Vol. 37 No. 5

Regular Paper

Transactions of Information Processing Society of Japan

May 1996

Fault-Tolerant Intra-Group Communication

KENJI SHIMA,! HIROAKI HIGAKI' and MAKOTO TAKIZAWA!

In distributed systems, a group of processes are cooperated to execute an application pro-
gram. A group is established among multiple processes and only processes in the group
communicate with each other. This type of group communication is named intra-group com-
munication. The communication system has to support reliable intra-group communication
in the presence of the process fault. In order to tolerate the process fault, each process in the
group is replicated into a collection of multiple replicas named a cluster. In this paper, we
would like to propose a new intra-group communication protocol which supports the causally
ordered delivery of messages for the processes within the group. In addition, the protocol
supports the reliable delivery of messages in the presence of Byzantine faults of the processes.

1. Introduction

In distributed systems executing such appli-
cations as teleconferences and telemedicines 7,
a group of multiple application processes com-
municate with each other. The application pro-
cesses in the group require to receive reliably
the messages in the causal order ?). If the com-
munication system provides the group of pro-
cesses with a reliable and causally ordered de-
livery of messages in the group, the distributed
applications can be easily realized.

There are kinds of distributed systems. The
first one is composed of two types of processes,
i.e. clients and servers. The clients send request
messages to the servers, and the servers exe-
cute the requests and send the responses back
to the clients. There is another kind of dis-
tributed system like computer network systems,
multimedia communication systems, and com-
puter supported cooperative work (CSCW) sys-
tems, which are composed of processes which
autonomously compute and communicate with
other processes ®):18). In these systems, a group
of multiple autonomous processes are cooper-
ated to achieve some objectives. Here, it is
required to achieve the intra-group communi-
cation 19)~17):22) where the processes communi-
cate with each other in the group.

The processes in the distributed system may
suffer from kinds of faults. An approach to-
wards making the system fault-tolerant is to
replicate the processes in the system. In this pa-
per, in order to support the fault-tolerant group
communication, each process is replicated into

t Department of Computers and Systems Engineer-
ing, Tokyo Denki University

883

a collection of multiple replicas, which is named
a cluster. Qur protocol supports the inter-
cluster communication among the replicas in
the clusters in order to tolerate Byzantine faults
of processes in the group.

By using the group communication service,
the application processes can send reliably mes-
sages to the others in the group in some deliv-
ery order like the causal order)'7). Takizawa
et al.1%)16):22) discuss kinds of group communi-
cation protocols which can detect and recover
from the message loss as long as all the pro-
cesses are operational. Birman et al.?) and
Moser et al.'®) discuss how to manage the
membership of the group in the presence of pro-
cess stop-faults. Ezhilchelvan et al.”) discuss
a fault-tolerant group communication protocol
where even if a process stops by fault, messages
sent by the process are eventually delivered to
the destinations in the causal order. Higaki'")
designs the inter-cluster communication proto-
col which tolerates the stop-fault and message
loss. But, the protocol can neither tolerate
the Byzantine fault nor provide the causally or-
dered delivery of messages.

A logical group is a collection of multiple pro-
cesses pi, ..., Pn- A group is composed of multi-
ple clusters each of which is a collection of repli-
cas of the process in the logical group. In order
to realize the reliable transmission of a message
m from p; to p; in the presence of the Byzantine
fault, each replica in a cluster of p; sends m to
multiple replicas in a cluster of p;. Moreover,
each replica of p; receives messages from mul-
tiple replicas of p;,. The replicas in the cluster
may receive messages in different orders. In this
paper, we would like to discuss how the clusters
communicate with each other in the group and

884 Transactions of Information Processing Society of Japan

how the replicas support the processes with the
reliable and ordered delivery of messages in the
presence of the Byzantine faults of the replicas.

In Section 2, we discuss the replication
schemes. In Section 3, we present the properties
of the intra-group communication. In Section
4, we discuss the inter-cluster communication
in the group. In Section 5, we discuss how to
support the causally ordered and fault-tolerant
delivery of messages in the group.

