Vol. 37 No. 2

Transactions of Information Processing Society of Japan

Regular Paper

Reusing TLB Entries for Virtual Machines in Processor Switching

HIDENORI UMENO! and HIROSHI IKEGAYAtt

A method for reducing the not-in-TLB ratio (NITR) is presented in the environment of
concurrently running multiple virtual machines (VMs), which are functional copies of real
host computers. A VM contains at least one logical processor. The translation lookaside
buffers (TLBs) contain pairs of virtual addresses and corresponding real addresses so that
virtual storage addresses can be quickly translated into corresponding real storage addresses.
The NITR is the ratio of the number of address translations outside the TLBs to the number of
instructions executed. The VM CPU performance depends heavily on the NITR of the VMs.
Conventionally, TLB entries for a logical processor are always purged when the running of that
logical processor is switched to another real processor. This is because the logical processor
may have issued non-signalling-purge-TLB-type instructions, which purge TLB entries only
for that logical processor. The proposed method provides a real processor with a means
for remembering that a logical processor of a VM has issued non-signalling-purge-TLB-type
instructions, and for reusing its TLB entries for the logical processor even when the running
of that logical processor is switched to another real processor, if the logical processor has
not issued such instructions since the last time the TLB entries were purged. The proposed
method purges TLB entries for a logical processor only when that logical processor has issued
such instructions, and thus avoids excessive purging of the TLB entries for logical processors.
It is effective for floating scheduling, in which any free real processors can run any ready
logical processors, decreasing the NITR of VMs to 1/2-1/3 that of VMs in the conventional
method. Consequently, it will reduce the VM CPU time by 9-12% of that in the conventional

Feb. 1996

method.

1. Introduction

A virtual machine (VM) is a functional copy
of a real host computer!). The real host com-
puter directly executes most instructions of a
VM. A virtual machine system (VMS) consists
of multiple VMs, which can run concurrently.
Different operating systems (OSs) can run in
different VMs concurrently. A virtual machine
monitor (VMM) is a control program of a VMS;,
allocating real processors to VMs and schedul-
ing the VMs. A real processor can be active
either in native mode or in VM mode. In na-
tive mode it runs a single OS, which manages
all its resources. In VM mode it runs multiple
OSs in VMs concurrently.

An OS provides user programs with virtual
address spaces. The user programs run in their
virtual address spaces. A real processor has a
dynamic address translation feature (DAT)'V),
which translates virtual addresses in the vir-
tual address spaces into real addresses in real
memory. The speed of the address translation
greatly affects the speed of instruction execu-

t Software Development Department, General Pur-
pose Computer Division, Hitachi, Ltd.

tt Development Department 1, General Purpose Com-
puter Division, Hitachi, Ltd.

278

tion, and thus the total system performance.

The DAT consists of address translation ta-
bles, which an OS creates and manages while
running user programs, and translation looka-
side buffers (TLBs), which are address trans-
lation hardware devices that contain combina-
tions of virtual addresses and corresponding
real addresses!'!).

A real processor contains several TLBs; for
example, it may have one for instruction ad-
dresses and another for operand addresses. It
uses the TLBs to translate virtual addresses
quickly into corresponding real addresses. This
is called TLB translation. When it cannot find
a current virtual address in its TLBs, a real pro-
cessor looks in the address-translation tables,
which are in main memory, for the virtual ad-
dress. This is called table-look-in translation,
and is tens of times slower than the TLB trans-
lation. The ratio of table-look-in translations to
instructions executed, called the “not-in-TLB
ratio” (NITR), greatly affects the speed of in-
struction execution.

A real multiprocessor system contains multi-
ple real processors sharing main memory. Each
processor has its own TLBs, which include en-
tries for each processor. Methods for control-
ling TLBs in VM mode are somewhat different

Vol. 37 No. 2

from those in native mode, because TLB entries
contain VM identifiers or their equivalents®)10),
The TLBs may include entries for any VMs, be-
cause the VMs may run on any shared real pro-
cessors. When it is in multiprocessor mode, a
VM consists of multiple logical processors with
a shared main memory area.

The NITR in VM mode tends to be higher
than that in native mode. This decreases the
VM CPU performance. The tendency is caused
by excessive purging of TLB entries for logical
processors. One typical and conventional case
of excessive purging is as follows. OSs often
use control instructions, which are called purge-
TLB-type instructions, to directly purge TLB
entries. Real processors tend to purge TLB en-
tries excessively in order to simplify the simula-
tion for those control instructions in VM mode.
An example of such simplification is that real
processors always purge TLB entries for logi-
cal processors when the VMM switches the dis-
patching of logical processors from one real pro-
cessor to another real processor®, whether or
not the logical processors have ever issued the
purge-TLB-type instructions.

To avoid increasing the NITR in VM mode,
we present a new method for determining pre-
cisely whether or not TLB entries are valid:
The method remembers that logical processors
have issued purge-TLB-type instructions, and
makes the hardware/micro-programs of real
processors purge TLB entries for logical proces-
sors only if those logical processors have issued
purge-TLB-type instructions. The method re-
duces the NITR in VM mode to 1/2-1/3 that
in the conventional method, and will reduce the
VM CPU time by 9-12% of that in the conven-
tional method.

Section 2 explains conventional methods for
scheduling real or logical processors, and Sec-
tion 3 explains conventional methods for man-
aging TLB entries and their problems. Section
4 proposes a new method for managing TLB en-
tries for logical processors, and discusses perfor-
mance improvement for the new method. Con-
clusion is presented in Section 5.

