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Decoders for Double-Length SbEC-DbED Codes

HirokAzU OKANO! and TADASU KAWANO!

With the advent of high-density semiconductor chips, b-bit organized RAM chips have been
fabricated and are now being marketed. Such memory systems use single b-bit byte error
correcting and double b-bit byte error detecting codes (SbDEC-DbED codes) to increase the
reliability. - This paper describes some new decoders for SbEC-DbED Reed-Solomon codes,
with a data length of ¥ = 128 bits and a byte length of b = 4 bits. Since these codes are
based on Reed-Solomon codes, the decoders are constructed by using the regulality of the
parity-matrix of Reed-Solomon codes and they have about 18 percent less gate circurity than

conventional decoders.

1. Introduction

The bit length of a computer’s main
memory is typically 64-bits in a general-
purpose computer or 32-bits in a work sta-
tion. However, these bit lengths are often in-
creased to 128-bits, especially for cache mem-
ory. The error-correcting codes currently used
are SEC-DED-D4ED codes?and S4EC-D4ED
codes')?). Both have advantages and disadvan-
tages. The latter are considered to be efficient
when a RAM for 4-bit organized processing is
used. In this paper, we propose new SbEC-
DbED (single b-bit byte error correcting and
double b-bit byte error detecting) codes, with
a byte length of b = 4 and a data length of
k = 128, for a high-speed decoder.

2. Some New Double-Length SbEC-
DbED Codes

T is a companion matrix; for example, the
companion matrix of GF(2*) is defined by
gX)=z*+z+1as

000 1
100 1

T=19100 &)
0010

Here, the elements of GF(2%) can all be ex-
pressed by ith power of T. T is essentially the
same as the regularly used a.

First, we show the fundamental form of the
parity-check matrix Reed-Solomon single b-bit
byte error correcting and double b-bit byte error
detecting codes (hereafter abbreviated as R-S
SbEC-DbED codes) with a minimum distance
of 4.
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1 1 ---1---11100

H=| 7@2) 7(@=3) ...Ti... T1010
T2(9=2)T2(q=3) ... T2 ... T1010

(2)

where, ¢ = 2°. The maximum code length for
the R-S SbEC-DbED codes is n = b- (2° + 2).
Hence, R-S SbEC-DbED codes, which have
k = 64-bit and, 128-bit data length, cannot be
constructed for byte lengths of b = 2,3 and 4
bits.

Assuming that the syndrome of codes using
Eq.(2) is S = (S4,51,952), the error location
number is z; = T°% and the error value is
Y;, then the syndrome of a single-byte error
is (S() = )/]_,S;L = Y1.1I1 = }/].Ti,SQ = Yszi).
Accordingly, the error location number is z; =
T! = §1/So(= S2/51) and the error value is
Yi = So.

Basically, in order to estimate the number of
error digits, we can use

St Sigr oo Sigr-a
My=| S S Sero) )
Si45-1 Sivg - Siyop—2

If f errors occur, My # 0, and if fewer than
f errors occur, M; = 0%.

By substituting [ = 0 and f = 2 into Eq. (3),
we can obtain an error-discriminating equation
Z for R-S SbEC-DbED codes as

Z = 808y + 8,2 (4)

Then, we can judge that a single-byte error
occurs if Z = 0 and that double-byte errors
occur if Z # 0.

However, this method has never been used in
order to judge errors in R-S SbEC-DbED codes.
The errors treated in Eq. (3) can be corrected,
whereas only two errors, in this paper, can only
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be detected, but not corrected.

The following equation equivalent to Eq. (4)
can also be used as an error discriminating
equation in R-S SbEC-DbED codes.

Z = (S()Tl = Sl AND SlT’L = 82) (5)

Namely, at each byte point 7%, we check
Eq.(5), and a single-byte error is detected at
the byte point whose error-byte-pointer is 1,
namely where Z is true. Moreover, double-
byte errors are detected when the syndrome is
nonzero and none of the error byte pointers in-
dicates an error.

Here, the error in the check byte, for example
at (100)*, is detected when Sy # O(namely, Sp
is an error pattern), Sy = 0 and S; = 0.