2. Replication Schemes

We would like to consider how to replicate a
process p; into replicas p;i, ..., py, (I; > 1).
There are two kinds of approaches towards
replicating p; 419):

(1) state-machine approach, and

(2) primary-backup approach.

In the state-machine approach (active replica-
tion) 19, every replica pi; is modeled as a de-
terministic finite state machine. That is, ev-
ery p;; does the same computation by receiving
and sending the same messages (7 =1, ..., [;).
Even if some replica of p; is faulty, the compu-
tation of p; can be continued without stopping.
If a replica p;; sends a message different from
one which the majority of the replicas send, p;;
can be considered to be faulty.

In the primary-backup approach (passive
replication)*), there is one primary replica
pi1- The other replicas p;2,...,p;, are named
backup ones. p;; receives and sends messages
and computes while no backup replica com-
putes. p;; saves its local state Is¥ in its local
stable storage at the checkpoint ckf. At the
same time, p;; sends Is¥, to all the backup repli-
cas. On receipt of lsi-“1 from p;;, every backup
replica p;; saves ls¥ into the stable storage. If
pi1 is faulty, one backup replica p;; is selected as
a new primary replica. p;; starts the computa-
tion of p; from the checkpoint ckfj by restoring
the state in ls¥. It requires a certain time-
overhead for rolfbacking the replicas.

The state-machine approach implies more re-
dundant processing and communication than
the primary backup one because all the repli-
cas do the same computation by sending and
receiving the same messages. However, it re-
quires less time-overhead for recovering from
the faults, and the computation can be im-
mediately taken over by the other replicas if
some replica is faulty. Moreover, the replicated
processes might tolerate the Byzantine faults.

May 1996

Therefore, we would like to adopt the state-
machine approach in the rest of this paper.

3. Intra-Group Communication

A distributed application program is exe-
cuted by the cooperation of multiple processes
D1, --., Pn (n > 2) communicating with each
other by using the communication system. A
collection of py, ..., p, is referred to as group
G, written as G = (p1, ..., pn). Each process
p; is modeled as a finite state machine!?). A
state is transitted when an event occurs. These
are three kinds of events: sending, receipt, and
local events. Here, let s;(m) and r;(m) denote
sending and receipt events of a message m in
pi, respectively. The local events occur when
the local operations are computed in the pro-
cess. The computation of p; is modeled to be a
sequence of events occurring in p;.

Lamport '?) defines the happened- before rela-
tion — on the events as follows:

[Definition] For every pair of events e; and e,
e1 precedes ey (e; — ep) iff

(1) e, happens before e; in p;,

(2) e1 = si(m) and ey = r;(m), or

(3) for some event es, e; — e3 — es. m]
A causal precedence relation < among mes-
sages® is defined as follows:

[Causal precedence] For every pair of mes-
sages m; and mo, m; causally precedes my (m,
< my) iff s5;(m;) — s;(m2). a
m; and mg are referred to as causally
coincident (my || ma) if neither m; < ms nor
my < mp. my X my iff my < my or my || mo.

When a process p; sends a message m, the
communication system delivers m to the desti-
nation processes in G. If m is received by all the
destinations, m is delivered to the application
processes. For every pair of messages m; and
ma, m; is referred to as delivered be fore m, iff
the communication system delivers m, before
my to every common destination process of m;
and mq in G.

[Causally ordered delivery] The communi-
cation system supports the causally ordered de-
livery of messages iff for every pair of messages
my and mq, m; is delivered before m, if m; <
mo. O
In Fig. 1, there are three processes p;, p;, and
pi. After sending a message mg to pi, p; sends
m; to p; and pi. p; sends my to pi after re-
ceiving m;. Thus, mg < m;, < m, is satisfied.
If py receives mg, my, and ms in this order, the

Vol. 37 No.5
Pi pj Pk

mo

\ _m0-<m1<m2

time Y Y Y

Fig.1 Causally ordered delivery.
messages are causally delivered. If p; receives
m, after ms as denoted by the dotted line, the
messages are not causally delivered.

