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Timed Reachability Analysis Method for Communication Protocols
Modeled by Extended Finite State Machines

SHIN’ICHI NAGANO,' YOSHIAKI KAKUDA' and TOHRU KIKUNO'

As communication systems rapidly progress, real-time performance is needed for communi-
cation protocols. In order to meet this requirement, communication protocols must incorpo-
rate real-time performance. This paper newly proposes a timed reachability analysis method
in order to verify timeliness property of communication protocols under the assumption that
times needed to execute events may be different from each other, but they are constant. The
proposed method is efficiently performed by both enumerating only event sequences that are
obtained through parallel execution of all possible events, and then by computing a process-
ing time of each event sequence. This paper also gives proofs for correctness of the proposed

method.

1. Introduction

As communication systems become large and
complicated, it is required that they have real-
time functions for processing among commu-
nication entities. For example, the functions
are indispensable for multimedia systems which
process continuous data, such as sound and im-
age data. In order to meet this demand, com-
munication protocols must incorporate real-
time performance!)-9)11):12)

In the typical previous methods for verifi-
cation of timeliness property of communica-
tion protocols, extended finite state machines
(EFSMs) and FIFO queues model communi-
cation entities and channels of communication
protocols, respectively, as in standard protocol
specification languages SDL and Estelle)8).
In addition, temporal logic represents temporal
execution orders of events, which are related
to timeliness property 2)5). Then, the meth-
ods produce a reachability graph by the con-
ventional reachability analysis, and then check
whether each event sequence satisfies require-
ments on timeliness property. However, the
reachability analysis does not consider a time
needed to execute each event, which denotes
either an operation in a process or a message
transfer in a channel, and causes the state ex-
plosion during production of the reachability
graph 6710 Fyrthermore, although temporal
logic can describe temporal execution orders of
events, it cannot represent timeliness property
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itself.

In order to resolve these problems, Kakuda,
et al.® have already proposed a verification
method for timeliness property of communica-
tion protocols. The method consists of the fol-
lowing two analyses: conventional reachability
analysis which enumerates all sequences of ex-
ecutable events, and timeliness analysis which
computes processing time of each sequence. In
addition, they assume that any event is exe-
cuted in one time unit. However, this assump-
tion is strict and unrealistic.

On the other hand, timed Petri nets are often
used to model communication protocols3)-13)
and to verify the timeliness property. Although
Petri nets are suitable for modeling the whole
behavior of communication entities, it is diffi-
cult to concisely describe communication en-
tities and channels individually, in particular
FIFO delivery of messages in channels, for prac-
tical use.

This paper newly proposes a timed reachabil-
ity analysis method in order to verify timeliness
property of communication protocols under the
assumption that times needed to execute events
may be different from each other, but they are
constant. By relaxing the assumption, the pro-
posed method can model execution of timers
and reception of messages, and analyze par-
allel execution of their events more precisely.
The proposed method is efficiently performed
by enumerating only event sequences that are
obtained through parallel execution of all pos-
sible events based on protocol models, and then
by computing a processing time of each event
sequence. This paper also gives proofs for cor-
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rectness of the proposed method.

Section 2 gives fundamental definitions on
communication protocols modeled by EFSMs
and FIFO queues, and Section 3 defines key
concepts of this paper: events and system
states. Next, Section 4 proposes a timed reach-
ability analysis method, and then Section 5
proves correctness of the proposed method. Fi-
nally, Section 6 summarizes the results of this
paper with some future work.

2. Communication Protocol

A communication protocol, shortly a proto-
col, consists of communication entities (called
processes) and communication channels (called
channels).

Definition 1 (Process)

A process P; is modeled by an extended finite
state machine (EFSM), P, = (S,s;,V,V;, Vr,
Vro,OP, B, ), satisfying the followings:

S ={s1,...,8p} : a finite set of states in P,.

sy € S : an initial state in P;.

V. = {v,...,v4} : a finite set of variables in

-

Vi ={vir,...,vq1} : a set of initial values as-
signed to variables in V.

Vr ={vr,...,vr.}: afinite set of timer vari-
ables in P;.

Tro = {vro,,---,vro,} : a set of the time-

out values for timer variables in V7.

OP = {op,...,0ps} : a finite set of opera-
tions. Each operation op; € OP (1 <t <
8) is “transmission” of messages from P; to
Pj, “reception” of messages from P; to P;,
“addition” and “subtraction” on variables
in P;, “starting timer” in P;, or “resetting
timer” in P;.

B = {by,...,b,} : a finite set of predicates.
Each predicate takes the value of true or
false. B includes predicates on timer.

0 =8 %xBxOP — §: a transition function
for P;. If P; staysin s, € S, b, € B is true
and op, € OP is executed, then P; enters
a new state sy € S. O

Definition 2 (Channel)

A channel Cj; from process If] to process Py is

modeled by an FIFO queue Cj; whose capacity

is finite and larger than zero. The capacity of

Cjr and the number of messages being deliv-
ered in C'}k are denoted by cap(C’;k) and |C}k|,
respectively. O
Definition 3 (Communication protocol)
A communication protocol P is defined by P =
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(P,C) with P ={P,|1<i< N} where P, is
an EFSM for process P;, and N is the number of
processes and C = {Cjx | 1 <j,k < N,j # k}
where Cji is an FIFO queue for channel Cjyi.

