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Quartic Interpolation on Triangles

CAIMING ZHANG,' TAKESHI AGUI' and HIROSHI NAGAHASHI!

A new method is presented for constructing a surface to interpolate the given boundary
curves and cross-boundary slopes on the sides of triangles. On each triangle, the constructed
surface patch is a quartic polynomial, which approximates a function with a polynomial
precision of degree four or less. Six test functions proposed by Franke are used to test the

new method.

1. Introduction

In the fields of CAD and free-form surface
modeling, the construction of surfaces plays an
important role. Usually, the shapes of surfaces
are defined by several kinds of surface patches
which are mostly four-sided patches and trian-
gular patches. Constructing a surface patch
to interpolate the boundary curves and cross-
boundary slopes on non-four sided region has
been studied?)~?). We also presented a method
for constructing a triangular patch, which ap-
proximated a function with a polynomial preci-
sion of degree three or less %),

The purpose of this paper is to present a new
method for constructing an interpolant with
higher precision to the given boundary curves
and cross-boundary slopes in the three sides of
a triangle. On the triangle the constructed sur-
face patch is a quartic polynomial, which ap-
proximates a function with a polynomial pre-
cision of degree four or less. At first we de-
scribe the new method. Then we compare it
with three other methods23):10) using six test
functions proposed by Franke!l).

For simplicity, the interpolation method in
this paper is described by bivariate surface in
a Cartesian (z,y) space. However, the interpo-
lation method is immediately applicable to the
parametric representation.

2. Construction of Surface Patch on a
Triangle

The problem studied in this paper is the con-
struction of triangular patch which interpolates
the boundary curves and cross-boundary slopes
of a triangle. When three surfaces are met to-
gether, a surface patch is required to smoothly
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connect the three surfaces. In such cases, the
construction of the triangular patch, if possi-
ble, is very useful. For example, in designing a
C' continuous shape as shown in Fig. 1, the
six four-sided patches, whose models, namely
planes can be easily given, are designed at first,
then some pairs of these planes are connected
with four-sided patches in C! continuity. Af-
ter the construction of these patches, the four
triangular regions still remain unpatched, how-
ever, the boundary values and cross-boundary
slopes of the triangles are determined by each
three four-sided patches which have been al-
ready constructed. Because, if the triangles
are interpolated in C! continuity, the boundary
values and cross-boundary slopes of the trian-
gles must be equal to those of the three patches
around them. Therefore, in this example, it
is possible to construct a triangular patch hav-
ing C' continuity with three four-sided patches
that are met together.

Due to such background, we assume that the
boundary values and cross-boundary slopes of
a triangle are given when the triangle is inter-
polated.

Let T be an acute triangle with vertices p, =
(Za)Ya), @ = 1,7, k, as shown in Fig. 2, and
e, denote the opposite side of p,. Let n, de-
note the unit out normal direction on e,, then
the derivative along no, @ =4, j, k, is given by
Eq. (1).

Fig. 1 A triangular patch connecting three patches.
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Fig. 2 A triangle T.
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= |(y; — yi)'é; + (s —ﬂij)éz} /di;,

where d,; denotes the distance from p, to ps,
(r,s=1,5,k).

Let p = (z,y) be any point in T, and
(L;, Lj, Li) denote the barycentric coordinates
with respect to 7', Thus (L;, L;, L) can be
written as Eq. (2).

L; = Li(p)
= (zjyp — Tey; + (Y5 — Y)T
+(zx, — 75)y)/(25)

L;j = L;(p)
= (zryi — Tk + (Yr — ¥1)T
+(zs — xx)y)/(25) (2)
L = Ly(p)

= (szyj - Z;y; + (yi — le)@’
+(z; — 2:)y)/(25).

where, S denotes the area of T

Figure 2 shows that the barycentric coordi-
nates have the following properties:

1. L¢+Lj+Lk = 1.

2. L, is a linear function with value one at

pe and zero along ey, a =1, j, k.