2. Conventional Methods for Schedul-
ing Processors

A host multiprocessor system contains multi-
ple real processors that share the system’s main
memory. Similarly, a guest multiprocessor sys-
tem contains multiple logical processors that
share the guest’s (i.e., the VM’s) main mem-

Reusing TLB Entries for Virtual Machines in Processor Switching 279

/Host muitiprocessor

)@ @)
wy TSCSSN w

clejclekle

Guest multiprocessor Chest multiprocessor

IP: Physical éinstruction) processor
LIP: Logical (instruction) processor

Fig. 1

Fixed scheduling.

ory area. The VMM is a control program, al-
locating real processors to logical processors as
follows.

2.1 Fixed Scheduling

This scheduling rigidly allocates real proces-
sors to logical processors. That is, the VMM
makes the logical processors of a VM uniquely
correspond to real processors. Those logical
processors can be run only on the correspond-
ing real processors. An example of this schedul-
ing is shown in Fig. 1: The real host computer
is a four-way multiprocessor, having IP0, IP1,
IP2, and IP3, which are also called instruction
processors. VMO is a two-way multiprocessor,
having LIPO, and LIP1, which are called logical
processors. VM1 is a four-way multiprocessor,
having LIPO, LIP1, LIP2, and LIP3. The VMM
runs LIPO and LIP1 of VMO only on IPO and
IP1, respectively, and runs LIPO, LIP1, LIP2,
and LIP3 of VM1 only on IPO, IP1, IP2, and
IP3, respectively. Real processor IPO is shared
by logical processors LIPO of VMO and LIPO
of VM1. Real processor IP1 is shared by logi-
cal processors LIP1 of VMO and LIP1 of VM1.
Real processors IP2 and IP3 are dedicated to
logical processors LIP2 and LIP3 of VM1, re-
spectively.

2.2 Floating Scheduling

This scheduling enables any free real proces-
sors to run any ready logical processors. Fig-
ure 2 shows an example, in which real host
computer is the same as that in Fig.1. VM,,
VM, --, and VMn_; are single-processor or
multiprocessor VMs.

Real processors (IPs) are shared by logical
processors (LIPs). The total number of LIPs of
all the VMs is usually equal to or larger than
the number of IPs of the real host computer.
The VMM runs any LIPs on any free IPs.

280 Transactions of Information Processing Society of Japan

HPst multiprocessor

!
; Y
\ «‘ ’ *Xf -)*’A
I)—(i,/-‘a.‘w"'\ NN
: ” v RO T T
VMo L—' 254 w:iu;;t S S VM-
MNOR o A ~ \\\‘p \
[Vg "/ \:‘3"9~“

Guest multiprocessor Guest multiprocessor Guest multiprocessor

IP: Physical (instruction) processor
LIP: Logical (instruction) processor

Fig. 2 Floating scheduling.

3. Problem in Managing TLB Entries
for VMs

The CPU performance depends on the not-
in-TLB-ratio (NITR), which means the ratio of
the number of translations outside the TLBs
to the number of instructions executed. The
NITR has to be low in a VM environment, as
in a real machine, but tends to be higher than
in a real machine. We describe the main causes
for this.

3.1 Conventional Methods

3.1.1 VM Identiflers in TLBs

In the early days of computing, VMs were im-
plemented in a uniprocessor-mode host, which
had only one real processor. This real proces-
sor had TLBs, which were designed only for a
native-machine-mode environment. The VMM
had to clear TLB entries for a running VM
whenever it switched the real processor from
the running VM to another VM'). For this rea-
son, the NITR was increased for VMs, and the
VM performance deteriorated.

Today, VMs are implemented in a multi-
processor-mode host, which has multiple real
processors that share main memory. Each real
processor supports VM features?):3):9). For ex-
ample, it has VM identifiers or their equivalents
in its TLB entries, to recognize TLB entries for
multiple VMs. When it interrupts or intercepts
a running VM, it can keep all the TLB entries
for the VM. Thus, the TLBs can contain entries
for multiple VMs. That is, the VMM need not
always clear the current real processor’s TLB
entries for a running VM when it dispatches
another VM on the same real processor.

3.1.2 TLB Control for Multiproces-

sors

A real multiprocessor system consists of mul-
tiple real processors that share main memory.
Each processor has its own translation lookaside

Feb. 1996

buffers (TLBs), which include entries for all the
logical addresses that it has ever referred to.
A VM can run on any real processors shared
by VMs. Therefore, TLB entries for the VM
may be contained in any TLB entries of any
real processors on which the VM has ever been
run. When an OS in a VM that is run in a
real processor issues some control instructions
that purge some TLB entries, the real proces-
sor has to purge its TLB entries associated with
the VM because the VM should not use them.
A guest multiprocessor system, which means
a multiprocessor system of a VM, consists of
several logical processors that share their main
memory area. Such systems are widely used
to enhance system performance. A real pro-
cessor may have TLB entries containing logi-
cal processor identifiers that allow the TLBs to
contain entries for multiple logical processors.
In this case, the real processor uses the identi-
fiers in its TLBs to determine whether or not
the TLBs contain logical addresses that the cur-
rently running logical processor has referred to.

