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An Interactive Method for Designing Smooth Convex Curves
by Using a Cubic B-spline Formulation

Hur GUANt and TATSUO TORII

This paper addresses the problem of designing smooth convex curves in an interactive
graphics environment. Our main contribution to the solution of this problem is an easy-
to-use and efficient design method using a cubic B-spline formulation, in the case of given
first derivatives at end-points. This method provides users with an intuitive, practical way
of handling convex curves, based on a set of simple equations and a recursive subdivision
manner. Because of the ease of computation and the simplicity of subdivision, this method
has several obvious advantages such as intuitiveness, rapidity, and convenience.

1. Introduction

Interactive design of smooth curves with ar-
bitrary shapes is useful in many application ar-
eas, such as computer graphics, computer-aided
geometric design, and cartography. A natural
approach is to decompose complex curve struc-
tures into several convex parts and then ap-
proximate each part smoothly. Decomposing
the curve is generally the easier task. Thus the
major challenge in this approach is how to ef-
ficiently produce convex approximation curves
on the assumption that some level of continuity
is maintained at all the joints of the curves.

Polynomial B-splines are usually used as ap-
proximation curves in interactive curve design,
because of the simplicity of their representation
and their ease of manipulation. Such a curve is
generated from a control polygon defined by a
set of control points, and is typically obtained
in two ways: as the result of interactive ma-
nipulation of the control polygon, or as a curve
that is interpolated at given points. Theoreti-
cally, by interactively changing a set of control
points, it is possible to obtain an acceptable ap-
proximation curve of the intended shape after
several iterations. In practice, however, such
manipulations cannot produce a curve of good
quality?). Experience shows that it is difficult
to tell from the display of a control polygon on
the screen whether the shape of the generated
curve is acceptable or not, especially for design-
ers without experience in the design of B-spline
curves?). The reason for this is that the in-
teractive tweaking of control polygons does not
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provide direct control over geometric properties
such as position, tangency, and curvature at an
arbitrary point on the curve.

An alternative approach to solving this prob-
lem is to interpolate some points on the in-
tended curve. Since these points give more
precise information about the behavior of the
curve, designers can easily modify them at the
terminal to generate an acceptable approxima-
tion curve. For this reason, developing effec-
tive algorithms for the approximation of such
points has become an important research direc-
tion. Various methods in this area. have been
proposed®~6)19) " The most popular of them
is the cubic-spline interpolation technique, in
which the resulting curve passes through each
given point and its continuity is everywhere C2.
However, the method suffers from two major
drawbacks: the first is that it may develop un-
wanted wiggles or undulations®, and the sec-
ond is that it requires a time-consuming cal-
culation to determine the control polygon of a
B-spline curve because this involves solving a
large system of equations. Therefore, there is a
need to both guarantee the curve convexity and
speed up the control polygon computation, es-
pecially in an interactive graphics environment.
This is the motivation for our work.

In this paper, we present a simple yet efficient
approach for B-spline-based geometric design of
smooth convex curves. Qur approach adopts a
subdivision strategy: an intended curve is re-
peatedly split until it can finally be approx-
imated by a set of acceptable B-spline curve
segments”). To ensure the continuity of adja-
cent curve segments, it uses first derivatives
as end-conditions, since a curve with contin-
uous unit tangent vectors shows satisfactory
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visual smoothness for most interactive graph-
ics applications®. Unlike existing interpola-
tion techniques, the new method avoids solv-
ing a large system of equations to generate a
B-spline approximation curve. The basic idea
is to construct a convex curve, starting from a
selected point and using information about the
behavior of end-points, based on the convexity-
preserving property of B-spline curves. Theo-
retical analysis indicates that all curves gener-
ated by the method have the following features:
(1) geometric continuity, (2) convexity, and (3)
interpolation of the given points on the origi-
nal curve. In addition, preliminary experiments
with the method, some of which are described
later in this paper, show that it is both accurate
enough and fast enough to be used for interac-
tive curve design.

