office of Naval
Research under grant N00014-92-J-1146 and
NO0014-89-J-1181.

References

1) Adam, T.L., Chandy, K. M. and Dickson, J.
R.: A Comparison of List Schedules for Paral-
lel Processing Systems, Comm. ACM, Vol. 17,
No. 12, pp. 685-690 (1974).

2) Blazewicz, J.: Selected Topics in Scheduling
Theory, Annals of Discrete Mathematics, No.
31, pp. 1-60 (1987).

3) Camposano, R.: Path-Based Scheduling for
Synthesis, IEEE Trvans. on Computer Aided
Design, Vol. CAD-10, No. 1, pp. 85-93 (1991).

4) Garey, M. R. and Johnson, D. S.: Complexity
Results for Multiprocessor Scheduling under
Resource Constraints, SIAM Journal of
Computing, Vol. 4, No. 4, pp. 397-411 (1975).

5) Garey, M. R. and Johnson, D. S.: Computers
and Intractability : A Guide to the Theory of
NP-Completeness, W.H. Freeman and Com-
pany, New York (1979).

6) Gillies, D.W. and Liu, J. W.S.: Scheduling
Tasks with and/or Precedence Constraints,
Technical Report UIUCDCS-R-91-1627, Dept.
of Computer Science, University of Illinois at
Urbana-Champaign, IL (Mar. 1991).

7) Kim, T. Liu, JJW.S. and Liu, C.L.: A
Scheduling Algorithms for Conditional
Resource Sharing, Proc. International Conf. on
Computer-Aided Design, pp. 84-87 (1991).

A Scheduling Strategy for Tasks with Precedence and Conditional Execution 2173

8) Lawler, E.L.: Combinatorial Optimization :
Networks and Matroids, Holt, Rinehart and
Winston, New York (1976).

9) Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A.
H.G. and Shmoys, D. B.: Sequencing and
Scheduling : Algorithms and Complexity,
Technical Report BS-R8909, Centre for Math-
ematics and Computer Science, Amsterdam
(June 1989).

10) Paulin, P.G. and Knight, J.P.: Force-
Directed Scheduling for the Behavioral Synthe-
sis of Asic’s, IEEE Trans. on Computer-Aided
Design, Vol. CAD-8, No.6, pp.661-679 (June
1989).

11) Tseng, C.-J., Wei, R. W., Rothweiler, S.G.,
Tong, M. and Bose, A.K.: Bridge: A Versa-
tile Behavioral Synthesis System, Proc. 25th
Design Automation Conference, pp.415-420
(1988).

12} Ullman, J. D.: NP-Complete Scheduling Prob-
lems, Journal of Computer and System Sci-
ences, Vol. 10, No. 3, pp. 384-393 (1975).

13) Wakabayashi, K. and Yoshimura, T.: A
Resource Sharing Control Synthesis Method
for Conditional Branches, Proc. International
Conf. on Computer-Aided Design, pp.62-65
(1989).

(Received November 4, 1994)
(Accepted May 12, 1995)

Hidenori Nakazato received
his B. Engineering degree in
electronics and telecommunica-
tions from Waseda University in
1982 and his MS and PhD
degrees in computer science
from University of Illinois in
1989 and 1993, respectively. He is currently a
Research Manager at Oki Electric, Japan. His
research interests include real-time systems,
distributed systems, and databases. He is a
member of IPS].

2174 Transactions of Information Processing Society of Japan

Jane W. S. Liu received her
Bachelor of Science degree in
Electrical Engineering from the
Cleveland' State University,
Ohio. She received her Master
of Science and Electrical Engi-
neers degrees and her Doctor of
Science degree from the Massachusetts Insti-
tute of Technology. She is currently a Professor
of Computer Science at the University of II-
linois at Urbana-Champaign. Her research
interests are in the areas of real-time systems,
distributed systems and computer networks.
Before joining the University of Illinois in 1973,
she worked as an electronics engineer for the U.
S. Department of Transportation, Transporta-
tion Systems Center, Cambridge Massa-
chusetts, as a Member of the Technical Staff of
the Mitre Corporation, Bedford, Massachusetts,
and as an engineer for the Radio Corporation of
America, Needham, Mass. She is an IEEE
Fellow and a member of ACM.

Sep. 1995

Taewhan Kim received the B.
S. degree in computer science
and statistics and the M.S.
degree in computer science from
Seoul National University,
Seoul, Korea in 1985, 1987,
- respectlvely, and recelved the
Ph D. degree in computer science from the
University of Illinois at Urbana-Champaign in
1993. He is currently a Senior CAD Software
Engineer at Lattice Semiconductor Corpora-
tion, USA. His research interests include high-
level and logic synthesis for VLSI.

