2C-5

RHRLEFELE 70 BleERS

PadSpace: A Software Architecture for the

Cooperation of Visual Components

D.Lkhamsuren and Y.Tanaka
Meme Media Laboratory,
Department of Information Science and Technology,
Hokkaido University, Sapporo 060-0814, Japan

1. INTRODUCTION

In this paper we will propose an extension of a
typical Linda-like coordination model to provide
mechanisms to cooperate composite visual
components. This new Linda-like coordination model
is called PadSpace. It introduces an extended
matching functionality for nested tuples and richer
data types for fields, including objects and XML
documents. PadSpace use three new pads, ie.,
ProviderPad, RequesterPad and ProxyPad. PadSpace
has been developed as an extension to the
IntelligentPad System. IntelligentPad represents
information and processing components as 2D visual
objects called pads.

In IntelligentPad, Each pad has both a standard
user interface and a standard connection interface.
PadSpace can provide a connection interface
(logically) between two or many composite pads by
using tuple matching mechanism of a Tuple Space
for the matching of slots between two pads. In our
approach, a tuple is a finite sequence of slots taken
from a composite pad. Each slot consist a slot value,
a slot type, a slot name and a slot path.

The main contribution of PadSpace is the
mechanism that enables end-users to distribute/share
their own local resources over the Tuple Space, and
to use those shared resources in combination with
their own resources through the automatic matching
between function providers and function requesters.

2. THE MECHANISMS OF PADSPACE

Suppose an investor in Japan wants a way to look
up the stock price of US-quoted companies, but to
see them in Japanese yen rather than dollars. The
investor holds own local company stock quote
composite pad that was created by C3W' Framework
and clipped from the CNN Money site
(money.cnn.com/markets/). Specially, the CNN
Money site offers a stock-price lookup in dollars.

On the other hand, another investor holds an own
local currency conversion composite pad that can
certainly deal with dollars and yen, and was also
created by C3W Framework and clipped from the
Yahoo! currency conversion page
(finance.yahoo.com/m3?u).

Finally, the first investor wants to use second
investor’s currency conversion composite pad in
combination with his own company stock quote
composite pad. We describe how PadSpace’s
mechanisms allow these investors to share and to use
these existing visual components for these purposes.

2.1. Linda Like Coordination Model

In Linda model, a tuple is a finite sequence of
typed fields. We extend the field type, with a special
field, named Slot. The Slot type is structured type that
contains a slot value, a slot type, a slot name and a
slot path, and denoted by <sloz path, slot name, slot
type, slot value>, also denoted in the compact forms .

We support the two kinds of matching method.
Slot- matching performs matching value and type
equivalence when field template contains actuals
(containing a typed value). Type-matching performs
matching only type equivalence when field template
contains formais (containing only a type).

We now formalize this Linda-like coordination
model extended with new Slot type.

Let Slot, including s, sy, ..., be a denumerable set of

slot. Let Tuple, including ¢, ¢, ..., be the set of finite
sequences of slots taken from composite pad and
denoted by < sy;...;5, >, n>1.

Templates may use wildcards to let some field
unspecified; syntactically, a wildcard is denoted by
“type” (which we assume to perform Type-matching).
In the following, st, st,, ..., range over Slot {J {type} .
Finally, let Template, including tm,tm,..., be the

set of finite sequences composed of data and
wildcards denoted by < st;;...;st, >, n>1. We define

the matching rule as follows.
Definition of Matching rule: Let ¢ =<s;;...;s, > bea

tuple and tm =< st;;...;st,, > be a template; we say

that ¢ matches tm if the following conditions hold:
e Mm=n, ’

o St;=s5; Vv st; ={type},1<i<m.

1 C3W framework (Clipping, Connecting, and Cloning on the
Web) to support the recombination of components of Web
documents and accessing the desired information. It provides a
mechanism to clip portions of Web documents, embed them into
an existing Web document, and define data linkage among them by
using spreadsheet like formulas.