The rest of this paper is organized as follows.
The next section defines a cubic B-spline curve
and describes its properties. Section 3 intro-
duces our strategy for approximating smooth
convex curves and an algorithm for subdivid-
ing the intended curve. Section 4 provides
several examples illustrating how the proposed
method can be used to design smooth convex
curves, and Section 5 contains some concluding
remarks.

2. Cubic B-spline Curves

A cubic B-spline curve in 2D is defined as
a vector-valued function that maps an inter-
val into two-dimensional space. Let Q(t) =
(z(t),y(?)) denote the position vectors along the
curve as a function of the parameter {. Mathe-
matically, the curve is given by

T
Qt) = ZBiNiA(t) tmin <t<tmae (1)
=0
where B;, 1 =0, --,n, represents the position
vectors of the n + 1 control points connected
in a sequence to form a control polygon, and
N;4(t), 2 =0,---,n, represents the normalized
B-spline basis functions, defined by the Cox-
deBoor recursion formulas®) as follows:

_ 1 fu; <t< Ujg1
Nia(t) = { 0  otherwise
t—u;
Nik(t) = mNi,k—l(t) +
3 — 2
Uipg —
e N _1(t
Witk — Uil wt1k-1(0)
k=234

where the parameter ¢ varies from ¢, t0 timae
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Fig. 1 B-spline basis functions.

to form a segment of the curve Q(¢), and the
values of u; are elements of a knot vector
U= {u07 cory Uy Ugp 1, ”"un+k}
satisfying the relation u; < u;11,7 = 0,...,n +
kE-1.
The above basis functions have the following
properties®):
(1) Each basis function is positive or zero for
all parameter values, i.e., N; 4(t) > 0,
(2) The sum of the basis functions for any
parameter value ¢ can be shown to be

n
Z Nia(t) =1
1=0

The curve exhibits two important geometric
characteristics:
e The convex hull property: it lies entirely
within the convex hull of its control points.
e The convexity-preserving property: it is
convex when the control polygon is convex.
In order to make control polygons convex, we
assume throughout this paper that a set of con-
trol points is {B;}4 o, and that a knot vector
takes the following form:
U ={0,0,0,0,1,2,2,2,2}
over which the basis functions N;4(t),i =
0,1,2,3,4 are defined. The values of N;4(t),
¢ = 0,1,2,3,4 are shown in Fig.1l, where
0 £t < 2. For convenience, we further let
N4,4(2) =1 and Nz,4(2) = O,Z = 0, 1, 2, 3. Thus
equation (1) reduces to

4
Q) = Z BN, 4(t)

which is used as an approximation curve seg-
ment.

0<t<2 (2

3. B-spline-based Curve Design

This section describes the details of our curve
design scheme. Conceptually, the method con-
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sists of two steps. The first is to generate a
convex approximation curve using the cubic B-
spline equation (2). The second is to subdi-
vide the intended curve into curve segments for
further approximation only when the shape of
the generated curve is not acceptable. After a
sufficient amount of recursive subdivision, we
can finally obtain the intended curve composed
of curve segments, each of which is a B-spline
polynomial. The theoretical analysis at the end
of this section will derive two important prop-
erties in order to characterize the graphical be-
havior of the generated approximation curve.

3.1 Approximation

Let us first discuss how to interactively ap-
proximate the original curve by using a convex
B-spline curve segment, in the case of given first
derivatives at end-points. The basic idea un-
derlying our method is to let the point selected
by the user on:the curve be one of the control
points of the approximation curve. This leads
to a set of very simple equations for determin-
ing a convex control polygon.

Consider as an example the approximation
of a curve with two end-points Py and Py, as
shown in Fig. 2, where T is the intersection of
the two tangents at Py and P4, and M is the
midpoint of the line Py P4. Denote by Ag and
A4 the first derivatives at Py and P4, respec-
tively. Our goal is now to generate a convex
curve segment that mimics the overall shape of
the control polygon, but with Py and P, inter-
polated.