0

For convenience of denotation, P; and ]Si are
interchangeably used, and C;; and Cj; are also
done.

Definition 4 (Global state)
Let ps; denote a state of process P; and cs;i
denote a state of channel C;;. Let pred be a
predicate consisting of variables and the values.
The predicate pred does not include timer vari-
ables. To define in detail, state ps; = (sy, : pred)
implies that P; reaches state s, € S (see Def-
inition 1) and predicate pred holds at s,. On
the other hand, state cs;ix = (msg, : pred;,
.., M8Gn, : predy,) implies that each message
variable msg, (1 < n < m) in Cj; satisfies
predicate pred,, and that |Cjx| = m. csjp = €
denotes that C; is empty.

If a state of each P; isps; (1 <i< N)and a
state of each Cji iscs;x (1 <3,k < N, j#k),
then global state of the communication protocol
is represented by gs = (ps;, ..., psn, €812, ...,
CSN—1IN)- a

Figure 1 shows the example protocol which
consists of three processes and four channels.
Figures 1 (a), (b) and (c) describe specifica-
tions of three processes. In the description,
“” and “4” denote transmission and recep-
tion of messages, respectively. Next, predicate
“TO(vy = vho)” (i = 1,2) is true if and only
if the value of the variable “v}” is the same
as time-out value specified by a timer variable
“vko” in P;. Intuitively, this predicate repre-
sents a condition for the time-out of the timer.
We assume that the time-out value is quite
greater than the time needed for messages to
reach a receiver process from a sender process
and to return to the sender process. There is
no predicate other than predicates on timer in
this example.

Behavior of the example protocol is intu-
itively explained as follows: Processes P; and
P, simultaneously send message “req” to pro-
cess P3 through channels C,3 and Cs3, respec-
tively. Then, P3 waits for “req” at state s3; for
establishment of a connection between P; and
P35 or between P, and P;. If P receives “req”
from P, (P;), then P; replies “acpt” to P, (Ps)
through C3; (C32) and sends “rjct” to Py (Pp)
through ng (031).
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It TO(v21 = v2pe)
then -reqs

~— Transition

P; : Process

Cik .
) > : Channel

[3] : Time for Message
Transfer in Channel .

(d) Network
Fig. 1

Example of protocol.

Assume that one time unit is needed for
each process P; to handle any event except for
“counting timer”, three time units are needed
for each channel to transfer any message, and
twelve time units are set as the time-out value
of each timer.

3. Event and System State

Definition 5 (Event)

Events in a communication protocol consist of
process-type events to be executed in process
P, and channel-type events to be executed in
channel Cji. Additionally, process-type events
are divided into seven kinds of activities: (1)
“counting timer” in P; and (2) six operations in
P; (OP in Definition 1), that is, (2-1) “trans-
mission” of messages from P; to P;, (2-2) “re-
ception” of messages from P; to P;, (2-3) “ad-
dition” on variables in P;, (2-4) “subtraction”
on variables in P;, (2-5) “starting timer” in P,
and (2-6) “resetting timer” in P;. On the other
hand, channel-type events include only one kind
of activities: (3) “message transfer” in channel
Cjk. 0
Remark 1 Although timers are attached to
each process, timers are executed independent
of the process, and the execution of each timer
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Fig.2 Execution of event.

is represented by a “counting timer”.
For each timer, a pair of a timer variable v
and a time-out value vy is given (Vr and Vo
in Definition 1). The predicate on each timer is
defined as vy = vpo. By executing a “starting
timer”, zero is assigned to vy. Next, the value
of vr is incremented by the “counting timer”
along with progress of time. Zero is also as-
signed to vy by executing a “resetting timer”.0
A global time is introduced in order to de-
scribe execution of events and states of a pro-
tocol. We consider the following assumption in
order to make discussions clear.
Assumption 1 We assume that there is a dis-
crete global time for a communication protocol.
Any time can thus be represented by T time
units, where T is a constant nonnegative inte-
ger. Let the initial value of global time be zero.
We call such a global time the initial time. We
also assume that execution of communication
protocols starts at the initial time. In the fol-
lowing, global time is just denoted by time. O
Definition 6 (Execution of event)
Execution of events is described using an event
sequence chart as shown in Fig.2. Suppose
that an event e is triggered in process P; at
time T, and that the event e is completed at
time T3. We define an execution time of e as
time(e) = T3 — T}. Next, assume that the cur-
rent time is T5(7) < T» < T3). Then we define a
residual time of e as res_time(e) = T3 —T5. Ad-
ditionally, if 0 < res_time(e) < time(e) holds
at T, then we say that e is under execution at
T,. We assume that for each event e except for
“counting timer”, time(e) is given. The execu-
tion time of “counting timer” is the time-out
value set by “starting timer” under execution
of a protocol. O
In the example protocol shown in Fig. 1, for
example, execution times of events except for
“message transfer” and “counting timer” are
one time unit. Those of “message transfer” are
three time units.
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An event must be executable before it be-
comes triggered. Conditions that an event be-
comes executable are defined as follows.
Definition 7 (Conditions for executable
event)

(1) An event e is executable at the initial
time Ty if conditions for Case 1-1 or Case 1-2
hold.