Theorem 1 Let Hy be the H matrix of an
(N, N — R) SbEC-DbED code, where N = n - b,
R =r-b"?). The code defined by the following
H matrix is a (2NV,2N — R — b) SbEC-DbED
code.

H = Ho

H,

000...0111...1) (6)

Using Theorem 1, we derive a new parity-
check matrix of the double-length R-S SbEC-
DbED codes. First, we locate the first matrix
inserted (11---1) above the parity-check ma-
trix (2) and then we locate the second matrix
inserted (00---0) above the parity-check ma-
trix (2) next to the first matrix. The codes with
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this linked matrix have minimum distance 4;
that is, they are SbEC-DbED codes.

Next, we add the first row to the second
row in the linked matrix. Then, we obtain a
(4 x 4) identity matrix as a parity-check matrix
by transposing (1000) from the center of the
matrix to the fourth column from the right. By
further transposing the two rows of (1110)* and
(1101)? from the center to the left column of the
identity matrix, we derive the matrix (7).

As Eq. (7) has been obtained from Theorem
1 and elementary row operation?), it is evident
that the codes with Eq.(7) have distance 4.
Therefore, Eq.(7) is a parity-check matrix of
double-length R-S SbEC-DbED codes.

Next, we obtain a new parity-check ma-
trix of 2-modularized double-length SbEC-
DbED codes. The parity-check matrix of 2-
modularized SbEC-DbED codes (Eq.8) is ob-
tained from Eq.(2) by a linear operation.

Modules (a) and (b) shown in Eq. (8) have the
same three row vectors. The usual parity-check
matrix 2-modularized SbEC-DbED codes is ob-
tained by getting rid of (111)¢ from Eq. (8) 1.
The product of the second row and the third
row can be made to be a certain value T¢. In
this case, (1 T¢/? T¢/2)t is transposed in front
of the (3 x 3) identity matrix. ‘

1 1 ...... 1 0 0 ...... 0 1 1 1 0 0 0
0 O ...... 0 1 1 ...... 1 1 1 0 1 0 0
T2 978 T 1 T2 T93 ...T1 10 0010
H= T2(9—-2) T2(g-3) ... 721 7T2(¢=2) 72(¢=3) ... T2 1 (1 0001 (7)
K, Ky () CyC3Cy
A-block B-block K-block  C-block
1 -1 1 T -1 1 1100
go | TP T T T T2 1010
=\7P..T27 TP .. T2 TU 1001 (8)
module a module b
1 1 1 1 1 0 0 0 0 0 1 1 1000
0 0 0 -0 0 1 1 1 -1 1 1 1 0100
H= TP Tt T-P...T-11 TP TV 7-P...T71 1 ¢ 1 0010 9
T ON\TP Tt TP ... TL 1 TP T-t 7P ... T 1 1 0 0001 )
K1 Kg Cl 02 03 04
A-block B-block K-block C-block
1 1 1 - 1 0---0 0111 1000
0o - o 0 --- 0 1---1 1011 0100
H=|T"...T' T%...7% 1101 0010 (10)
T8 ...TUTT...T' (@ b) 1110 0001
A B K C
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Here, we locate the first matrix inserted
(111---1) above Eq.(8) and locate the second
matrix inserted (000---0) above Eq.(8) next
to the first matrix, and add the first row to the
second row in the linked matrix. By transpos-
ing (1000)! from the center of the matrix to the
fourth column from the right, we obtain a unit
matrix, and by further transposing (1110)* and
(1101)* to the leftmost side column of the unit
matrix, we finally derive the matrix (9).

Here, substituting b = 4, p = 2 — 1 = 15,
T'® =1 into Eq. (9), we derive the matrix (10)
by transposing (1011)* and (0111)* to a block
K, where (a b) is the same as the modules in
Eq. (8).

The matrices (7), (9), and (10) are all parity-
check matrices of double-length SbEC-DbED
codes, and the minimum distance d = 4. Fur-
ther, when one byte is b-bit, the code length
is to be n = (2° + 2) - b -2 bits. Conse-
quently, if b = 4, (144, 128) codes are com-
posed, where code bit length n == 144, data bit
length & = 128, and check bit length ¢ = 16.