Assume that the point selected by the user,
called the sample point, is the intersection P3
of the intended curve and the line T M. We first
determine the positions of the points Py, Pa,
and P4 by setting ¢ = 0, 1, and 2 respectively,
in equation (2). Then, according to the values
of the basis functions V; 4(t),% = 0,-- -, 4 shown
in Fig. 1, we obtain

Py =Q(0) = B (3)

Py M I3

Fig. 2 Information on a segment for use in

approximation.
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1 1 1
P, =Q(1) = ZBl + 532 + ZBs (4)
P;=Q(2) =B, (5)

Furthermore, let Po = Bs; that is, let the sam-
ple point be the control point of the approxima-
tion curve. Equation (4) thus becomes

B1 + B3 - 2P2 (6)

Now, it remains to discuss how to determine

the unknown control points B, and Bjs. Calcu-
lating the first derivatives of the basis functions
at ¢ = 0 and ¢t = 2, we find that the tangent vec-
tors at the two end-points are

dQ/dtltz() = 3(31 - PU) (7)

dQ/dt|t=2 - 3(P4 - B3) (8)
Referring to the right-hand sides of the above
two equations, we can then rewrite equation (6)
in the following equivalent form:

(Bl—-Po)—(P4—B3)=2P2-P0—P4(9)
For computational simplicity, we further set the
unknown vectors U and V' and the known vec-
tor R as

(Bl—PO):U=(u””)
(P4—BS):V:(U“”)

Uy
(2P~ Po— Py) = R= ( iy )
Y
Thus, from equations (7), (8), and (9), we
derive the following equation with respect to
Ug, Uy, Vg, and v, for the given finite Ay and

Aa(# Ao):

Uy /Uy = Ag
Uy [Vp = A4
Uy — Vp =Ty (10)

Uy — Vy =Ty
Solving for U and V yields

Uz - 1 —)\4 1 Te
Vg Ao — M\ -Xo 1 Ty

(11)

Uy _ /\g 0 Uy
(a)-(8%)(%) @

When the first derivative A\g or A4 is infi-
nite, u, or v, becomes zero and, consequently,
straightforward calculation gives the following
results: u, = 0, uy = ry — M7y, vz = —71g,
and vy, = =M1 for |Ag] = oo and |Ay]| # o0
Ug = Tz, Uy = AoTq, Uz =0, and vy = ATz — 7y
for |Ao| # oo and |A4| = o0.

Thus, the control points B; and B3 can be
settled as
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Fig. 3 A convex cubic B-spline curve segment.

B;=P;s-V (14)
From equation (2), we finally obtain the corre-
sponding approximation curve segment shown
in Fig. 3, where the lines B; B3 and Py P4 are
parallel, as mentioned below.

So far, we have dealt with the normal case,
/\0 75 )\4. When /\0 = A4, that iS, when the
tangents at Py and Py are parallel, we also let
B, B3 be parallel to Py P,4. This gives

"

B, :P()"*—";)" (15)
R

33=P4+—2~ (16)

Theorem 1 The curve constructed under
the given conditions has the following proper-
ties:

(1) Convexity and C? continuity
(2) Interpolation of the points Py, P,, and

P, .
(3) Zero curvature at the given sample point
P,
Proof: 1t is easy to see from equations (7)

and (8) that B; is on the line P,T, and Bj is
on the line TPy (see Figs.2 and 3). Since M
is the midpoint of the line Py P4 and P5 is the
midpoint of the line By B; (from equation (6)),
we know that PP, is parallel to B;Bs. This
shows that the control polygon PyB;P;B3P,
must be convex. The B-spline curve is therefore
convex according to the convexity-preserving
property of B-spline curves. Of course, it is also
C? continuous, because the B-spline functions
used here are cubic.