Case 1-1 (e is “addition” or “subtraction”
on variables in process P;, or “starting
timer” or “resetting timer” in F;)
Condition : P; stays in state s at Tp and

a transition function (s, b,e) is defined
in P,‘.

Case 1-2 (e is “transmission” of messages
from process P; to process P; (i # j))
Condition : P, stays in state s at Ty and

a transition function d(s,b,e) is defined
in Pi'

(2) An event e is executable at the current
time T'(> Tp) if conditions for Case 2-1, Case
2-2, Case 2-3, Case2-4, or Case 2-5 hold.
Case 2-1 (e is “addition” or “subtraction”

on variables in process P;, or “starting

timer” or “resetting timer” in P;)

Condition : P; stays in state s at 7', and
a transition function 4(s,b,e) is defined
in Pi.

Case 2-2 (e is “transmission” of messages
from process P; to process P; (i # j))
Condition : For channel C;;, |Cj;| is

smaller than cap(C;;) at T, P; stays in
state s at 7', and a transition function
é(s,b,e) is defined in P;.

Case 2-3 (e is “reception” of a message
msg from process P; to process P; (j # t))
Condition : Event “message transfer” of

msg in channel Cj; has been completed
at T, any event in P; is not under execu-
tion at T, P; stays in state s at T, and a
transition function 4(s, b, e) is defined in
P;.

Case 2-4 (e is “counting timer” in process
F;)

Condition : Event “starting timer” in P;
has been completed at T'.

Case 2-5 (eis “message transfer” of a mes-
sage msg in channel Cj;)

Condition : Event “transmission” of
msg from process P; to process P; has
been completed at T. a

In the example protocol in Fig.1, for ex-
ample, “~req;” and “—regy” are executable
at the initial time. Then, four events,
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“starting timer(vy)”, “starting timer(v})”
and message transfers “(req;)” and “(regq)
are executable after completion of “—req;” and
“—reqy” (that is, time 1), respectively.

We assume that only one event except for
“counting timer” in each process can be exe-
cuted at the current time. Therefore, if more
than one event except for “counting timer” is
executable at time 7', then only one event out
of them can be triggered at T
Definition 8 (Conditions for triggered
event)

(1)  An event e is triggered at the initial time

Ty, if e is executable at Tj.

(2) An event e is triggered at the current
time T'(> Tp) if conditions for Case 1 or Case

2 hold.

Case 1 (eis a process-type event in process
P, except for event “counting timer” in F;)
Condition : Any event does not exist

under execution in P; at T except for
event “counting timer” in P; and e has
become executable at T'.

Case 2 (e is “counting timer” in P; or a
channel-type event in channel Cjy)
Condition : e has become executable at

T. a
Remark 2 Reception must be treated with
care. Let event e; be “message transfer” of
a message msg in channel Cj;. Suppose that
event ey except for “counting timer” is under
execution in the receiving process P; at the cur-
rent time T (see Fig.3). Then, event “recep-
tion” in P; (say e3) cannot become executable
at T (see Case 2-3 in Definition 7). However,
if res_time(es) = t at T and event ez can be-
come executable at a new time T + t, then ej
becomes triggered at T +¢. In the conventional
reachability analysis method, e3 is executed as
soon as e; has become completed. a
Remark 3 Since timers are essential for the
systems to possess real-time function, it is im-
portant to model and analyze execution of

Iy
1

Evente; Message
transfer e;

Reception ¢,

Time

Fig.83 Reception of message.
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timers accurately. In previous method, it can-
not be modeled that an event is executed after
a certain time elapses.
There are three kinds of events for each timer:
“starting timer”, “counting timer” and “reset-
ting timer”. Suppose that “starting timer” in
process P, becomes completed at the current
time 7. If “counting timer” in P; is not under
execution at T, then “counting timer” becomes
triggered at 7. Otherwise, “counting timer” is
forced to stop and again becomes triggered at
T. Next, when “resetting timer” becomes com-
pleted at T, “counting timer” is forced to stop
at T. Then, when “counting timer” becomes
completed at T', a predicate on the timer (see
Remark 1) becomes true at T except for the
following case.
Let events e; and e; be an event “counting
timer” in process P; and an event to be exe-
cuted in P; after e; is completed, respectively.
Suppose that event ez except for “counting
timer” is under execution in process P; at time
T. Then, time-out occurs at T if e, is completed
at T. In this case, we consider that the predi-
cate on timer is not true at 7' and e; becomes
executable after execution of ez is completed.
O

In the example protocol in Fig.1, for ex-
ample, “—req;” and “—req;” are triggered
at the initial time. Then, four events,
“starting timer(vy)” “starting timer(vi),
“(req1)” and “(reqz)” are triggered at time 1
because of their executability at time 1.