TLB entries are purged by purge-TLB-type

instructions, which consist of non-signalling-
purge-TLB-type (NPTLB) instructions and
signalling-purge-TLB-type (SPTLB) instruc-
tions. An NPTLB instruction purges TLB en-
tries only from the current processor. On the
other hand a SPTLB instruction purges TLB
entries from the current processor and signals
all other processors configured on-line to purge
their own TLB entries. That is, it synchronizes
the purging of TLB entries from all processors
configured on-line.

An OS issues purge-TLB-type instructions in

the following cases:

1. When it releases its real memory area for
jobs that have just ended or have just been
swapped out. The memory area is used to
run a new job. The OS has to change the
mapping from its virtual memory area to
its real memory area, because the new job
to be run requires a new memory mapping.
For this purpose, the OS issues SPTLB in-
structions or NPTLB instructions to purge
old TLB entries that contain any logical ad-
dresses the ended or swapped-out jobs have
ever referred to. In this case, the OS re-
leases all the real pages of the jobs.

2. When it releases real pages in its paging
activities. In this case, the OS releases only
one real page when stealing a real page of
a process and allocating it to another pro-

Vol. 37 No. 2

cess.

The frequency with which these instructions
are used is not very high, because these events
do not occur frequently. It depends on the hard-
ware functions and design of an OS whether
the OS uses NPTLB instructions or SPTLB in-
structions. Both types increase the NITR in a
real machine environment. In a VM environ-
ment they cause an additional increase of the
NITR, as we will explain in the following sec-
tion.

3.2 Problem

The problem we have to solve is the ad-
ditional increase of the NITR in VM mode.
The NITR in a VM environment tends to be
higher than that in a real machine environment.
This is because a real processor tends to purge
TLB entries excessively in a VM environment
in order to simplify the method for processing
purge-TLB-type instructions, which consist of
NPTLB instructions and SPTLB instructions.

(1) SPTLB instruction

An SPTLB instruction has several native pa-
rameters, such as a page index of a virtual page
address, and a real page address to be invali-
dated.

In native mode, a real processor purges TLB
entries that are selected strictly according to
the native parameters. The current real proces-
sor transmits all the native parameters to all the
other real processors that are configured, and
signals them to purge their own TLB entries se-
lected according to the parameters. Therefore,
no excessive purging occurs.

In VM mode, a real processor has an addi-
tional parameter, which is the identifier of a log-
ical processor that belongs to a VM and has is-
sued purge-TLB-type instructions. For SPTLB
instructions, a real processor should purge the
TLB entries for the logical processor and all
other logical processors belonging to the same
VM. The TLB entries to be purged should be
selected strictly according to the native param-
eters. Moreover, the real processor has to signal
all other real processors to purge their TLB en-
tries for all the logical processors of the same
VM. The entries to be purged should also be
strictly selected according to the native param-
eters.

These processes in VM mode require long
and complex microprogram coding. To simplify
them, a real processor tends to ignore some pa-
rameters of the instructions, and consequently

Reusing TLB Entries for Virtual Machines in Processor Switching 281

tends to purge its TLB entries excessively. One
of the following simplifications is used:

1. A real processor ignores the identifier of a
logical processor, and purges TLB entries
irrespective of the identifiers of logical pro-
cessors in its TLBs. In this case, it purges
TLB entries not only for the VM whose log-
ical processor has just issued the SPTLB
instruction, but also for all the other VMs.

2. A real processor ignores the native pa-
rameters, and purges all the TLB entries
associated with all the logical processors of
the VM. In this case, it purges even valid
TLB entries for the VM.

An OS uses SPTLB instructions mostly for
its paging and swapping activities. When it
has enough memory for its workloads, the OS
does not so often use the SPTLB instructions.
For this reason, under these conditions, the fre-
quency of the SPTLB instructions used is low,
and such excessive purging of TLBs has little
influence on the increase in the NITR. These
types of simplification are therefore reasonable,
because they reduce the amount of micropro-
gram coding for the instructions.

(2) NPTLB instruction

In NPTLB instructions, on the other hand,
we find a problem that has more effect on the
increase of the NITR than any of the problems
in SPTLB instructions. It is explained as fol-
lows.

In native mode, an NPTLB instruction
purges TLB entries only from the current pro-
Cessor.

In VM mode, an NPTLB instruction purges
all the TLB entries associated only with the
logical processor that has issued the instruc-
tion. The TLB entries may be contained in any
TLBs of any real processors on which the logi-
cal processor has ever been run. Therefore, the
TLB entries of these real processors have to be
purged before the real processors run the logical
processor. The current real processor does not
signal other real processors to purge their TLB
entries, because the signalling causes an addi-
tional overhead, the NPTLB instruction does
not signal other processors to synchronize the
purging of TLBs of other processors in its spec-
ification, and not all other real processors con-
tain TLB entries for the logical processor that
has issued the NPTLB instruction.

To implement an NPTLB instruction in VM
mode, a real processor conventionally uses the

282 Transactions of Information Processing Society of Japan

following method®:

When dispatching a logical processor, a
real processor validates and uses its TLB
entries for the logical processor only when
the real processor is the same as one that
last dispatched the logical processor. In
other words, this method always purges
TLB entries for a logical processor when
the running of the logical processor is
switched to another real processor.

The details of this method are as follows. The
current real processor (IP0) on which a logi-
cal processor is being run and has just issued
an NPTLB instruction purges its TLB entries
for the logical processor. Other real processors
may contain their own TLB entries for the log-
ical processor if they have ever run the logical
processor. The TLB entries of the other real
processors become invalid when the logical pro-
cessor has issued an NPTLB instruction, and
they subsequently remain invalid. Therefore,
they have to be purged before the other real
processors dispatch the logical processor.