When p; sends a message m to multiple pro-
cesses in the group G, m should be delivered to
all the destinations.

[Reliable delivery] The communication sys-
tem reliably delivers a message m iff all the
destination processes of m receive m. O
If at least one process does not receive m, m is
not delivered. That is, all the processes either
receive m or none of them. If some process is
faulty, no process in the group receives m. Here,
processes which are not faulty are operational.
Even if some faulty processes do not receive m,
the operational processes may receive m.
[Operationally reliable delivery] The com-
munication system operationally and reliably
delivers a message m if all the operational des-
tination processes of m receive m. 0
m can be retransmitted to a process p; if p;
does not receive m. If p; is faulty, m can be
sent to p; after p; recovers from the fault. Thus,
since it takes time to recover from the fault, the
response time is increased.

[Fault-tolerant delivery] The communica-
tion system fault-tolerantly delivers a message
m if m is reliably delivered and every destina-
tion of m receives m in some bounded time after
m is sent. D
In the fault-tolerant delivery, m is received by
every destination process as if there were no
fault. We would like to discuss how to support
the fault-tolerant delivery of messages in the
presence of the process faults.

4. Inter-Cluster Communication

In order to tolerate the process faults in the
group, the processes are replicated to multiple
replicas. For a logical group composed of n pro-
cesses (p1, ..., Pn), & group G is composed of

Fault-Tolerant Intra-Group Communication 885

o pi :
\@unication nD

Fig.2 Group.

n clusters ¢(p1), - - -, ¢(pn)- Each cluster ¢(p;) is
a collection of replicas pii, ..., pu, (Ii > 2fi+1)
of p; (i = 1,...,n) (Fig.2). Every two replicas
might not be assigned on the same processor
in order to make the faults independent. The
replicas communicate with each other by us-
ing the communication system. All replicas in
c(p;) behave identically, i.e. each replica is a de-
terministic finite state machine which receives
the same messages, does the same computation,
and sends the same messages to support the ro-
bustness to the Byzantine faults of processes.

The replica suffering from the Byzantine fault
sends incorrect messages, no message, or sends
to incorrect destinations. The Byzantine fault
of the replica can be detected by comparing the
messages sent by the replicas. A message m
sent by ¢(p;) = {pi1, - --, pa,} has to be deliv-
ered to the clusters of the destination processes,
say c(p;) = {pj1, - - -, Pj1, }- Each replica p;p, re-
ceives messages from multiple replicas in c(p;)
while p;, sends a message to multiple replicas
in another cluster. Some messages may be sent
by faulty replicas. Hence, the replicas in c(p;)
have to detect messages sent by the operational
replicas in ¢(p;). The replicas in c(p;) have to
receive messages from more than 2f; replicas
in ¢(p;) if at most f; replicas are faulty. If the
replicas in c(p;) receive the same message m
from more than f; replicas in ¢(p;), the replicas
can accept m. In addition, the replicas in ¢(p;)
consider that the faulty replicas have sent mes-
sages different from m sent by f;+1 operational
replicas.

5. Fault-Tolerant Ordered Delivery

In the group communication, the messages
sent in the logical group of processes p1, ..., pn
are required to be reliably and causally deliv-
ered to the application processes. In a group G
for the logical group, each process p; is repli-
cated to be a cluster of Il; (> 2f; + 1) replicas,
ie. ¢(p;) = {pir,---»pi;} (1 =1. ..., n) where
each p;; is a replica of p;.

886 Transactions of Information Processing Society of Japan

5.1 Assumptions

Faults on the processes are assumed to be
Byzantine faults and to be independent in this
paper. Due to the processor fault like memory
error, the process on the faulty processor may
behave incorrectly, i.e. does not satisfy the spec-
ification of the process. That is, the process is
viewed to suffer from the Byzantine fault. We
make the following assumption on the number
of faulty replicas.

(C1) At most f; (< ;) replicas are faulty at
the same time in each cluster ¢(p;).