Here, the equations corresponding to Egs. (4)
and (5) applied to Eq. (8) are as follows:

Z =85 + 5.5, (1)
Z = (8, =T"Sg AND Sy =T7°5y), (12)
where (—p <1 < p).

3. Some New Decoders for Double-
Length SbEC-DbED Codes

First, we give a method for decoding the
codes, using Eq. (7). We classify the code digits
(or bytes) into blocks A, B, K, and C, as indi-
cated below Eq. (7). Then, by using the syn-
dromes (C1,C2,C3,C4); we obtain

Sy =C1+C2,5 =C3,8, = C4. (13)

Here, the syndrome (Sp,S;,S2) can be
treated in the same way as the syndrome for the
R-S SbEC-DbED codes using Eq. (2), in blocks
A and B, respectively. Therefore, the decoding
steps are as follows:

(1) Cl=C2=C3=C4=0, we con-

sider that no errors exist.

(2) We detect and correct a single error
in block K, for example, by using a
method that corrects the K; byte by
the error value C1if C1 = C2 = C3 #
0 and C4 = 0. The error value can
be effectively obtained by calculating
Cl1+C2+ C3+ C4.

(3) We detect and correct a single error
in block C, for example, by using a
method that corrects the C; byte by
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the error value C1if C1 # 0 and C2 =
C3=C4=0.

(4) We detect double errors in blocks A
and B, in C; and C,, in K; and
C3, and in Ky and Cy if (C1 # 0
AND C2 #0).

(5) By using Z = 512 + 555, # 0, we de-
tect all of the double errors except the
errors detected in step 4.

(6) If double errors are not detected in
steps 4 and 5, we consider that a single
error exists in block A or B. Moreover,
we consider that a single error exists
in block A if C1 # 0 (C2 = 0) and
that a single error exists in the block
B if C2 # 0 (C1 = 0). The single
error is corrected by using the error
location number X; = S1/Sp and the
error value Y7 = Sp.

Next, we describe double-byte errors detec-
tion. Step 4 is clear, since the single error of
block K having (C1 # 0 AND C2 # 0) was
corrected in step 2. The double errors in K;
and Cy, and in K5 and C5 are also detected by
(C1 #0 AND (C2 # 0). But all the double
errors except those detected in step 4 can be de-
tected by Z = 512 + SoS; # 0, including these
double errors. Details are given below. Here,
the error values are T° and 77, and the error
location number in block A or B is T*.

(a) Within the same block.

e Double errors in block A or B are
detected by Eq. (4).
e Within block C.

C1 and Cs: (Cl;ﬁOAND 0275
0)

Cl and 03 Cl = TZ C2 = 0,
C3—Sl~—T] 04—52:0

=C1+C2=T" 7 = S5+
51 =Tt.04+T% —TZJ #0
Z can also be used for C;
and Cy4, Cy and C3, Cy and
04, or C3 and 04.
o Within block K.
Kiand Ko:: C1=T'+T7,C2 =
T +T7,C3 =T¢ C4 = TY,
Z:O-Tj+T2i:T2i;£O
(b) Between two blocks.

o Between blocks A and B. ---(C1 #
0 AND C2#0)
e Between blocks C' and A. (Since

block B is the same as block A, the
explanation is omitted. )
Aand Cy:: C1=T'+T7,C2=0,
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C1=C2=C3=C4=0

N

o

\

/

(Z:S1 2 +Sp Sz #0)
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Correct block K
Position Ki (Kz), value C1

———]
Correct block C
Position C1, value C1

/’V “\\
//(cwoox}; C2#0) T Y

o

— I
Error detectsdj

Error in block A ‘

1 Error in block B

]

Correct block A or block B
Position Xi = log (S1 / Se)
Value ¥, = So

Fig. 1 Flow chart for decoding double-length R-S SbEC-DbED codes.

C3 =TT, C4 =T'T?,
7 = (Tz + Tj)TiTZS + T2i2s
= Ti+j+2s #0
Z can also be used for A and
Cs, A and Cs, or A and Cy.

e Between blocks K and A. (Since
block B is the same as block A, the
explanation is omitted.)

Aand K1:: C1 =T+ T9,C2 =
Ti, C3 = T'T® + T3, C4 =
TiT‘.Zs7

Z =T -T'T* + (T'T* +
T9)2 =T% #£0
Z can be used for A and K.

e Between blocks K and C.