The perpendicular projections of (z,y) on the
three sides of T are denoted by pjx = (Zjk,Yjk)s
Pri = (Thi, Yki) and pi; = (245, Yi;) respectively,

Fig. 3 Three projection points.

as shown in Fig. 3.

Let the given function values and first deriva-
tives at p, be Fo, (Fy)o and (Fy)a (o =
1,7,k), and the given function values and cross-
boundary slopes at pji, px; and p;; be Fj,
aij/a’m, Fm’, aFki/anj, Fij and 6F7;j/a’n,k re-
spectively. Thus there are 15 interpolation con-
ditions on T. The surface patch satisfying the
15 interpolation conditions is defined by Eq. (3).

PF(z,y)

+AUL3L§ -+ BjkL?Lij

+Byi LiL3 Ly, + Bi; L;L; L. (3)
where,
G(p)
= > {B-2Lo)Fa+ (z - 24)(Fy)a
a=1,j,k

+y — ya)(Fy)a}Lga
Aji, = {Fj, — G(pjk)}/L?(ij)Li(pjk):
Api = {Fre — G(pra)}/ L3 (1) L2 (pra)
Ay = {Fy — G(pij)}/ L (pij) L5 (ps5),
B;
01109034 — C92C31C14 + C31C12C24
- C11C22C33 + C12C23C3

By
_ C34C12C23 — C12C33C24 + C33C22C14
C11C22C33 + C12C23C31

By
_ C11024C33 — C11C23C34 + C23C31C14
C11C22C33 + C12C23C3;

OL;
Ci = L?(ij)Lk(ij)W,

oL;
Cr2 = Lj(p;r) L, (pjk)a—vj,

_9F;  0G
Ciy = e a—ni(l’;k)
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oL
— 24, L; (ij)Lk(ka)[L (Pyk)-—ﬁ
L
+ Lk( j an]] ’
oL,

Coy = Li(sz‘)Li(Pki)'gn—ja

oL;
Ca3 = L3 (pri) Li (Pri) 7=,

on;
P0G,
Coy = B, 57*1;(%)

oL
= 2Ak; Li(prs) Lt (Pri) [Li(sz‘) k

oy
+ Lk(sz)gij} )
Car = Lilpi) 2 lps) 52,
Css = L? i (i) Lj (p”)aL:’
C,, = Oy _ 9G

) oL
~ 2Ai;Li(ps;) L (pij) [Lz'(:ﬂij)gn—z

oL,
+ Lj (1%) an ] . (4)

About PF(z,y) defined by Eq.(3), we have
the following theorem.

Theorem 1. PF(z,y) defined by Eq.(3)
satisfies the given boundary curves and cross-
boundary slopes on the three sides of T'.

Proof: By symmetry, it is sufficient to prove
that on the side e;, PF(z,y) satisfies the given
boundary curves and cross-boundary slopes.

The projection point p;; of (z,¥) on e; is con-
sidered. The property 2 of the barycentric co-
ordinates shows that at p;; Eq. (5) holds.

Li(pjr) = 0. (5)
Thus, Egs. (6) and (7) hold.
PF(zjk,Yjk)
= G(pjt) + A L3 (0in) Li(psr)
= G(ij) + [Fjk — G(pji)]
Jk- (6)
aPF (pie)
ani p]k

jij (Pje)Li(pjk)
OL;
o

(ng) By Li(pjk)

+ j(ij)Lk(ng)
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oL,
%[ByiLj(pjk) + Bij L (pji))] o (1)
From Eq. (4), it follows Egs. (8)-(11).
oG
Er (Pik) + 2455 L (pjk) Li(Pji)
oL OL;
X Lj(pjk)‘a—ﬁ]f + Li(pjk) 6ni
OF;
= a?;’“ — Cla. (8)
Ci4 — C11 By
B = ——— "% 9
J C12 ( )
Cr2L;(pjr) — Cr1Li(pji) = 0. (10)
L;(pjk) Lr(psr)
oL;

X[ByiL;(pjk) + BijLi (pjk)]%

= Lj{(pjr) Lk (pjx) [BkiLj(pjk)

014 - Cll B}m 6Lz
D Ll S ==
+ o k(pjk)] an;

Ci4 0L,
= L;(p;x) L (pyk)CM o,

= Cua. (11)

Substituting Egs. (8) and (11) into Eq.(7), we
obtain Eq. (12).