A system state is introduced in order to de-
scribe not only states of each process and chan-
nel but also parallel execution of events at a
time.

Definition 9 (System state)

A system state ss at the current global time
T in a communication protocol P is defined
by ss = (gs,ge), where gs = (psi,...,psn,
cS12,-..,CSN—1N) 1S a global state of P and ge
= {(e1,res_time(ey)), ..., (em,Tes_time(en))}
is a set of pairs of event which is under execu-
tion at T, and its residual time. a
Definition 10 (Initial system state)

A system state ssg = (gso,geg) with gsy =
(ps1,--.,PSN,CS12,...,¢8N 1N ) Of & communi-
cation protocol P satisfying three conditions
C1, C2 and C3 is called the initial system state.
Here, each s} (1 < i < N) is the initial state
of process P; and each v}, (1 < h < m) is the
initial value of variable v} in P;.

Condition C1: Vi(1<i< N)|[ ps; = (s}:
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vi = vl AL AU, =0t ) )

Condition C2: Vj,k (1 < j,k < N,j #
k) [csjk =¢]

Condition C3: ge=2¢ 0O

Condition C'3 implies that no event is under
execution.

Definition 11 (Next system state)

We define the next system state of a system
state (let it be ss; = (gs;, ge;)) depending on
whether ss; is the initial system state or not.

We first consider the next system state
when ss; is the initial system state. Let
geirn = {(e1,time(ey)),..., (e time(e,))}
where e,(1 < p < ¢) is an event triggered at the
initial time. Since no event is completed at the
initial time, global state gs; does not change.
Then, the next system state of ss; is defined
as $si+1 = (98:,9€;+1). We define this binary
relation as ss; F ss;47.

We next consider the next system state
when ss; is not the initial system state. Let
€1,...,eyn be events under execution which
have the smallest residual time (say t) out of
all events under execution in a system state ss;
at the current time 7. Now, suppose that t
time units elapse and ey,...,e,, have become
completed at a new time T + ¢. Then, one exe-
cutable event for each process, timer and chan-
nel can be triggered at T+t if any. Thus, a pro-
tocol enters a system state ss;;1 at time T + ¢,
in which the set of pairs of event and its resid-
ual time is changed. Then, we say that ss;y;
is a next system state of ss;, and represent this
binary relation by ss; k- ss;4+1. The method to
construct the system state ss;4; is described in
Section 4. O

The initial system state of the example
protocol is sso = (gep,gep) at the initial
time where gso = (s11, 821, 831,¢,¢€,€,€) and
ge = ¢. After making transmission events
“—req,” and “—reqy” triggered, the system
state at that time is changed to ss; =
(9s1,9e1) where gs; = gso and ge; =
{(—req1,1),(—regs,1)}. After completing
“—~req,” and “—req2”, and making four events,
“starting timer(v})”, “starting timer(v3)”,
“(req1)” and “(regs)” triggered, the system
state at time 1 is ss; = (gs2,ges) where
gs2 = (S12,822,831,T€q1,Teqz,€,€) and gey =
{(starting timer(vy),1), (starting timer(v2),
1), ((req1),3), ((reg2),3)}. For ssq, ss; and ss3,
ssg F ss1 and ss; F ssy hold.

Definition 12 (Reachable system state)
Let F* be the reflexive and transitive closure
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of . Then we say that a system state ss is
reachable from a system state ss’ if and only if
ss' F* ss. If ss’ is the initial system state, then

we just say that ss is reachable. a
Definition 13 (Equivalence of system
states)

Let two system states be ss; = (gsi, {(en,

res_time(e;1)), .., (€im,res-time(e;m))}) at a
time T; and ss; = (gs;, {({e;1,res_time(e;1)),
..y {ejn,res_time(e;n))}) at a time T;. If ss;

and ss; satisfy four conditions shown below,

then we say that ss; is equivalent to ss; and

represent this equivalence by ss; = ss;.

Condition FE1l: gs; = gs;

Condition E2: n=m

Condition E3: Vk [ e =ejx |

Condition E4: 3IT.Vk [ty -ty =T.] O

The conditions E1 through E4 in Definition
13 are indispensable in order to terminate the
proposed method when a loop exists in an event
sequence.

A global state does not include timer vari-
ables (see Definition 4), and execution of timers
are represented by “counting timer” (see Re-
marks 1 and 3). Thus, for each timer, a residual
time of “counting timer” is checked at condition
E4 in Definition 13.

4. New Verification Method

This section proposes a timed reachability
analysis method.