Suppose that one (IP1) of the other real pro-
cessors is going to dispatch the logical processor
immediately after the running of that logical
processor has been intercepted or interrupted
on a real processor (IP0). The dispatching real
processor (IP1) is different from the real proces-
sor (IP0) that last dispatched the logical pro-
cessor. In this case, the real processor (IP0)
is called the last host processor of the logical
processor.

Conventionally, a logical processor does not
remember whether or not it ever issued an
NPTLB instruction, and only remembers an
address of its last host processor, which last dis-
patched that logical processor. When dispatch-
ing a logical processor, a real processor checks
the last host processor address of the logical
processor, and if that address is different from
its own address, it purges its TLB entries for
the logical processor.

This conventional method satisfies the speci-
fication of an NPTLB instruction, because TLB
entries for a logical processor that has issued
the instruction on the current real processor
are purged on the current real processor at the
same time as the instruction is issued. More-
over, the TLB entries are purged immediately
before the logical processor is dispatched on any
real processors other than the current real pro-
cessor. This method excessively purges TLB
entries for a logical processor, because it al-

Feb. 1996

ways purges them whenever the logical pro-
cessor is switched to another real processor,
whether or not the logical processor has ever is-
sued NPTLB instructions. This method, called
“the last-host-CPU-address” method?, is rea-
sonable if the VMM tries to schedule a logical
processor on the same real processor as far as
possible. In particular, it has no problem with
the fixed scheduling, because there is no pro-
cessor switching, as shown in Fig.1. An OS
uses NPTLB instructions mostly when its job
has ended or been swapped out. Therefore, the
frequency with which NPTLB instructions are
used is low. The frequency of the excessive
purging in the conventional method depends on
the frequency with which logical processors are
switched to other real processors configured on-
line.

There is a problem with the above method
in the floating scheduling shown in Fig. 2. This
problem greatly increases the NITR for some
workloads. In the conventional method, TLB
entries for a logical processor are purged when-
ever the logical processor is switched to another
real processor. In floating scheduling, any free
real processor can run any ready logical proces-
sor. When the VMM schedules a logical proces-
sor, the last host processor of the logical proces-
sor may be busy scheduling another logical pro-
cessor. In that case, another free real proces-
sor different from the last host processor has to
schedule the logical processor. Thus, a logical
processor may be switched to another real pro-
cessor that runs it, however hard the VMM tries
to schedule a logical processor on the same real
processor. Moreover, for some workloads, logi-
cal processors are frequently switched to other

real processors by the VMM. Therefore, the fre-

quency of this type of excessive purging is high,
and as a result the NITR is increased and the
performance deteriorates for some workloads
in floating scheduling. Despite this problem,
floating scheduling is normally used, because
it is more flexible and gives a better perfor-
mance than fixed scheduling. Therefore, it is
important to solve the problem. We describe a
method for doing so in Section 4.

3.3 Influence of Not-in-TLB-Ratio on

Performance

Programs run with logical addresses, which
real processors translate into system real ad-
dresses by using TLBs. When they cannot
do this with TLBs, real processors use transla-
tion tables, which are managed by OSs. They

Vol. 37 No. 2

put the logical addresses and corresponding real
addresses into their TLBs. This table-look-in
translation is 10-50 times slower than trans-
lation using TLBs. Therefore, the execution
speed of instructions is greatly dependent on
the NITR.

Recently, real processors have began to sup-
port several features for VMs in their hardware
architectures?)3)9) . For example, the TLBs
contain VM identifiers or their equivalents, VM
logical addresses, and corresponding real ad-
dresses. Therefore, the VM CPU performance
also depends on the NITR. Programs in VMs
run with VM logical addresses that real pro-
cessors translate into system real addresses by
using TLBs. When they cannot do this with
TLBs, real processors use translation tables,
which are managed by guest OSs or the VMM.
They also put the VM logical addresses, cor-
responding real addresses, and VM identifiers
into their TLBs.

4. New Method of Managing TLB En-
tries for Logical Processors

4.1 Method

The TLB entries for a logical processor be-
come invalid only when the logical processor
has issued purge-TLB-type instructions, which
consist of SPTLB instructions and NPTLB in-
structions. A real processor should invalidate
the TLB entries for a logical processor that has
ever run on it only if that logical processor has
ever issued purge-TLB-type instructions. Since
the frequency of purge-TLB-type instructions
is low, we can reduce the frequency with which
TLB entries for logical processors are purged,
by restricting the purging of TLBs to cases in
which purge-TLB-type instructions have been
issued.

SPTLB instructions signal all real processors
to purge their TLB entries, and the purging is
synchronized with the processing of the instruc-
tions. The frequency of purging due to such
instructions is low, and their influence on the
increase in the NITR is also low, as explained
in Section 3.2.