OPF _ OFy

n; PR = (12)

Equations (6) and (12) show that at pj,
PF(z,y) satisfies the given function value and
cross-boundary slope. Since p;j is any point on
ei, PF(z,y) satisfies the given boundary curves
and cross-boundary slopes on e;. ||

If the given interpolation conditions are taken
from a quartic polynomial, then there are
unique Ajx, Ags, Aij, B]k, B and B;; to make
PF(z,y) satisfy the given interpolation condi-
tions, therefore it follows the following theorem.

Theorem 2. The polynomial precision set of
PF(z,y) defined by Eq. (3) includes all polyno-
mials of degree four or less.

If the triangle has an obtuse angle, the three
projections of (z,y) on the three sides of T are
determined by the method in paper 9.

3. Experiments

Franke has proposed six bivariate functions
for use in comparing various bivariate interpo-
lation methods. The six functions are:

fl (SL', y)
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— 3.96{—025(9%2)2—0.25(9y—2)2}
+3.9¢{—(92+1)?/49—(9y+1)/10}
+2.66{”°’25(9”C‘7)2 —-0.25(9y—3)%}
—1.04el— (92— =(0y-7)"} (13)

f2(:1"’y)
— 5.26{18y»18x}/(ge{lsy—l&c} + 9)’ (14)

fB(x,y)
= 5.2{1.25 + cos(5.4y)}

/{6 + 6(3z — 1)?}, (15)

f4($ay)
— 5.26{»81((a:-—0.5)2+(y~0‘5)2)/16}/3’ (16)

f5(wa y)
= 5.2e{-81(@=09)"+(w=05)")/4} y3 = (17)

f6(xa y)
= 5.25qrt{64 — 81((z — 0.5)*
+(y — 0.5)%)}/9 — 2.6. (18)
In this section the six functions are used
to compare the new method with the Gre-
gory’s method?, the Nielson’s method® and
the method19). For brevity, the surface pro-
duced by the method '?) is called surface-1, the
one by the new method is called surface-2.
Three data sets are used to produce triangles

for comparing the four methods, which are de-
fined by Eq. (19), for N = 2,4,8.

L) 4i=0,1,---,N (19)

N’'N
Three triangulations of the three data sets are
produced automatically by using max-min cri-
terion proposed by Lawson 12, which are given
in Fig. 4.

The interpolation conditions for comparisons
are boundary curves and cross-boundary slopes
on the sides of the triangles in Fig. 4, which are
taken from fi(z,y) to fe(z,y) above. For these
functions, the maximum absclute errors of the
four methods are given in Tables 1-3.

In each table, G-error, N-error, error-1 and
error-2 are defined as follows for each ¢ (i =
1,---,6):

G-error

= max{|Gregory-surface — f;(z,y)|},
N-error

= max{|Nielson-surface — f;(z, )|},
error-1 = max{|surface-1 — f;(z,9)|},
error-2 = max{|surface-2 — f;(z,y)|}.

As an example, four error surfaces are given

in Fig. 5, which are produced by interpolat-
ing fi1(x,y) based on the triangulation in (c)
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(a) N=2. (b) N=4.

() N=8.
Fig. 4 Three triangulations.

of Fig. 4. Tables 1-3 and Fig. 5 show that in
the sense of approximation, the new method is
better than the other three ones.

4. Conclusions

This paper presents a method for construct-
ing a curved triangular surface patch. The con-
structed surface patch is a quartic polynomial,
and satisfies the given boundary curves and
cross-boundary slopes on the three sides of a
triangle. The polynomial precision set of the
new method includes all polynomials of degree
four or less. The experiments also show that the
surface patches produced by the new method
have better precision.
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