4.1 Assumptions

This subsection describes assumptions for the
proposed method and proofs of its correctness.
Assumption 2 We assume that the times
needed to execute events may be different from
each other, but they are constant time units. O

The following three assumptions are neces-
sary in order to guarantee that the number of
system states is finite.
Assumption 3 Each variable in process
takes integer and the number of the values

taken by each variable is finite. O
Assumption 4 The number of timers in each
process is finite. O

Assumption 5 Once any event e except for
“counting timer” becomes triggered at the cur-
rent time 7', it is never forced to stop until
time(e) time units elapse. m|

This assumption means that execution of the
event e is not interrupted by the other events.

The following two kinds of data are input for
the timed reachability analysis method: (1) A
communication protocol P to be analyzed, in-
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cluding a time-out value for each timer. (2)

time(e;) for each event e; except for “counting

timer”. (time(e;) and time(e;) (i # j) of two
different events e, and e; may be different, but
all of them are constant.)

The proposed method enumerates all possible
sequences of events from these input. Event
sequence charts graphically represent sequences
of events with respect to time.

4.2 Construction of Event Sequence

Chart

Next, we propose the method for construc-
tion of event sequence charts. This method is
recursively described in the following.
Method 1 (Construction of event se-
quence chart)

(1) (Base Step) Assume that a protocol P
stays in the initial system state ssp =
(gso,geo) at the initial time Ty  where
geo = .

(1-1) Compute events ey,..., e, which be-

come executable and triggered in ssp.

(1-2) Generate the next system state
ssy = (gso,ge1) at Tp, where ge; =
{{e: time(e;)) | 1 < i <m}.

(2) (Induction Step) Assume that P staysin a
system state ss = (gs, ge) at the current time
T(> Tp), where ge = {{e1,t1)),...,{ém,tm)}-
(2-1) Select {(ei,,t;,),...,{ei, t:,)} C ge

such that residual times t;, (1 < p < q)
are the smallest among t; (1 < ¢ < m).
Note that t;, = ... =t;,, and let them be
t.

(2-2) Proceed time by t, and then the cur-
rent time is T+ t. Then, events e;,,...,¢€;
become completed (see Definition 6).

(2-3) Let a set of all events which become
executable after completion of all e;, (1 <
p < ¢) be E. For each process, timer
or channel, select one executable event
from E. Let it be e, (1 < 7 < s).
For each combination of executable events
(€),...,e.,...,e.), make each e} (1 <7 <
s) simultaneously triggered in a process, a
timer or a channel at T + ¢, and perform
substeps (2-4) through (2-5). Thus, if more
than one event in a process is executable at
T + t, then more than one system state is
generated at T + t. This case is discussed
in Section 4.3.

(2-4) Generate a next system state ss’ =
(gs',ge') at a new time T + t, where gs’'
is a new global state which P enters from
gs and gel = {(eiatl - t) | (eiati) €

q
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T $ ss;
(a)
Time
P, PP
T 555 €] €
€;
T+t 455, l ' (b)

\

Time

Fig.4 Construction of event sequence charts.
ge, 1 <1 < m, i # i,...,1 # i} U
{{e}, time(e))) | 1 <7 < s}.

(2-5) If ge' = ¢, or the system state equiva-
lent to ss’ has been already generated, stop
generation of the next system states of ss’.
The case of stopping by the equivalence is
also explained in Section 4.3. Otherwise, go
to (2) with system state ss’ at the current
time T + t.

An example of the event sequence chart in
Fig. 4 briefly explains the method to construct
an event sequence. Assume that a system state
at the current time T is ss; = (gs;, ge;) where
ge; = {(e1,t1),(e2,t2),(e3,t3)} as shown in
Fig.4 (a). Then, events e; and e, in ss, are
under execution at T and event ez in ss, is
triggered at T. Assume that ty is the small-
est of three residual times t,, t; and t5, and
only event es is executable after completion
of e;. After t; time units elapse, e; becomes
triggered and a new system state ss;;; at a
time T + t; is generated. Then, ss;;; is de-
fined by ssit1 = (g8i41,9€i1) where ge;1; =
{({e1,t1 — t2),(ea,ts), (e3,t3 — t2)} as shown in
Fig.4 (b).

4.3 Branching and Merging

In construction of event sequence charts, two
special cases should be considered: branching
from a system state and merging into a system
state.

The branching from a system state is ex-
plained by using the same example in Sec-
tion 4.2 (see Fig.5(a)). Assume that after
completion of ez, two events in process P
become executable. Let them be events e,
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and es. In this case, the following two new
system states are generated at time T + t5:
(1) system state ss,41 = (gS;+1,g€:41) where
geir1 = {(e1,t1 — t2), (eq,t4), (e3,t3 — o)}, (2)
system state ss; = (gs;,ge;) where ge; =
{(e1,ty —t2), (es,t5), (e3,t3 — t2)}. By comple-
tion of event e2, the event sequence is branching
out to two event sequences as shown in Fig.5
(b). In the following, we call such a system
state the branching system state.