NPTLB instructions, on the other hand,
purge the current real processor’s TLB entries,
and defer the purging of any other real proces-
sor’'s TLB entries until that real processor ac-
tually runs the logical processor that has just
issued NPTLB instructions. To avoid exces-
sive purging of TLB entries, a real processor
uses a special means to remember that a log-

Reusing TLB Entries for Virtual Machines in Processor Switching 283

Logical processor control block
/ (LPCB)

LT T TTTTI1TIHBpurge control word
012 N-1 (TLBPCW)
|

Logical processor

TLBPCW(i)=1: Real processor (i)'s TLB— entries
associated with this logical processor
are invalid

=0: Otherwise

Fig. 3 TLB purge control word (TLBPCW) of
logical processor.

ical processor has issued an NPTLB instruc-
tion. When dispatching a logical processor, the
real processor checks the means and determines
whether or not the logical processor has ever is-
sued NPTLB instructions. TLB entries for that
logical processor become invalid only if it has
ever issued NPTLB instructions. Only in this
case, therefore, real processors invalidate their
TLB entries for the logical processor before they
dispatch it. Otherwise, they reuse their TLB
entries for the logical processor even if the log-
ical processor has been switched. We now de-
scribe the method.

We present a means whereby real proces-
sors can check the validity of TLB entries
for logical processors when the VMM has
switched the running of logical processors to
other real processors. The means contains a
new control word, called “TLB-purge-control-
word (TLBPCW),” to represent the validity of
TLB entries for a logical processor. This word
enables a logical processor to remember that it
has issued an NPTLB instruction. A control
word is defined for each logical processor, as
shown in Fig.3. The control word consists of
N bits for an N-way host multiprocessor. When
the mask (i) of the control word of a logical
processor equals 1, it means that real proces-
sor (i)’s TLB entries associated with the logical
processor are invalid. The VMM manages the
TLBPCW as shown in Fig. 4:

(1) The initial value of the TLBPCW is 0.

(2) When alogical processor (LIPO in Fig. 4)
is run by a real processor (i) (IPO in
Fig.4,) and has issued an NPTLB
instruction ((2), all the entries except
for the i-th entry of the TLBPCW of
the logical processor are set to 1. This
means that the logical processor has is-
sued NPTLB instructions, so that, for

284

(3)

(4)

Transactions of Information Processing Society of Japan

Feb. 1996

VMM switches LIPO from IP0 to IP2 D

"
)

©

processes

i N . DI] SO PO
oot LIPO | 31283 : '
L7 : T LG P2's TLBPCW
""""" Saved ' v IP2's
R P Sav : : ﬁgodag&atmes EJ:
1 ' ' i . s i
, @ , —eey ! [TLBPCW of LIPO| | 'f
t [po : o 5 E
! dispatches | ! PO ' ' ' !
1 " H 1 1
Rkt kit £ 00 1 £ ! '
2 0123 ' , !
LIPQ issues ,' ' ' , :
NPTLB inst. v ' ! :
-Set TLBPCW {-- 1 -~ : ! :
oPurge IP0’s ' ' | Purge IP2’s : '
TLB entries ‘ + | TLB entries : '
associated H | associated ' '
with LIPO. '® 1 [with LIPO. ' '
oTLBPgW(O) ------ ' l ']
1 TLBPCW) ' :
@ uPo runs on 1PO ' hall s ph
|
i
1
]
1

interrupted by
time slice
end, etc.

Order of

(D]0)) @ - processes

E
Dispatch E
:
L]
'

@uPo runs on 1P2

NPTLB inst.. Non— signalling— purge— TLB— type instruction
TLBPCW: TLB purge control word
LIPO: logical processor (0)
IPO, IP2: physical processors

Fig. 4

any j (#1), real processor (j)’s TLB en-
tries for the logical processor are invalid.
Real processor (i) purges its TLB entries
associated with the logical processor. It
also clears the i-th entry of the TLBPCW
of the logical processor (®)).

Real processor (i) (IPO in Fig. 4) runs the
logical processor (LIPO in Fig.4) (().
Its running is temporarily halted by sev-
eral interrupts, such as a time slice end
(®»), and IPO stores its TLBPCW in the
logical processor control block of LIPO
(LPCBO in Fig.4) (). Control is then
transferred to the VMM.

The VMM switches the logical processor
(LIPO) from real processor (i) (IP0) to
real processor (j) (IP2) (®).

When it has dispatched a logical proces-
sor (LIPO in Fig.4), real processor (j)
(IP2 in Fig.4) sets up the TLBPCW
of the logical processor in its internal
storage ((®) and checks the mask of the

Remembering issuance of NPTLB instructions.

TLBPCW ((9)). If the j-th entry of the
TLBPCW is 1, it means that real proces-
sor (j)’s TLB entries associated with the
logical processor are invalid. Therefore,
the real processor purges those TLB en-
tries (@), and clears the j-th entry of the
TLBPCW to 0 ().

Real processor (j) (IP2) continues dis-
patching processes ((), and runs the
logical processor (LIP0) (®).

This method does not excessively purge TLB
entries, because the TLB entries associated
with a logical processor are purged only if that
logical processor has ever issued NPTLB in-
structions.

In other implementation, the VMM creates
and manages the above-described TLBPCWs.
In this case, the real processor running a logi-
cal processor has to notify the VMM that the
logical processor has issued an NPTLB instruc-
tion. It can notify the VMM by setting a flag,
which indicates the issuance, in the LPCB of

(6)

Vol. 37 No. 2

the logical processor that issued the NPTLB
instruction. The VMM then has to make a
TLBPCW in the LPCB of the logical proces-
sor. A real processor has to check and update
the TLBPCW of a logical processor that it has
dispatched in the same way as shown in (), (),
and (@ of Fig. 4.

4.2 NITR Evaluation
(1) Evaluation from processor scheduling
Consideration:

In the fixed scheduling shown in Fig. 1, the
VMM does not switch the logical processors to
other real processors. Therefore, the conven-
tional method does not cause excessive purging
of TLBs due to processor switching, because
there is no processor switching, and thus our
new method is not effective for this type of
scheduling.