Finally, the communication system is as-

sumed to satisfy the following properties:

(C2) The communication system is reliable
and synchronous), i.e. messages are nei-
ther lost, contaminated, nor duplicated,
and the maximum propagation delay () is
predetermined.

(C3) If a process p; sends p; a message m,
before my, p; receives m; before m;. That
is, the communication system supports the
ordered delivery of messages.

That is, if a replica p;; sends messages to Pjhs
Pjn receives all and only the messages sent by
Pik in the sending order.

In addition, we make the following assump-

tions:

(C4) Each message m has a unique identi-
fier. This is realized by using a process
identifier denoted by m.src and a sequence
number denoted by m.sn, given by a pro-
cess.

(C5) The replicas cannot change the identi-
fier of the message.

If each replica p;j, receives two messages m; and
my from different replicas p;; and p;s, respec-
tively, p;, can decide that m;, and m, are the
same messages if m;.sm = ms.sn and my.sr¢c =
may.src. For every pair of messages m; and m.
sent by p;, m;.sn < moy.sn iff m; is sent before
my. A faulty replica may change a content of m
but cannot change m.sn and m.src. If p;;, does
not receive messages from p;; in some predeter-
mined () time units after receiving a message
from some replica in ¢(p;), p;» considers that
Pjn receives a null message from p;.

5.2 Fault-tolerant delivery

We would like to consider the fault-tolerant
delivery of messages in the group G. Here, sup-
pose that a process p; sends a message m to p;
in G. That is, the replicas in c(p;) send m to
the replicas in ¢(p;) in G by some inter-cluster

May 1996

communication method. p; accepts m if at least
fj + 1 replicas in ¢(p,) accept m from c(p;). If
all the destination processes of m accept m, m
is fault-tolerantly delivered in G.

We would like to discuss how the clusters in G
communicate with each other. Suppose that a
process p; sends a message m to p; in G. Here,
we make a constraint that every replica in c(p;)
receive messages from ¢(p;) and decide by itself
if the received message is correct. We have to
think about which replica in ¢(p;) sends m and
to which replicas in ¢(p;) each replica in c(p;)
sends m. There are four ways for the replicas
in the cluster ¢(p;) to send m to c(p;) in G:

(B) each replica p; in c(p;) sends m to all

replicas pj1,...,pj;, ine(p;) fork=1, ...,
lia

(SB) each p;; sends m to a subset I;(pi) C

c(pj) fork=1,..., 1,

(MB) each replica p;x in a subset S(p;) C

¢(p:) sends m to all replicas in ¢(p;), and

(MSB) each replica p; in a subset T(p;) C

¢(p:) sends m to a subset K;(pix) C c(p)).
In the first way, each p;; sends m to l; replicas
in c(p;) (j # @). l; - |; messages are transmit-
ted to deliver m to c¢(p;) from c(p;) in the one-
to-one network. In the broadcast network, [;
messages are transmitted to deliver m to c(p;).
This method is named a broadcast (B) distri-
bution one.

The second way is that each replica p;; sends
m to not necessarily all the replicas in ¢(p;) but
only a subset I;(pi) C c(p;). Each replica pjp,
in ¢(p;) has to receive at least 2f; 4+ 1 messages
from c(p;) since f, replicas may be faulty in
c(p:). Hence, I,(p,) has to satisfy the following
constraints;

(1) Li(pa) U -+ U Ii(pu,) = c(p;), where

every I;(pix) # ¢, and

(2) 1 { pix | Psn € Li(pix) } | > 2fi + 1 for

every pjp.

The total number of messages transmitted from
e(pi) to clp) is | Li(pa) | +-+-+ | L(pa,) |. I
each p;x sends m to (2f; + 1);/1; replicas of D
the minimum number (2f;+1); of messages are
transmitted. Exactly saying, l; — [(2f; + 1),
modulo ;] replicas send m to [(2f; +1) I, /
l;] replicas and (2f; + 1)I; modulo I; replicas
send m to | (2f; +1)1;/1;] replicas if (2f; +1)l;
modulo l; # 0. This is a selective broadcast
(SB) distribution method.