The second property is obvious from equa-
tions (3), (4), and (5). Now let us prove the
third property. Use of the calculated second
derivatives of the basis functions at ¢ = 1 yields

d?Q/dt?|;= = gBl — 3P, + 233
Applying equation (6) to the above, we ob-
tain
d?Q/dt*|;=1 =0
The curvature at the given sample point P, is
then zero. O
3.2 Subdivision
If the approximation curve generated in
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Fig. 4 Subdivision of a curve.

the previous section is acceptable, the control
points are saved; otherwise, designers need to
divide the intended curve into two curve seg-
ments. This section shows how to select a di-
viding point and determine its first derivative.
For illustrative purposes, consider the sim-
ple example shown in Fig.4, where C is an
ideal curve in the user’s mind, and Cj is the
approximation curve on the screen, generated
by our approximation method. Let P; repre-
sent the highest point on the intended curve
C, and let P,, represent the highest point on
the approximation curve Cj, where the high-
est point on a curve is defined to be the point
furthest from the line passing through the end-
points P, and P.. It is easy to see that P,
is a considerable distance from P;, and that
the approximation curve Cy and the intended
curve C have significant shape differences. To
produce an acceptable approximation curve, we
use two articulated B-spline curve segments to
describe the curve C. Thus, the key problem
we need to solve here is where to split C into
two curve segments or how to select a dividing
point on C. Clearly, the dividing point should
not require alteration of the convex hull prop-
erty of the entire approximation curve consist-
ing of two articulated B-spline curve segments.
For this reason, let us consider the highest point
P; on C. We know that this point should be
also the highest point of the new approximation
curve composed of left and right B-spline curve
segments. Thus, it seems to be a natural choice
for the subdivision of the intended curve. This
gives rise to a simple curve subdivision process
consisting of the following three steps:
(1) On the curve C, select the point P; that
is furthest from the line P, P,.
(2) Draw a line ! through P; parallel to
P.P..
(3) Split C into two subsegments at the di-
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viding point P;.

It is easy to see that the first derivative at the
dividing point P; is equal to the slope of the line
P,P,.. By applying the method described in
Section 3.1 to each of the subsegments, the cor-
responding C? convex B-spline curve segments
can then be generated.

3.3 Curve Properties

After a sufficient amount of recursive subdi-
vision and approximation, we will obtain a set
of acceptable convex curve segments that can
be pieced together to produce an entire curve.
Next, we need to show that the curve is convex
and smooth.

For convenience of presentation, in the follow-
ing discussion, we use the term joint to refer to
a dividing point, where two adjacent B-spline
curve segments join.

Property 1. The entire curve is convex.

To prove this property, let us consider the
curve C shown in Fig.4, where A; is the inter-
section of the line { and the tangent at P, and
A, is the intersection of the line [ and the tan-
gent at P,. Since the distance from Py to the
line P, P, is maximum, the line [ is the tangent
at P;. Thus, by the proposed approximation
method, we can prove that the two convex B-
spline curve segments connected by the dividing
point P; lie within the triangle P;A,P; and
the triangle P; A, P, respectively. This shows
that the convex property of the composed curve
is not altered by our subdivision and approxi-
mation methods.

Property 2. The entire curve has visual
smoothness.

For a curve to be visually smooth, it is nec-
essary only that it is G'. Theorem 1 indicates
that each approximation curve segment gener-
ated by our method is C?. Tt is thus sufficient
to check the continuity at the joints. First, we
can guarantee C° continuity at joints, since the
dividing points are interpolated in the gener-
ated convex curve segments. Furthermore, we
know from our subdivision algorithm that the
first derivatives at dividing points are definite.
Thus we can guarantee that the slope is con-
tinuous (geometric continuity G'), because the
tangent magnitudes on the left- and right-hand
sides of a joint may be different. As a result,
the curve has geometric continuity and hence is
visually smooth.