In floating scheduling shown in Fig.2, on the
other hand, the conventional method may ex-
cessively purge TLB entries when logical pro-
cessors are switched to other real processors.
Our method purges TLB entries for logical pro-
cessors only when the entries are invalid owing
to the logical processors’ issuance of NPTLB
instructions. Therefore, it does not excessively
purge TLB entries as a result of the switching
of logical processors. Thus, it is effective for
this type of scheduling.

In fixed scheduling, no logical processor is
switched between real processors, and TLB en-
tries for a logical processor are not purged un-
less it issues purge-TLB-type instructions. The
proposed method does not purge TLB entries
for a logical processor unless it issues purge-
TLB-type instructions even if it is switched
to another real processor. Thus, in terms of
TLB-purge control, the proposed method corre-
sponds to fixed scheduling in conventional TLB
maintenance. Therefore, we can estimate the
effect of the proposed method by comparing the
NITR of fixed scheduling with that of floating
scheduling in conventional TLB maintenance.

The proposed method enables a real proces-
sor to reuse TLB entries for a logical proces-
sor when that logical processor is switched to
it. The method is effective only in conditions
where logical processors are frequently switched
between real processors. Therefore, we evaluate
the method under those conditions.
Measurement data:

In conventional TLB control, Table 1 shows
measurement data for a workload of heavy I/O
jobs with CPU utilization of about 30% per real

Reusing TLB Entries for Virtual Machines in Processor Switching 285

Table 1 Influence of scheduling on NITR and NIBR.
Items Fixed Floating
scheduling scheduling
1 | VMEI Msteps 3,809.5 3,718.0
VM NITLB 21.9 80.5
(freq. M times)
3 | VM NITR 0.6% 2.2%
(1) (3.78)
4 VM NIB 223.8 252.9
(freq. M times)
5 | VM NIBR 5.9% 6.8%
(1) (1.2)
Workload:

2-way host multiprocessor

2 VMs, each 2-way

Heavy 1/0 jobs

CPU utilization: 30% per real processor
#1-#05: per real processor

Comments:
VMEI: Instruction execution steps in VM

mode
VM NITLB: Not in TLB in VM mode
VM NITR: Not-in-TLB ratio in VM mode
VM NIB: Not in buffer in VM mode
VM NIBR: Not-in-buffer ratio in VM mode

processor, in a two-way host multiprocessor,
with two VMs, each in two-way mode. A pro-
cessor has buffer storage, which is tens of times
faster and thousands of times smaller than main
storage and contains copies of the data in main
storage. The not-in-buffer ratio (NIBR) is the
ratio of the number of memory accesses to loca-
tions not in the buffer storage to the number of
instructions executed. The CPU performance
is heavily dependent on the NIBR, to an ex-
tent of the same order as its dependence on the
NITR.

We used a two-way real multiprocessor and
two VMs that are themselves two-way multi-
processors. Workloads contain heavy I/0 jobs,
and the CPU utilization of each real processor is
low. Therefore, the logical processors of those
VMs can be switched frequently between real
Processors.

The proposed method enables a real proces-
sor to reuse TLB entries for a logical proces-
sor when the logical processor is switched to
it. The method is effective only in conditions
where logical processors are frequently switched
between real processors. Therefore, we evalu-
ated the method under those conditions. As we
explained, we can estimate the effect of the pro-
posed method by comparing the NITR of fixed
scheduling with that of floating scheduling in
conventional TLB maintenance.

Table 1 shows that the NIBRs are of the same

286 Transactions of Information Processing Society of Japan Feb. 1996

order. On the other hand, the NITR in float-
ing scheduling is about four times higher than
that in fixed scheduling. These data indicate
that, in floating scheduling, logical processors
are frequently switched between real processors
and their TLB entries for logical processors are
excessively purged in the switching in conven-
tional TLB control. Our method does not purge

TLB entries excessively, but purge them only

when they are invalid. Consequently, it can

reduce the NITR in floating scheduling to the
same level as in fixed scheduling.

(2) Evaluation from a simulation in a unipro-

cessor

The method described in Section 4.1 can
avoid excessive purging of TLBs when logical
processors are switched by the VMM. This is
because it enables real processors to purge TLB
entries associated with a logical processor only
when that logical processor has issued purge-
TLB-type instructions.

To evaluate the method, we simulate the
worst case by using a uniprocessor host and
three VMs, each in uniprocessor mode. Sup-
pose that the VMM always switches logical pro-
cessors to other real processors when dispatch-
ing the logical processors. In this case, conven-
tionally, at every dispatch of a logical processor
on a real processor, the real processor purges
the TLB entries associated with the logical pro-
cessor. On the other hand, our method keeps
almost all the TLB entries associated with the
logical processor at every dispatch, because jobs
running in the logical processor issue few purge-
TLB-type instructions while they are running.
We can obtain the NITR in the two methods
(the conventional method and the new method)
as follows. The mainframes used for measure-
ment have two internal hardware options for
TLB maintenance:

(1) Option 1 (Keeping method): The hard-
ware or microprogram keeps the TLB en-
tries for logical processors at every exit
from VM mode to VMM mode.

(2) Option 2 (Clearing method): The hard-
ware or microprogram purges the TLB
entries for logical processors at every exit
from VM mode to VMM mode.