On the other hand, the merging of system
states is explained by using an example in
Fig. 6. Consider two system states ss; at time
T; and ss; at time T in two different event se-
quences as shown in Fig.6 (a). One is ss; =
(95:,9¢:) where ge;, = {(e1,t1),{e3.t3)}, and
no event becomes triggered at ss; by comple-
tion of event e;. The other is ss; = (gs;, ge;)
where ge; = {(e;,t}),(es,t5)}, and no event
becomes triggered by completion of event e,.
Assume that relations t{ — ¢, = t; — t3 and
gs: = gs; hold. In this case, ss; is equivalent to
ss; and the two event sequences following sys-
tem states ss; and ss; become the same (this
will be proved by Lemma 3 in Section 5). Then,
two event sequences are merged by continuing
construction of only one event sequence chart
(and stopping further extension of other event
sequence chart) as shown in Fig. 6 (b).

4.4 Application Results

We explain the result obtained by applying
the timed reachability analysis method to the
example protocol in Fig. 1. A part of event se-
quence charts are shown in Fig.7. The pro-
cesses and channels, and the system states are
enumerated on the horizontal axis and the ver-
tical axis, respectively. A system state corre-
sponds exactly to a horizontal line and an event
sequences are shown by vertical lines.

First, the proposed method starts at the ini-
tial system state sso in Fig.7 (a) at the ini-
tial time. Since the current time is the initial
time, two events “—req;” in P; and “—regy”
in P, are triggered at the initial time and the
protocol enters the next system state ss; at
that time. After one time unit elapses, these
two events are completed and four events be-
come triggered: “starting timer(vk)” in Py,
“starting timer(vi)” in P,, message transfer
“(req1)” in Cy3, and message transfer “(reg,)”
in Cy3. Then the protocol enters the next sys-
tem state sss.

In a system state ssy at time 2, message
transfer “(reg;)” in Cy3 and “(regy)” in Cyy are
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under execution. Since their residual times are
2 time units, they become completed at time
4. Then, “+req;” and “+reqy” in P; become
executable. However, they cannot be simulta-
neously triggered in P3. Therefore, two system
states ss4 in which “+req,” is triggered, and
ssy in which “+req,” is triggered, are gener-
ated at time 4. Thus, the event sequence chart
in Fig. 7 (a) is branching out to two event se-
quence charts in Figs. 7(a) and (b).

P P P
L les ¥er les
7£ime“] (®)
Merging.

4.5 Comparison between Reachability
Analysis and Timed Reachability
Analysis

The well known reachability analysis is to

enumerate all global states reachable from the
initial state while the timed reachability analy-
sis is to enumerate all system states reachable
from the initial state. The reachability analy-
sis is done by investigating temporal execution
orders of events without considering the time
needed to execute each event. It is thus diffi-
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Fig.7 Event sequence charts of example protocol.

cult to analyze parallel execution of events, es-
pecially those on timers and reception of mes-
sages. By introducing residual times of events
in Definition 6 and giving conditions for exe-
cutable events and triggered events in Defini-
tions 7 and 8, the proposed timed reachability
analysis method enables precise analysis of par-
allel execution of events for communication pro-
tocols with constant times to execute events.

The typical method for reachability analy-
sis finds all executable events at each reachable
global state and generates all permutations of
such executable events. As a result, the number
of generated global states becomes very large
along with increase of the size of the commu-
nication protocols. On the other hand, since
the proposed method uses not only execution
orders of events but also the times needed to
execute events, it can precisely analyze paral-
lel execution of events. It is thus expected that
the number of system states to be generated
becomes smaller than that by the reachability
analysis method.

5. Correctness of Proposed Method

This section proves the correctness of the
timed reachability analysis method.
Definition 14 (Correctness)

We say that for a given communication proto-
col P the timed reachability analysis method
is correct if it can enumerate all system states

reachable from the initial system state of P. O
Lemma 1 For any system state ss in the pro-
tocol P, the proposed method need not gen-
erate any new system state for enumeration
of reachable system states until at least one
of events in ss under execution becomes com-
pleted.

Proof: Assume that the protocol P stays in
a system state ss = (gs,ge) at time T where
ge = {{e1,t1),...,{em,tm)}. Let asystem state
at time T+t (0 <t < tpmin) be ss’ = (g5, ge’)
where t,,,,, = min{t; | (e;,t;) € ge,1 <i < m}.
From Assumption 5, if e; (1 < ¢ < m) is not
“counting timer” in process P;, then e; cannot
be completed at any time T+ ¢ (0 <t < tyin).
If e, is “counting timer” in P}, e may be forced
to stop by completion of event “starting timer”
or “resetting timer” in P;. However, if an event
er (1 < k < m,k # i) is “starting timer”
or “resetting timer” in P;, e; cannot become
completed at T + t as mentioned above. On
the other hand, any event including “starting
timer” and “resetting timer” in P; cannot be-
come triggered at T+t (0 < t < t;,;n) because
it can become triggered after completion of the
other event (see substep (2-3) in the proposed
method). Therefore, “counting timer” is not
forced to stop at T' + t. Thus, global state gs
does not change, that is, gs = gs’. Further-
more, since ge' = {(e1,t1 —t),...,(em,tm — 1)},
the system state ss’ at T + t is equivalent to
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system state ss at T, that is, s’ = ss ac-

cording to Definition 13. Therefore, during

T+t (0<t< tnin) the proposed method need

not generate any new system state for enumer-

ation of reachable system states. After event

e; (1 <1 < m) such as res_time(e;) = ty,:, be-

comes completed and new events become exe-

cutable and triggered if any, a new system state
is generated at a new time T +¢,,,;,, as the next
system state of ss. |

Lemma 2 For any system state ss of the pro-

tocol P, the proposed method enumerates all

possible next system states of ss.