4. Discussion

The method described in the previous section

Dec. 1995

was implemented on a workstation in the C pro-
gramming language. The new design tool pro-
vides more flexibility in controlling the shape of
a convex curve segment, and is an independent
system, because the modification of one curve
segment does not influence others. In this sec-
tion we show by means of three examples the
features of the proposed method.

The first example compares the method with
the cubic-spline interpolation technique. As
mentioned  previously, our method can guar-
antee the convexity of a B-spline approxima-
tion curve segment by constructing its convex
control polygon, while the interpolation tech-
nique may not be able to generate such a convex
curve segment. Figure 5 illustrates this fact.
Consider the three sample points and the first

Dm

Pe

(¢)

Fig. 5 An example of convexity preservation. (a)
Given end-points, tangents at the end-points,
and the point selected by the user. (b) Ap-
proximation curve using the proposed method.
(c) Approximation curve using an interpola-
tion method.
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Po
Fig. 6 An example of the algorithm’s use in
designing a convex curve.

derivatives at the end-points given in Fig. 5 (a).
By applying our method to it, we can deter-
mine the convex control polygon (dotted lines)
shown in Fig.5(b) and consequently, the re-
sulting curve segment is also convex. In cubic-
spline interpolation®), however, we see that al-
though it would be desirable to obtain a con-
vex curve segment, the control polygon compu-
tation determines the control polygon (dotted
lines) of Fig. 5 (c), which results in an undesir-
able deflection.

The second example illustrates how to de-
sign a smooth convex curve by the proposed
method. Let us consider the construction of
the curve segment shown in Fig. 6, where p,
and pg are the end-points of the intended curve
segment. First, we obtain a C? convex B-spline
curve by our approximation computation. As-
sume that the shape of the curve is not accept-
able and that the original curve thus needs to be
divided into two subsegments. For this purpose,
we plot a point p, as a dividing point at the ter-
minal and then calculate the first derivative at
that point by drawing a line through it parallel
to the line Pyps. As a result of the subdivision
and approximation, convex B-spline curve seg-
ments are generated for the corresponding sub-
segments. In this example, the B-spline curve
segment p,p,P, is assumed to be acceptable,
and hence the subsegment of the intended curve
does not need to be further divided. Now, we
turn to another subsegment with the end-points
P, and pg, where the approximation curve seg-
ment is not good. By specifying a new divid-
ing point p, and computing its first derivative,
we make a further subdivision and then pro-
duce the B-spline curve segments p,p;p, and
P4DsPs. Let the two curve segments be very
close to the intended shape. As a result, we
obtain the acceptable G! convex curve shown
in Fig.6, which is composed of three cubic B-
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Fig. 7 An engineering drawing.

spline curve segments.

The above examples show the ability of the
proposed method to produce smooth convex
curves. It is easy to see from them that the
shapes of B-spline approximation curves ob-
tained by our method may be not very aes-
thetic, since the curvatures at the user-selected
points are equal to zero. However, this is not al-
ways a drawback. It can be very useful in cases
where the intended shape is required to be flat
somewhere. The engineering drawing shown in
Fig. 7 can serve as such an example, where the
shape in the neighborhood of the user-selected
point is required to be very flat. We believe
that the new method has practical value for the
design of engineering drawings and curved line
drawings, and is a good starting place for cre-
ating other curve-drawing algorithms.

5. Concluding Remarks

This paper has presented an interactive
method for designing smooth convex curves,
based on a set of simple equations and a recur-
sive subdivision manner. The method provides
a new, powerful means of interactively manip-
ulating convex curves without solving a large
system of equations. Our preliminary exper-
iments showed that it is sufficiently accurate
and fast to be used for designing smooth con-
vex curves in interactive environments. As a
natural extension of the method, we are study-
ing its applicability to the manipulation of some
feature points on a curve.
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