The conventional method corresponds to the
method used in option 2 in the worst case. Qur
method corresponds to the method used in op-
tion 1 as explained above. Three VMs are de-
fined and operated concurrently for this mea-
surement. They are all in uniprocessor mode,

NITR in clearing TLB entries
NITR in keeping TLB entries

3T et --Privileged state
...l L P Shitat LELTEEY T
PO Total
-el . B e
2 1 eignoq-@-"
i 1 Problem state

0 20 40 60 80 100

Time slice (ms)

Workload:
Host: Uniprocessor
Guest: 3 VMs running. Each VM is in uniprocessor mode
Disk—to— MT jobs

Fig. 5 NITR increase caused by clearing TLB entries
at every exit from VM mode to VMM mode.

and use I/O direct execution®”). Jobs consist-
ing of dumping from disks to MTs are used as
the workload, to maintain a high frequency of
I/0 instruction issuance.

We used one real uniprocessor and three VMs
that were all uniprocessors. Since the workload
consists of disk-to-MT dumping jobs, the real
processor can be switched frequently between
VMs. Since only one real processor is used, the
VMs are always run on it. Moreover, they are
frequently interrupted by I/O wait, I/O inter-
rupt, and time-slice-end, and they frequently
exit from VM mode to native mode. The TLB
entries for the VMs are cleared or kept at the
every exit, depending on the above-mentioned
hardware options. Therefore, by using these
hardware options and conditions in which VMs
are frequently interrupted, we can simulate the
proposed method and estimate its effect.

The results are shown in Fig.5. The NITR
of option 2 is more than twice as large as that
of option 1. That is to say, the NITR of
our method, which is called the “remember-
ing NPTLB-issuance” method, is less than half
the NITR of the conventional “last-host-CPU-
address” method.

4.3 Performance Considerations

The not-in-buffer ratio (NIBR) and the not-
in-TLB ratio (NITR) strongly influence the
mean-instruction-execution time (MIET). The
VMM uses only a few TLB entries, because the
locality of its memory references is high and its
overhead is low?)%). Even if the TLB entries of
the VMM have the same columns in the TLBs
as the TLB entries of a running VM, they will

Vol. 37 No. 2

be replaced by those of the VM according to
the least recently used (LRU) algorithm, be-
cause the execution steps of the VM are much
larger than those of the VMM. Therefore, the
TLB entries of the VMM have little influence
on the TLB capacity for VMs.

We estimate the influence of the NITR on
the MIET in a VM environment. Our pro-
posed method does not address the NIBR. The
NIBR in our method and that in the conven-
tional method are of the same order, as shown
in Table 1. We ignore the difference between
the NIBRs of VMs. The MIET of VM1, that
is, MIET1, is expressed as follows:

MIET1 = T1 + NITR1™AT1,
where
T1: Basic instruction execution time of
VM1
NITR1: NITR of VM1
AT1: Address translation time of VM1
when address translation tables are used.

The MIET of VM2 is expressed similarly.
Since real host processors support VM archi-
tecture,

AT1 and T1 are nearly equal to AT2
(= AT) and T2 (= T0), respectively.

Suppose that NITR2 is smaller than NITR1.
Then, MIET? is smaller than MIET1. The
MIET reduction ratio (D) of VM2 to VM1 is

expressed as follows.
_ MIET1 — MIET2

MIET!
_ (NITRI1 — NITR2)* AT
- MIET1
Therefore,
S)
L+ wrrai=ar
where,

. NITR1

"~ NITR?2’

In usual mainframes the basic instruction ex-
ecution time of a real processor is 2-4 machine
cycles (mc). Because the real processor sup-
ports the VM architecture, the basic instruc-
tion execution time of a VM is almost the same
as that of the real processor. Therefore, T0 =
2-4mc. The address translation time (AT) is
usually 20-30 mc. We presume that NITR1 =
1-3%, which is conventional and a little higher
than that of a real machine. From these param-
eters, we get that MIETI! = 2.2-4.9mc. The
relation between r and D is shown in Fig. 6.

Reusing TLB Entries for Virtual Machines in Processor Switching 287

D: MIET reduction ratio (%)

30p--------4 % Zieieetr e E
%‘ 233 /_j.i‘éED—max
—

(A3 |13'4 143.
7 / 19 . :D—average
w--—/ /4 ; |

7.
/ 32 .. 36 ... 380~ min
| | amie

1 2 3
r = NITR1/NITR2
Parameters:

NITR: Not—in—TLB ratio; NITR1: NITR of conventional VM (VM1)
NITR2: NITR of VM2 with new TLB maintenance

MIET: Mean instruction execution time; MIET1: MIET of VM1
MIET2: MIET of VM2

D = (MIET1- MIET2)/MIET1

Assume that
NITR1 = 1% — 3%; NITR2 < NITR1; i.e.,r > 1

Fig. 6 MIET reduction ratio (D).

The figure shows that the CPU time of VM2 is
9-12% less than that of VM1 when NITR2 =
(1/2 to 1/3)*NITR1. This NITR2 is estimated
from the effect of the proposed method.

5. Conclusion

Real processors translate VM logical ad-
dresses into system real addresses by using
translation lookaside buffers (TLBs). VM CPU
performance is greatly dependent on the not-
in-TLB ratio (NITR), which is the ratio of
the number of address translations outside the
TLBs to the number of instructions executed.
The VMM or hardware/micro-programs tend
to excessively purge TLB entries for VMs, in
order to simplify simulation processes for VMs.
Therefore, the NITR in VMs tends to be higher
than in real machines.