Proof: Assume that the protocol P stays in

a system state ss = (gs, ge) at time T, where

ge = {(e1,t1),-- -, (em,tm)}.

(1)  Assume that only one event e; becomes
completed at a new time T +¢; where ¢, is the
smallest of all t;, (1 < h < m), and that P
enters a global state gs' after completion of
e;. Let g66 = {(eh’th —tl> I <€h,th) €ge,1 <
h < m,h # ¢}. This corresponds to p =1 in
(2-1) of the proposed method.

Because of Lemma 1, based on e; and exe-
cutable events after completion of e;, the next
system state is determined. In the following,
kinds of activities of e; are classified into Case
1, Case 2, Case 3, and Case 4 according to
Definition 5. Then, which events become ex-
ecutable after completion of e; are analyzed.
Case 1 (e; is “counting timer” in process

P;, “addition’ or “subtraction” on variables

in P;, or “reception” of messages from pro-

cess P, to P; (k # 7))

The events which can become executable

after completion of e; are restricted to

process-type events in P; (say e') except
for “counting timer” in P; and “reception”
of messages from P; to P because of Cases

2-1 and 2-2 in Definition 7.

(a) Ife’ becomes triggered at T'+t;, then
the next system state ss| = (gs’, ge}) is
generated at T + t;, where ge| = gep U
{(€', time(e"))}.

(b) Otherwise, the next system state
ssy = (gs',ge,) is generated at T' + t;,
where ge), = geg

Case 2 (e; is “transmission” of message

from process P; to process Py (j # k))

The events which can become executable

after completion of e; are process-type

events in P; (say e}) except for “counting
timer” in P; and a channel-type event in

channel Cj; (say e3) because of Cases 2-1,
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2-2, 2-5 in Definition 7.

(a) If both e} and e); become trig-
gered at T + t;, then the next sys-
tem state ss| = (gs’,ge]) is gener-
ated at T + t;, where ge| = geyg U
{(e}, time(e))), {ep, time(e}))}.

(b) If only e} becomes triggered at T +
t;, then the next system state ss, =
(gs', ges) is generated at T + t;, where
ge, = gy U { (e}, time(e} ) ).

(c¢) If only e, becomes triggered at T" +
t;, then the next system state ss; =
(g9s', gey) is generated at T + t;, where
gel, = geh U {{ep, time(e})) ).

(d) Otherwise, the next system state
ssy = (gs', gep) is generated at T + ;.

Case 3 (e; is “starting timer” in process

Py)

The events which can become executable

after completion of e; are restricted to a

process-type events in P, (say e}) except

for “counting timer” in P; and “counting

timer” in P; (say e)) because of Cases 2-1,

2-2 and Case 2-4 in Definition 7.

(a) If both €] and e}, become triggered
at T + t; and “counting timer” in FP;
(say e; (1 < k < m,k # 1)) is un-
der execution, then the next system state
s8] = (gs',ge}) is generated at T + ¢t;,
where ge| = (geq — {(ex,tx — t:)}) U
{{e}, time(e})), (5, time(ey)) }. Note
that for a timer if “counting timer” in
P; is under execution, it is forced to stop
by “starting timer” in P; and again be-
comes triggered (see Remark 1).

(b) If both e} and e, become triggered
at T + t; and “counting timer” in P;
is not under execution, then the next
system state ss, = (gs',ge5) is gen-
erated at T + t;, where ge), = gey U
(€}, time(e})), (€5, time(e})) ).

(c¢) Ifonly e, becomes triggered at T +1;
and “counting timer” in P; (say e (1 <
k < m,k # 1)) is under execution, then
the next system state ssh = (gs’, ge3) is
generated at T + t;, where gef; = (geg —
{{ex,tx — ti)}) U {{e5, time(e3)) }.

(d) Ifonly e, becomes triggered at T'+1;
and “counting timer” in P; is not un-
der execution, then the next system state
ssly = (gs', ge}) is generated at T + t;,
where ge}, = gey U {{e}, time(e}))}.