In the third way, only a subset S(p;), not nec-
essarily all the replicas, in ¢(p;) send m to all

Vol. 37 No. 5

the replicas in ¢(p;). Since each replica p;x in
c(p;) is required to receive the messages from
more than 2f; replicas in ¢(p;), S(p:) includes
more than 2f; replicas in ¢(p;). Here, let g; be
|S(p,)| 1> g 2> 2fz +1. If gi = l;, this is the
same as the first B method. In the one-to-one
network, g; - l; messages are transmitted. In
the broadcast network, g; messages are trans-
mitted. This is named a mintmum broadcast
(M B) distribution method.

The fourth way shows the most general way.
Here, not necessarily all the replicas in c(p:)
send m to c(p;) like the SB method and the
replicas send m to not necessarily all the repli-
cas in ¢(p;) like the M B method. Only g; repli-
cas in a subset T(p;) C c(p;) send m. Each
replica p;x sends m to only a subset K i(pik) C
¢(p;). Since each replica p;n in ¢(pj) has to re-
ceive m from more than 2f; replicas in ¢(p;),
K ;(pix) has to satisfy the following constraints:

(1) K;(pa) U --- U K;j(pa,) = c(p;) where

K;(pir) = ¢ if pix does not send m,
(2) l{Pik' Djn Z Kj(p,'k) }| = 2f1+1 for every
Djh, and

(3) g = {pul K;(pix) # ¢} 2> 2fi + 1.
Here, we make a constraint that every replica
in T(p;) send m to e; replicas in c(p;), i.e. €
= (|Kj(pa)l +--- + |K;(p,)|) /g:- Totally g; -
e; messages are transmitted from ¢(p;) to c(p;)
where g; - e; / Li > 2fi+1,2fi+1 < g; < i,
and 1 < e; < l;. If g; = [;, this is the same
as the third M B one. The more replicas in
¢(p;) send, the less messages the replicas in c(pi)
send. In the broadcast network, g; messages
are transmitted as the M B. This method is
named a minimum selective broadcast (M SB)
distribution one.

Figure 3 shows examples of the B (1) and
SB (2) methods where four replicas of p; (I; =
4) send a message m to five replicas of p; (I; =
6) for fi = 1. In the B, every replica sends
m to all the replicas in ¢(p;). Hence, totally
4 - 6 = 24 messages are transmitted. In the
SB, pi1 and p;; send five messages, and p;3 and
pis send four messages. Each p;n receives three
messages from p;. Totally (2f; +1)-1; =3 -6
= 18 messages are transmitted. The number of
messages in the SB is less than the B.

The replicas which receive messages from
other clusters and send messages to other clus-
ters are referred to as input and output repli-
cas, respectively. In Fig. 3, every replica p is
an output one. In the M B and M SB methods,

Fault-Tolerant Intra-Group Communication 887

(1)broadcast (B)

(2)selective broadcast (SB)

Fig.3 Inter-cluster communication.

Table1l Number of messages.
Method | # of messages # /output #/input
B L lj l;
SB Qfi+D) -4 | Qfi + DG/ | 2fi+1
MB (2fi +1)- L i 2fi+1
MSB | (2fi+1)-l; | Qfi+1)/gi | 2fi +1
200
B
180 RSB,SSB,HSB ¢
160
9 140}
o
g 120t
©
E 100
<]
= 80 }
o
2 60
40 +
20 |

3 4 5 6 7 8 9 10 11 12 13 14
Number of replicas

Fig.4 Total number of messages.

g; output replicas send messages.

Table 1 shows the number of messages for
the distribution methods presented here, where
g; = (lt +2f,’ + 1)/2, I, = lj, and fi = fj =1.
Here, # of messages shows the total number
of messages transmitted from ¢(p;) to c(p;), #/
output and # /input show the numbers of mes-
sages sent and received by each output repica
pix and input replica pjs, respectively. From
Table 1, in the SB, M B, and M SB methods,
each replica receives less number of messages
than the B method. Figure4 shows the to-
tal number of messages transmitted from c(p;)
to ¢(p;) for l; where l; = l; and f, = fi =1

888 Transactions of Information Processing Society of Japan

w

14 B,MB
< S o~
2t 8 -
11}

” 10}

& 8r

g 7t

s 6f

* 5t
4.
3 -
2L
1t]
0 '

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of replicas
Fig.5 Number of messages sent by output replicas.