Conventionally, a real processor purges its
TLB entries for a logical processor of a VM
whenever the real processor is different from
the last host processor, which is a real proces-
sor that last dispatched the logical processor,
whether or not the logical processor has ever is-
sued a non-signalling-purge-TLB-type instruc-
tion, which purges TLB entries only from the
current processor. This causes excessive purg-
ing of TLB entries and increases the NITR of
VMs, consequently reducing the VM CPU per-
formance.

We have presented a method for remember-
ing that a logical processor has ever issued non-
signalling-purge-TLB-type instructions, which

288 Transactions of Information Processing Society of Japan

purge TLB entries only for the logical proces-
sor, and for making the real processor that is
about to run a logical processor reuse its TLB
entries for that logical processor, even when the
real processor is different from the last host pro-
cessor of that logical processor, if the logical
processor has not ever issued such instructions
since the last time they were purged. The real
processor purges its TLB entries for the logical
processor only if the logical processor has issued
such instructions.

This method can avoid the conventional ex-
cessive purging of TLB entries for logical pro-
cessors, and reduces the NITR of VMs to 1/2-
1/3 that of VMs in the conventional method,
thus reducing the VM CPU time by 9-12% of
that in the conventional method.

Acknowledgment

We express our sincere thanks to T. Onose, K.
Une of General Purpose Computer Division, Hi-
tachi, Ltd., T. Inoue, S. Tanaka of Systems De-
velopment Laboratory, Hitachi, Ltd., and Mr.
R.E. Abeles of Hitachi Data Systems, Ltd., for
their performance measurement and their tech-
nical comments.

We also express our sincere thanks to T.
Kuwabara, Y. Ohshima of General Purpose
Computer Division, Hitachi, Ltd., for their
helpful management.

References

1) Goldberg, R.P.: Architectural Principles for
Virtual Computer Systems, Ph.D. Disserta-
tion, Div. Eng. Appl. Phys., Harvard Univ.,
Cambridge, MA (1972).

2) Borden, T.L., et al.: Multiple Operating Sys-
tems on One Processor Complex, IBM Systems
J., Vol.28, No.1, pp.104-123 (1989).

3) Umeno, H. and Tanaka, S.: New Methods for
Realizing Plural Near-Native Performance Vir-
tual Machines, IEEE Trans. Comput., Vol.C-36,
No.9, (Sept. 1987).

4) Ono, K.: A Method for Improving Virtual Ma-
chine System Performance, Fujitsu, OS Work-
ing Group of Information Processing Society of
Japan (WGOS-IPSJ), No.18, (Feb. 4, 1983).

5) Ebino, Y., et al.: Extended Virtual Machine
System for ACOS System 2000 Series, NEC
Technical Journal, Vol.40, No.11 (1987).

6) Doran, R.W., et al.: Amdahl Multiple-Domain
Architecture, Computer, pp.20-28 (Oct. 1988).

7) Bean, G.H., et al.: Logical Resource Partition-
ing of a Data Processing System, IBM, Priority,
July 29, 1987 (PR/SMTM Patent).

Feb. 1996

8) Umeno, H. and Ohmachi, K.: A Method
for Supporting Virtual Machine Multiprocessor
System, Proc. of the 19th Annual Convention
IPS Japan, pp.265-266 (1978).

9) IBM: IBM System/370-XA Start Interpretive
Execution, SA22-7095.

10) Umeno, H., et al.: Performance Improve-
ment Methods for Virtual Machine System, J.
IPS Japan, Vol.31, No.12, pp.1665-1680 (Dec.
1990).

11) IBM: Enterprise Systems Architecture/390
Principles of Operation, SA22-7201-01.

(Received April 19, 1994)
(Accepted November 2, 1995)

Hidenori Umeno was born
in Ohita, in 1947. He re-
ceived the B.S. in mathemat-
ics from Kyushu University in
1970. From 1970 to 1976, he
was with Central Research Lab-
oratory, Hitachi, Ltd., where he
made researches in productivity improvement
of compilers. From 1976 to 1993, he was
with Systems Development Laboratory, Hi-
tachi, Ltd., where he made researches in per-
formance and reliability improvement of virtual
machines, file systems, and operating systems.
Since 1993, he has been with General Purpose
Computer Division, Hitachi, Ltd., where he has
been engaged in the development of logical par-
tition systems of mainframes. His main re-
search fields are performance and function im-
provement of virtual machines, logical partition
systems, operating systems, and computer ar-
chitectures. He received a best paper award of
Information Processing Society of Japan (IPSJ)
in 1982. Since 1991, he has been a part-time in-
structor of Musashi Institute of Technology. He
is a member of IPSJ and ACM, and an affiliate
of IEEE Computer Society.

Vol. 37 No. 2 Reusing TLB Entries for Virtual Machines in Processor Switching

Hiroshi Ikegaya was born in
1957. He entered Systems De-
velopment Laboratory, Hitachi,
Ltd., in 1975, in which he
had been engaged in research
on mainframe architectures and
4 h virtual machine systems until
1992. From 1992 to 1995, he was with Develop-
ment Department I of General Purpose Com-
puter Division (GPC), Hitachi, Ltd., and en-
gaged in the design and development of large
mainframes. Since 1995, he has been with
Information Systems Development Center of
GPC, and engaged in the development of infor-
mation management systems in basic business.
He is a member of IPSJ, and interested in the
development of business process reengineering
and client server systems.

289