Case 4 (e, is a channel-type event, that is,

“message transfer” in channel Cjy)
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The events which can become executable
after completion of e; are restricted to “re-
ception” of messages in process Py (say €')
because of Case 2-3 in Definition 7.
(a) If no event is under execution in P
at T + t; and € becomes triggered at
T + t;, then the next system state ss) =
(gs’, ge}) is generated at T + t;, where
g€} = geb U {(e/, time(e'))}.
(b) 1If an event € is under execution in
Py at T + t; and res_time(e”’) at T + t,
is t", then the next system state ssh =
(gs', geg) is generated at T+t;. Note that
since e” is under execution in Py at T +t,,
e’ cannot become executable at T +¢; (see
Case 3 in Definition 8). Additionally, if
e’ can become triggered at T + t; + t",
a new system state ssy = (gs”', ge}) is
generated at T + t; + t", where gej, =
{(ej,t; —t") | (e5,t;) € gep,e; # €'} U
{(€',ttme(e’))} (see (3) in Definition 9).
(c) Otherwise, the next system state
ssy = (gs', gey) is generated at T + t,.
(2) We assume that more than one event be-
comes completed at T + ¢, where t is the
smallest of all ¢; (1 < j < m), and that
P enters a global state gs’ after their com-
pletion. This corresponds to p > 1 in (2-1)
of the proposed method. Let such events be
€iyy--s€ipy---y €. Since each e; (1 < p <
q) is executed in a process, a timer or a chan-
nel, all e;, (1 < p < g) are independently
executed. For each event e;, (1 < p < g),
executable events after completion of e; are
obtained in the same way as (1). Thus, at
most one executable event becomes triggered
in each process, timer or channel. Let a com-
bination of such events triggered simultane-
ously be (ef,...,el,...,e.). The next system
states are generated for all the combinations.
0
Lemma 3 If two system states generated as
the next system states are equivalent, the se-
quences of system states reachable from one of
the two system states are the same as those
reachable from the other.
Proof: Without loss of generality, the two
equivalent system states are denoted by ss =
(g9s,{({e1,t1),...,(em,tm)}) at time T and
ss' = (ge, {(e1,t1 + To), ..., (€m,tm + T.)}) at
time T according to Definition 13. If the small-
est residual time out of ¢1,...,¢,, iS t,;:n, then
that out of t; + T, ..., t;m + Tt iS tymin + L.
We can proceed time T’ by T, without com-
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pletion of any event e;,...,e, because T. <
tmz'n + Tc-

Then, we obtain a system state
ss" = (gs,{(e1,t1),...,(em,tm)}) at a new
time T'+7T,.. Since all components of ss” are the
same as those of ss, sequences of system states
reachable from ss” are the same as those reach-
able from ss. Therefore, this theorem holds. O
Theorem 1 The proposed method enumer-
ates all possible system states reachable from
the initial system state if the number of system
states is finite.

Proof: The proof is recursively done with re-
spect to time. The base step is obvious. In the
induction step, we assume that a system state
ss at time T, which is a next system state of
the initial system state ssp, is generated. Then,
Lemma 2 guarantees that all the next system
states at time T’ (> T) are generated. These
system states are reachable from ssg according
to Definition 12. We also assume that after a
system state ss at T is generated, a system state
ss’ at time T" which is equivalent to ss is gen-
erated. Lemma 3 guarantees that sequences of
system states reachable from ss are the same as
those from ss’ and the latter is no longer nec-
essary for generation. From the base step and
the induction step, this theorem holds. O
Lemma 4 The number of system states is fi-
nite.

Proof: A system state consists of a global state
and a set of pairs of an event and its residual
time. Since the number of states in each pro-
cess, the value of each variable, the capacity
of each channel, and the number of kinds of
messages are finite, then the number of global
states is finite. On the other hand, since the
number of timers and the operations in pro-
cess are finite (see Assumption 4 and OP in
Definition 1), and the number of kinds of mes-
sage is finite, then the number of kinds of events
is finite. Additionally, a residual time of each
event is bounded by the maximum execution
time out of all events. Since the maximum ex-
ecution time is finite, the residual time of each
event is finite. Therefore, the number of system
states is finite.

Theorem 2 The proposed method enumer-
ates all possible system states reachable from
the initial system state.

Proof: It is obvious from Theorem 1 and
Lemma 4. O

6. Conclusion

This paper has proposed a timed reachability
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analysis method for communication protocols
with times needed to execute events and given
proofs for correctness of the proposed method.
Timeliness property of communication proto-
cols can be verified by the proposed method be-
cause executable events are defined using times
and parallel execution of such events are pre-
cisely analyzed. Compared with the conven-
tional reachability analysis method, we expect
that the proposed method has the following ad-
vantages: (1) The number of event sequences to
be enumerated is decreased due to parallel ex-
ecution of events, and (2) The length of event
sequences is decreased due to introduction of
equivalent system states. In order to show the
expected advantages of the proposed method,
experimental evaluation should be done as fu-
ture work.

The proposed method assumes that for each
event the upper bound is the same as the lower
bound. The more general case is interesting
from a viewpoint of practice. However, if the
upper and lower bounds of a time needed to ex-
ecute each event are given distinctly, the num-
ber of execution orders of events to be con-
sidered increases more than that in the pro-
posed method. This consideration is reduced to
the increase of branching event sequences. Al-
though the complexity of enumeration of event
sequences becomes high, the key ideas of the
proposed method are applicable to this case.
Further considerations on this more practical
case also remain as future work.
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