From Fig.4, in the SB, M B, and M SB meth-
ods, the same number of messages are trans-
mitted, but less number of message are trans-
mitted than the B. Figure 5 shows #/output
for I;. In the SB, each outpiit replica sends the
smallest number of messages. Therefore, the
SB method is the best one.

5.3 Ordered delivery

The communication system has to deliver
messages to the destination processes in some
well-defined order. The replicas in a cluster
c(p;) may receive messages in different orders
due to the communication delay and the Byzan-
tine fault of the replicas.
[Simply ordered delivery] The communica-
tion system supports a process p; with the
simply ordered delivery of messages iff for ev-
ery pair of messages m, and mo,

(1) if m; and m, are sent by the same pro-
cess, m is delivered before msy to p; if
mi.sn < my.SN,

(2) otherwise, m; is delivered to p; before
my if more than f; operational replicas in
c(p;) receive m; before ms. O

The communication system can deliver m; and
my in any order if m; and m, do not satisfy the
simply ordered delivery rule.

The communication system has to support
the causally ordered delivery 3 of messages for
the processes in the group G. First, we would
like to discuss the precedence relation among
the messages. As presented in the papers17):21)
each message m sent by p;; carries the confir-
mation field ack;, which denotes the sequence
number of the message which p;; knows p; ex-
pects to receive next from p, (h = 1,...,n).
The messages can be causally ordered as fol-

May 1996
m, Di1 Di2 Pi3 Djk
\l
|

mo %_
mo \
T T
\\-
v v v ¥ time

Fig.68 Causally ordered delivery.
lows 17
[Causally oredering rule] For every pair of
messages m; and my, m; causally precedes
me (my < my) if

(1) my.sn < my.sn if m; and mo are sent by

the same cluster, and

(2) my.sn < mg.ack;, if m, is sent by pix

and mg is sent by the other replica.)

It is straightforward that the following prop-
erty holds from the causally ordering rule.
[Proposition] On receipt of messages m; and
my, each replica p;; can decide whether m; <
mg, my < my, or my||ms. O

It is noted that the faulty replica can change
the confirmation fields ack in the messages
while it cannot change the sequence numbers.
This means that the faulty replica may send
the incorrect precedence information to other
replicas. For example, in Fig. 6, three replicas
Pi1s iz, and py3 in ¢(p;) send my to p;p in c(p;)
after receiving m;. That is, m; < ms. Here,
suppose that p;3 is faulty while p;; and p;, are
operational. p;3 sends ms with the incorrect
causality information m,; || my while p;; and
Pi2 send my with my < ms.

Suppose that all the replicas in ¢(p;) send ms
after receiving m;. On receipt of my from pjy, in
c(pi), pjn knows that m; < m, in py (written
as my < ma).

[Replica perception] Each replica Pjn per-
ceives that mi < ma if [{pi | my1 < ma}|
> fi+ L o
That is, each replica in ¢(p;) decides “m; <
m,"if more than f; replicas in ¢(p;) notify that
m; causally precedes ms, i.e. m; < ms.

[Process perception] Each process p; per-
ceives that m; < ms if at least f;+1 operational
replicas in ¢(p;) perceive that m; < ms. 0
In Fig. 6, p;n receives my from p;;, pio, and p;3.
pi1 and p;2 notify p;p of “my < my” by my. pi3

