6B-5

HHRLEFERSE 70 BleEA2

Managing Frequent Updates in R-trees by Semi-Bulkloading*

MoonBae Song and Hiroyuki Kitagawa
University of Tsukuba

Abstract

Managing frequent updates is one of most important
issues in many update-intensive applications, e.g.,
location-aware services, and stream databases. In this
paper, we present an R-tree-based index structure which
employs semi-bulkloading (SBL) technique for
efficiently managing frequent updates from massive
moving objects. The basic idea of SBL is to buffer the
incoming updates in main-memory buffer, choose a
proper subset from the buffer, and then bulk-insert them
at once. For this purpose, we devise an efficient update
buffer management scheme which provides an effective
way to manage the incoming updates in memory-
efficient manner. Our experimental results reveal that the
proposed approach is far more efficient than previous
approaches for managing frequent updates under various
settings.

1. Introduction

The growing popularity of update-intensive
applications such as location-aware services,
monitoring applications, and stream databases has led
to a flurry of recent researches on high-performance
spatial index that supports high update rates for
massive moving objects. One typical example is
tracking the location of GPS-enabled mobile device
that moves continuously.

Recently, several index structures based on the well-
known R-tree [1],[2] have been proposed [3}-{5]. These
techniques are mainly motivated by the fact that R-tree
suffers from poor performance in update-intensive
environments because it handles an update as a delete-
insert pair separately. Kwon et al. [3] developed the
Lazy Update R-tree to reduce the update cost. By
adopting a secondary index on the R-tree, it can perform
the update in a bottom-up manner and reduce its cost.
Lee et al. [4] improved this idea by adopting an in-
memory summary structure to help both updates and
queries. More recently, Xiong and Aref proposed the R-
tree with update memo (RUM-tree) to reduce the update
cost [S]. In this technique, deletions are deferred and
performed in a batch manner. For this purpose, the
authors proposed a memory data structure called Update
Memo that stores recent updates in R-tree.

In this paper, we present an R-tree-based index
structure which employs semi-bulkioading (SBL)
technique for efficiently managing frequent updates
from massive moving objects. The basic idea of SBL
is to buffer the incoming updates in main-memory
buffer, choose a proper subset from the buffer, and
then bulk-insert them at once.

* This research has been supported in part by the Grant-in-
Aid for Scientific Research from JSPS.

inga 1
Incoming —> In-memory Buffer
updates ¢

%N

R-tree

(a) The concept of semi-bulkloading

Ad hoc
spatial query

Correct
answer

raw answer

filter-and-
refinement

raw answer

(b) Query processing
Figure 1. The proposed index structure

2. Proposed Index Structure
2.1 The basic concept and structures

The basic idea underlying our approach is to put the
spatially clustered updates into a group in which most
part of their insertion paths must be shared. Thus, the
total update cost will be drastically decreased. To this
aim, we adopt a small in-memory buffer to defer/group
the incoming updates as much as possible and to
minimize the update cost by inserting them in a batch.

Figure 1 shows the basic concept of the proposed
structure. When the buffer is full, the buffered updates
are inserted into the disk-resident R-tree simultaneously
by exploiting the common path (see Figure 1(a)). For
query processing, combining two raw answers from the
in-memory buffer and R-tree, and refining the result are
needed (see Figure 1(b)).

2.2 Insert, Delete, and Update

The insert/update/delete operations are operated on the
in-memory buffer completely. In the propose approach,
update is identical to an insert operation. For each
incoming update <oid, p>, the corresponding buffered
entry is updated within the buffer, or a new buffer entry

1-439



is inserted into the memory buffer. When there is no
enough space in buffer, we perform what we call Flush
in order to make room for the newly incoming update.

Unlike the traditional R-tree, only an object-id oid is
needed for Delete() procedure. The reason behind this is
that we can find the obsolete entries not by their spatial
locations, but instead by their oid. This characteristic will
make an application simpler by removing maintenance
cost for the location information required to delete the
obsolete entries.

2.3 Semi-bulkloading

Semi-bulkloading is the process of storing the location
information on the in-memory buffer to the disk-resident
R-tree. It is far differ from the conventional bulk-loading
which perform in an off-line manner, because the
ultimate goal is not to maximize the quality of the R-tree,
but to optimize the update and search costs together. In
order to improve the /O efficiency of semi-bulkloading,
we choose a proper subset of OR, which have a strong
probability to be inserted to the same leaf node. For
brevity, we only consider the simplest policy; that is, first
choose a cell that has the maximum cell in g*g grid
space, and then group-insert its buffered entries along
their shared path.

3. Performance Evaluation

In this experiment, we compare the update and
query performance of R*-tree (the most powerful
variant of R-tree), RUM-tree, and the proposed
approach. We use a trace dataset which contains the
trajectories of 100k ~ 10,000k moving objects which
move in the road network of Oldenburge city. For fair
comparison, the number of I/Os for updates and
queries — as the primary performance metric — is
carefully monitored in every experiment. Our
experiments were conducted on Intel Pentium 4, 2GHz
and 2GB RAM running on Linux system. In order to
verify the query processing power, we run 100k range
queries whose side lengths are randomly chosen from
[0,0.03]. In all experiments, we set the page size as
4kB, and a page buffer that is 1% of the dataset size is
utilized.

Figure 2 shows the experimental result in terms of
update and query cost (the number of R-tree node
accesses). In general, the proposed approach
outperforms the existing techniques in terms of update
and query performances under all conditions. In
general, R*-tree yields the worst update performance
since it is designed for query-intensive setting. In
compared to RUM-tree, the overall update
performance gain of the proposed approach ranges
from 84.29% to 227.14%, which is significant. As the
size of dataset increases, the average query costs of all
techniques are clearly increased. The average query
cost of the proposed approach is slightly better than
that of RUM-tree.

24
20 13

g 18100,
§ 16 0 o e
S 1.4
2 1.2 4 —&— R*-tree
S 4ol ~0~ RUM-tree
Q101 Y ~--~ Proposed
08}
0.6 ¥,
vy W -
0.4 .
0 2 4 6 8 10

Size of Dataset (in millions)
(a) Average update cost

35

301 |[—e— R*tree -
+O~ RUM-tree ~
-~ Proposed -

N
o

10 Cost / Query

Size of Dataset (in millions)

(b) Average query cost
Figure 2. Experimental results
4. Concluding Remarks

In this paper, we have investigated the problem of
indexing moving objects and managing their frequent
updates in update-intensive environments. We proposed
an R-tree-based index structure which exploits a small
in-memory buffer to buffer, defer, and group incoming
updates. With reasonable memory overhead of 1% of
database size (or even with the same memory
requirement), our approach incurs I/O cost much lower
by a factor of 2-3 than the existing techniques. We
believe that the proposed approach is orthogonal and it
can be applied to other index structures, e.g., B-trees,
Quadtrees, and k-d-B-trees.

References

[1] A. Guttman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proc. of SIGMOD, 1984, pp. 47-57.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger,
“The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles”, Proc. of SIGMOD, 1990.

[3]1 D. Kwon, S. Lee, and S. Lee, “Indexing the Current
Positions of Moving Objects Using the Lazy Update R-
tree,” Proc. Int’l Conf. Mobile Data Management (MDM),
2002, pp. 113-120.

[4] Mong-Li Lee, Wynne Hsu, Christian S. Jensen, and Keng
Lik Teo. “Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach”, Proc. of VLDB, 2003.

[5] X. Xiong and W. G. Aref, “R-trees with Update Memos,”
in Proceedings of International Conference on Data
Engineering (ICDE), 2006.

1-440