Kl and Clii Cl= TZ +Tj, C2 =
T, C3=T% C4=0,

Z=TI . 04+T*=T%* #0

K; and C5:: (C1#0 AND C2#
0)

Kz and 0422 (Cl # 0 AND (C2 71:
0)

Z can be used, for K; and
Cy, K7 and C4, K5 and C1,
K2 and Cz, or K2 and 03.

As explained above, all double-byte errors
can be detected by detecting that ZZ = (C1 #
0 AND C2#0) OR (Z = 512+ 805, # 0) is
true.

Figure 1 shows a decoding flow chart for
double-length R-S SbEC-DbED codes.

Figure 2 shows a decoder for double length
R-S Sbec-DbED codes. Here, the vector expres-
sion and the exponent expression are used to ex-
press the elements of the Galois fields. Depend-
ing on the condition, whichever is more effective
should be employed. The solid line indicates
that the bit length is b and the dotted line indi-
cates that the bit length is 1. The symbol “+”
represents exclusive OR-circuit, “ROM VE” is
a ROM for transforming the element of the vec-
tor expression into an exponent expression, and
the error-point-detection circuit using pattern
coincidence (EPDC-PC) detects, for example,
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Fig. 3 High-speed decoder for double-length R-S SbEC-DbED codes.

an error in the K; byte if C1 = C2=C3#0
and C4 = 0. MU is used to obtain the sum of
the elements of the exponent expression. 1C is
used to obtain 1’s complement, and in combi-
nation with MU, to obtain the difference of the
elements. CI is a coincidence-detection circuit,
and ZD is an all-b-bit zero-detection circuit.
Here, a no-error signal is output if C1 =
C2 = (C3 = C4 = 0. For errors in blocks K

and C, we obtain the error point by means of
the error-point-detection circuit using pattern
coincidence (EPDC-PC), and then obtain the
error value by calculating C1+ C2 4+ C3 + C4
and correct the error. The syndrome (S; =
C1+4C2,8; = (3,52 = C4) is then obtained.
The output S1/Sy of MU gives the error loca-
tion number X; of blocks A or B, and the error
value is Y7 = Sy. If the error-identifying equa-
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Fig. 4 High-speed decoder for double-length SbEC-DbED codes (2-modularized codes).

tion is Z = 812 + Sp8; = 0, the output of CI
is 1. Three signals — the inverted signal, the
signal of (C'1 # 0 AND C2 # 0), and the sig-
nal that any one of (Sg,S51,52) is detected to
be zero (So, S1, and Sy are not zero if there
is a single error in the blocks A or B) — are
constructed as an OR signal and are made to
be the error-detection signal. Then, the error-
detection signal is inverted and used as a single
error-correction signal in blocks A and B, and
carry out the operation only if no errors exist
in blocks' K and C. Moreover, in correcting a
single error in blocks A or B, we correct the
error in block A if C'1 is not zero, and correct
the error in block B if C'1 is zero.

Figure 3 shows a high-speed decoder for
double-length R-S SbEC-DbED codes. In place
of Z = 51* + 8352 = 0 in the decoder shown

as Fig. 2, we use (SpT* = S; AND S$;T° = S),
in parallel, at each byte point 4, and obtain the
error byte pointer. The error value Sy is sent to
block A if C'1 # 0 and to block B if C1 = 0, and
the error of the point at which an error point
signal is output is corrected.

This decoder is simple because it detects the
positions of single errors in blocks A and B by
means of the common circuit using the identi-
fying equation Z = 512 + 8985 =0 or (SoT* =
S; AND 5T = S;). In Fig.3, the OR signal
is generated from the signals of the error byte
pointer, and double errors are detected when
this OR signal is not output. In place of this
method, we can get rid of the OR circuit and
add a circuit detecting Z = 512 + S55; # 0,
in order to detect double errors. This simplifies
circuit production and wiring, since the circuits
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for detecting (SoT* = S; AND S;T* = S,) are
equal.