Vol. 37 No. 5

notifies p;p of “mi||mz” by m2 while p;x sends
mo after receiving m,, i.e. p;3 is faulty. Here,
suppose that f; = 1. p;n decides “m; < mo”
by the replica perception rule because fi+1
(= 2) replicas notifying p;n of “m; < m2”. If
the process perception rule is not satisfied, p;
considers m; || ma.
[Causally ordered delivery] The communi-
cation system supports the causally ordered de-
livery of messages iff m, is delivered before mq
to every common destination of m; and m; if
m; < mq for every pair of messages m; and
mo. d
There is still a case that some replica sends
mo after receiving m; and others send my be-
fore receiving m; in c¢(p;). If the process per-
ception rule is not satisfied for m, and ms in
pi, p; perceives m, || ma. If some replica pjn is
faulty in c(p;), one process p; may perceive “my
|| mo” while the other process p; perceives “my
< my” since p;, notifies the replicas in c(p;) and
c(py) of the different ordering information. Our
method guarantees that m, is delivered before
mo if m; < my. Figure 7 shows the communi-
cation among two clusters ¢(p;) and ¢(p;), each
of which includes three replicas. Suppose that
the replicas p;; and p;3 are operational but p;;
is faulty. p;; sends mo before receiving m, and
pi3 sends mq after receiving mi. pio sends mo
to ¢(p;) where p;2 notifies p;1 and pjo of m; <
my and p;3 of my || ma. By the process per-
ception rule, c(p;) decides that my < m,. This
shows that m; is delivered before m. if m; <
ms but m; may not causally precede m if m; is
delivered before mq. Thus, it is straightforward
for the following theorem to hold.
[Theorem] For every pair of messages m; and
mq, m, is delivered before m, to every common

destination process of m; and my if m; < ms.
O

Pi1 P2 Pi3 Pj1 Dj2 DPj3

| time

Fig.7 Causally ordered delivery.

Fault-Tolerant Intra-Group Communication 889

6. Concluding Remarks

This paper discusses how to support the
fault-tolerant and causally ordered delivery of
messages in the group in the presence of the
Byzantine faults of processes. Each process is
modeled to be a deterministic finit state ma-
chine and is actively replicated to a set of mul-
tiple replicas, named a cluster. In this pa-
per, we have discussed protocols for the inter-
cluster communication in the group and shown
the evaluation of them. The faulty replicas may
send different messages or no messages and may
include the incorrect ordering information on
the messages. We have discussed how to treat
the faults of the unreliable and incorrectly or-
dered delivery of messages.

References

1) Bernstein, P.A., Hadzilacos, V. and Good-
man, N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley (1987).

2) Birman, K.P. and Joseph, T.A.: Reliable
Communication in the Presence of Failures,
ACM TOCS, Vol.5, No.1, pp.47-76 (1987).

3) Birman, K.P., Schiper, A. and Stephenson, P..
Lightweight Causal and Atomic Group Mul-
ticast, ACM TOCS, Vol.9, No.3, pp.272-314
(1991).

4) Budhiraja, N., Marzullo, K., Schneider, B.F.
and Toueg, S.: The Primary-Backup Approach,
Distributed Computing Systems, ACM Press,
pp.199-221 (1994).

5) Chandy, K.M. and Lamport, L.: Distributed
Snapshots: Determining Global States of Dis-
tributed Systems, ACM TOCS, Vol.3, No.l,
pp-63-75 (1985).

6) Cooper, E.C.: Replicated Distributed Pro-
grams, Proc. 10th ACM Symp. on Operating
Systems Principles, pp.63-78 (1985).

7) Ellis, C.A., Gibbs, S.J. and Reln, G.L.: Group-
ware: Some Issues and Experiences, Comm.
ACM, Vol.34, No.1, pp.39-58 (1991).

8) Ezhilchelvan, D.P., Macedo, A.R. and Shri-
vastava, K.S.: Newtop: A Fault-Tolerant Group
Commaunication Protocol, IEEE CS Press,
pp-296-306 (1995).

9) Fischer, J.M., Nancy, A.L. and Michael, S.P.:
Impossibility of Distributed Consensus with
One Faulty Process, ACM TOCS, Vol.32, No.2,
pp.374-382 (1985).

10) Garcia-Molina, H. and Spauster, A.: Ordered
and Reliable Multicast Communication, ACM
TOCS, Vol.9, No.3, pp.242-271 (1991).