1-465

We also separate (logically) the tuple spaces in which
pads of agents interact. Essentially, we extend the
tuple structure, with an attribute, named partition. Let
P be a denumerable set of partition attribute values
(including p, py, ...,). A tuple ¢, and a template tm

with the partition attribute, are defined as follows:
t=<s;;...;8, > and tm=<st;;...;st, >7, are also
denoted in the compact form ¢=<§>” and
tm =< st >¥', respectively.

Definition of Matching rule with partition attribute:
Let 1=<5>” be a tuple, and tm=<si > be a
template; we say that ¢matches” tm when the
following conditions hold:

- p=pt,

« tmatches tm

2.2. Distribution

Our support for distributing/sharing the existing
composite pad to Tuple Space is implemented by
ProviderPad, in Creator mode. The ProviderPad
supports the extraction of slot list from the given
composite pad, and also the users generate the tuple
by selecting and renaming slots from that extracted
slot list. Finally, users output that generated tuple to
the “PadRepository” sub tuple space.

Tuple contains
these slots.

Figure 1. Tuple generation process using by
the ProviderPad, in Creator mode

Figure 1 shows the user distributing/sharing the Yahoo!
currency conversion composite pad.

The following is a tuple of Yahoo! currency
conversion composite pad:

<Field value="23.49" type="System.String"
path="DerivationPad[0]->ViewPortPad[0]->Value">
Dollar </Field>

<Field value="2550" type="System.String"
path="DerivationPad[0]->ViewPortPad[1}->Value">Yen
</Field>

2.3. Consuming and Matching tuple

Our support for consuming/matching tuple from
Tuple Space is implemented by RequestPad, in
Matching mode. Users can build matching template
using RequestPad and will be able to perform the
matching with “PadRepository” sub tuples. The

above sample tuple matches with the following
templates:

* rd((DOIIar A Yen)P ad Re pository)

« rd((Dollar, ?SystemString)**Repository)

The RequestPad will change its working mode to
Request mode and automatically load the ProxyPad

as its child pad, if “¢ matches? tm” is successfully
completed. After the loading of ProxyPad, it adds
Dollar and Yen slots to the own slot list and outputs a
connection request tuple to “Connection” sub tuple
space.

2.4. Communication

The ProviderPad will change its working mode to
Provider mode and load the source composite pad
(Yahoo! Currency conversion pad) as the own child
pad, when it has received the connection request from
ProxyPad. The source pad and ProxyPad make a slot
connection with each other through “DataExchange”
sub tuple space. The ProxyPad outputs a currency
conversion request tuple to “DataExchange” sub
tuple space, when it has received “set” message from
its any slot. The ProviderPad receives this request

"

tuple using “ ¢matches” tm ” and transmits slot
values to the source pad. After performing the source
pad’s internal process, the ProviderPad outputs the
currency conversion result tuple to “DataExchange”
sub tuple space.

2.5. Multiple Matching

We also support Multiple Matching functionality.
For example first investor wants to compare two
conversion results www.gocurrency.com and
finance.yahoo.com/m3?u. In Multiple Matching, the
ProxyPad holds a slot array, which can be connected
to each source pad.

3. CONCLUSIONS

The PadSpace architecture we have developed is a
very extensible XML-based middleware. The Tuple
Space computing is a very flexible architecture.
There have been numerous extensions to the original
Linda, and our work permits a tuple field to contain a
new slot type, which plays the main role in
connection interface (logically) between two or many
composite pads. In our future work, we will also
support Web services, with WSDL descriptions.

REFERENCES

[11 Y. Tanaka. Meme Media and Meme Market
Architectures; Knowledge Media for Editing,
Distributing, and Managing Intellectual Resources.
IEEE Press, 2003

[2] Jun Fujima, Aran Lunzer, Kasper Hornbzk, Yuzuru
Tanaka, Clip, connect, clone: combining application
elements to build custom interfaces for information
access, Proceedings of the 17® annual ACM
symposium on User interface software and technology,
October 24-27, 2004, Santa Fe, NM, USA

1-466