Figure 4 shows a 2-modular type decoder for
double-length SbED-DbED codes. The parity-
check matrix is (10). The decoder is the same as
the one shown in Fig. 3, accordingly, when the
syndrome is generated as (Sp = C1+C2,5; =
C3, 5, = C4), a single error in block A or B is
detected by using the same identifying equation
Z =824+88,=0o0r (S =ST"AND S, =
SoT %), and all double-byte errors can be de-
tected if Z = (C1 # 0 AND C2 # 0) OR
(Z = Sp* + 818, # 0) is true (this can be
proved in the same way as for the codes in
Eq.(7)). Here, because of modules type, the
error-byte-pointer-detection circuits for module
blocks (a) and (b) are identical; The decoders
in Figs. 3 and 4 have equivalent efficiency. The
total number of gates is about 2660, calculated
by the method in Ref.1). The gate complexy
is 82 percent less than that of the decoder de-
scribed by Kaneda and Fujiwara?), which uses
the cyclic method, and the propagation delay is
nearly equal.

4. More Double-Length Codes

We can construct more double-length codes,
by using Theorem 1. For example, (256, 236)
codes are obtained over (144, 128) codes. But
circuits are almost the same as those for only
one block, and therefore the gate complexity
hardly increases.

Acknowledgment The authors would like
to acknowledge the continuing guidance and
encouragement of Professor T. Ichikawa of
Hiroshima University, Professor H. Imai of The
University of Tokyo, and Professor E. Fujiwara
of Tokyo Institute of Technology.

References

1) Kaneda, S. and Fujiwara, E.: Single Byte Er-
ror Correcting-Double Byte Error Detecting
Codes for Memory Systems, IEEE Trans. on
Computers, Vol.C-31, No.7, pp.596-602 (July
1982).

2) Rao, T. and Fujiwara, E.: Error-Control Cod-
ing for Computer Systems, Prentice-Hall Inter-
national, Inc. (1989).

3) Peterson, W.W. and Weldon, E.J.: Error-
Correcting Codes. 2nd Edition, MIT Press,
Cambridge, Mass. (1972).

4) Imai, H.: Coding Theory, The Institute of
Electronics, Information and Communication
Engineers (1990).

Decoders for Double-Length SbEC-DbED Codes 2565

(Received December 26, 1994)
(Accepted July 7, 1995)

Hirokazu Okano was born
in Hiroshima, in 1943. He
received the B.E. and Ph.D.
degrees in electrical engineer-
ing from the University of
Hiroshima, in 1965 and 1987, re-
spectively. From 1965 to 1975,
he worked at NTT. From 1975 to 1988, he was
with the Department of Information and Elec-
tronics, Tokuyama Technical College. From
1988 to 1991, he worked at Hiroshima Bunkyo
Women’s College. Since 1991, he has worked at
Hiroshima-Denki Institute of Technology. He
is currently a Professor in the Department of
Computer Science. His current research inter-
ests include information theory, coding theory,
encipher system, and computer system. He is a
member of the IPS of Japan and the IECE of
Japan.

Tadasu Kawano was born
in Hiroshima, Japan, on June
7, 1917. He received the B.E.
in electrical engineering and Dr.
of Engineering degree in electri-
cal engineering both from the
Tokyo Institute of Technology,
Tokyo, Japan, in 1941 and 1959, respectively.
From 1941 to 1943 he was Assistant at the
Tokyo Institute of Technology, Graduate Re-
search Member from 1944 to 1945, and Lecturer
in 1946. In 1946 he transferred to Hiroshima
University, Hiroshima, Japan, where he was ap-
pointed Lecturer in 1946, Assistant Professor
in 1951, and Professor in 1955. After he re-
tired Hiroshima University by the age limit in
1981, he was employed by Hiroshima-Denki In-
stitute of Technology where he has been Pro-
fessor of Electronics until he retired it in 1993.
He was granted the title of Honorary Professor
of Hiroshima University in 1981, Honorary Pro-
fessor of Hiroshima-Denki Institute of Technol-
ogy in 1993, respectively. He has been engaged
in the research of the microwave circuit and the
coding theory. He is a member of the IEEE, the
Institute of Electronics, Information and Elec-
trical Communication Engineers of Japan, the
Institute of Electrical Engineers of Japan, and
the Institute of Television Engineers of Japan.