11) Higaki, H. and Soneoka, T.: Group-to-Group
Communications for Fault-Tolerance in Dis-

890 Transactions of Information Processing Society of Japan

tributed Systems, IEICE Trans.on Information
and Systems, Vol.LE76-D, No.11, pp.1348-1357
(1993).

12) Lamport, L.: Time, Clocks, and the Order-
ing of Events in a Distributed System, Comm.
ACM, Vol.21, No.7, pp.558-565 (1978).

13) Lamport, L., Shostak, R. and Pease, M.:
The Byzantine Generals Problem, ACM Trans.
Prog. Lang. Syst., Vol.4, No.3, pp.382-401
(1982).

14) Moser, L.E., Amir, Y., Melliar-Smith, P.M.
and Agarwal, D.A.: Extended Virtual Syn-
chrony, Proc. 14th IEEE ICDCS, pp.56-65
(1994).

15) Nakamura, A. and Takizawa, M.: Reliable
Broadcast Protocol for Selectively Ordering
PDUs, Proc. 11th IEEE ICDCS, pp.239-246
(1991).

16) Nakamura, A. and Takizawa, M.: Priority-
Based Total and Semi-Total Ordering Broad-
cast Protocols, Proc. 12th IEEE ICDCS,
pp.178-185 (1992).

17) Nakamura, A. and Takizawa, M.: Causally Or-
dering Broadcast Protocol, Proc. 14th IEEE
ICDCS, pp.48-55 (1994).

18) Powell, D., Chereque, M. and Drackley,
D.: Fault-Tolerance in Delta-4, ACM Operat-
ing System Review, Vol.25, No.2, pp.122-125
(1991).

19) Schneider, B.F.: Replication Management us-
ing the State-Machine Approach, Distributed
Computing Systems, ACM Press, pp.169-197
(1993).

20) Schneider, B.F.: Byzantine Generals in Ac-
tion: Implementing Fail-stop Processors, ACM
TOCS, Vol.2, No.2, pp.145-154 (1984).

21) Tachikawa, T. and Takizawa, M.: Selective
Total-Ordering Group Communication on Sin-
gle High-Speed Channel, Proc. IEEE ICNP-9/,
pp.212-219 (1994).

22) Takizawa, M.: Cluster Control Protocol for
Highly Reliable Broadcast Communication,
Proc. IFIP Conf. on Distributed Processing,
pp.431-445 (1987).

(Received October 2, 1995)
(Accepted March 12, 1996)

May 1996

Kenji Shima was born in
Japan on Jan 13, 1972. He re-
ceived his B.E. degree from the
Dept. of Computers and Sys-
tems Enginering, Tokyo Denki
University in 1995. He is now
a graduate student of the mas-
ter course in the Dept. of Computers and
Systems Engineering, Tokyo Denki University.
His research interest includes fault-tolerant dis-
tributed systems, computer networks, and com-
munication protocols.

A

N

Hiroaki Higaki was born in
Tokyo, Japan, on April 6, 1967.
He received the B.E. degree from
the Department of Mathemati-
cal Engineering and Information
Physics, the University of Tokyo
in 1990. From 1990 to 1996, he
was in NTT Software Laboratories. Since 1996,
he is in the Faculty of Science and Engineering,
Tokyo Denki University. His research interest
includes distributed algorithms, distributed op-
erating systems and computer network proto-
cols. He received IPSJ Convention Award in
1995. He is a member of ACM and IEICE.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku University,
in 1973 and 1975, respectively.
He received his D.E. in Com-
puter Science from Tohoku Uni-

C b d
versity in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He

is currently a Professor of the Department of
Computers and Systems Engineering, Tokyo

Denki University since 1986. From 1989 to
1990, he was a visiting professor of the GMD-
IPSI, Germany. He is also a regular visiting
professor of Keele University, England since
1990. He was a vice-chair of IEEE ICDCS, 1994
and serves on the program committees of many
international conferences. His research inter-
est includes communication protocols, group
communication, distributed database systems,
transaction management, and groupware. He
1s a member of IEEE, ACM, IPSJ, and IEICE.

