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A Systematic Approach to Parallel Program Verification

TADAO TAKAOKA!

In this paper we investigate parallel program verification with directed graphs and assertion
matrices. The parallel computational model is that with shared variables and constituent
processes run asynchronously. A program graph is a direct product of the flowcharts of
constituent processes. The vertices of the graph correspond to global control points of the
given parallel program, and edges correspond to an execution of one statement of one process,
whereby the control moves in the process. We attach assertions to the vertices in the graph,
and statements to edges which are either assignment statements or branching operations. If
we can verify the consistencies of the assertions over edges, we say the set of assertions are
induced by the parallel program and the pre-condition. It is usually difficult to find these
assertions. When we only have two processes, the set of assertions becomes an assertion
matrix. We show that the assertion matrix can be decomposed into an independent part and
dependent part uniquely. Using this property, we can prove the independent part first and
then the dependent part using the information so far obtained, that is, incrementally. Finally
a new concept of eventual correctness is introduced, which states the partial correctness of
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the parallel program and its eventual termination.

1. Introduction

Parallel programs are hard to design. Parallel
program verification is even harder. Since the
1970’s, many efforts have been made to estab-
lish easy methods for verification. If we wish
to verify a parallel program with n concurrent
processes, we have to take into consideration
the state space consisting of the values of pro-
gram variables and current control points of the
processes, whose size is very large, exponential
in n.

To avoid this complexity, Hoare*) and Mil-
ner!!) gave parallel computational models in
which the constituent processes cooperate with
each other only through communication. On
the other hand, we sometimes face a situa-
tion where processes cooperate through shared
memory. One such example is a parallel imple-
mentation of on-the-fly garbage collection algo-
rithm 2.

In this paper we consider a parallel compu-
tational model in which the constituent pro-
cesses share global variables and proceed asyn-
chronously mainly based on the Ada tasks.
Also we consider synchronization mechanisms
in our model. Manna and Pnueli!?) gave a
proof technique based on possible execution
traces in the state space including program vari-
ables and control points. In their framework the

t Department of Computer Science, Ibaraki Universi-
ty

1244

lengths of traces have no upper bound related to
the size of the given parallel program. The state
space method is also employed in the analysis of
deadlocks by Petri nets by Murata !?), in which
a direct product of Petri nets is drawn visually
to analyze control flows of a parallel program.

Our approach is based on the assertional
method, which was originated for sequential
program verification by Hoare® and Floyd 3.
There are a number of authors who used the
assertional method for parallel program verifi-
cation. They include Ashcroft!), Owicki and
Gries'®), Lamport®), etc. Generally speaking,
we can not verify a parallel program by check-
ing the consistencies of assertions on program
variables in the constituent processes locally,
since an assertion in one process is affected by
where other processes are currently being ex-
ecuted. Ashcroft employs a global assertion
which incorporates all control points of all pro-
cesses. Owicki and Gries employ auxiliary vari-
ables to indicate the current control points of
the processes. Lamport uses what are called
at-predicates, which are essentially predicates
of program counters of the processes.

In this paper we use a more visual method
based on directed graphs. We introduce the
concept of program graph, which is a direct
product of flowcharts of the constituent pro-
cesses. This graph-theoretic approach was used
in Keller®, Joseph, et al.”), Paczkowski!%),
Takaoka !9), etc. In this method, assertions are
given to the vertices of the graph and the con-
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sistencies of assertions over the edges are veri-
fied. The number of vertices, and consequently,
assertions, of the directed graph is very large.
If we have two processes with m and n con-
trol points, for example, we have to give mn
assertions. Some efforts to reduce the num-
ber of these assertions are made in the above
mentioned papers. We propose in this paper
the concepts of assertion matrices and incre-
mental verification for parallel program verifi-
cation with two processes. The (i, j)-element of
the assertion matrix is an assertion for the ver-
tex corresponding to control points ¢ and j in
the two processes. We show that a given asser-
tion matrix is decomposed into an independent
part and dependent part uniquely. Using this
decomposed form, we can verify the indepen-
dent part first, which is rather easy, and then
the dependent part, that is, incrementally. In-
tuitively speaking, the independent part is the
set of assertions that hold in each process inde-
pendently. Using a few examples, we show how
this new technique reduces our efforts for paral-
lel program verification. We also give a logical
basis for the new technique. Finally we give
a new concept of eventual correctness which is
partial correctness plus eventual termination.

2. Programming constructs and labels

The basic syntax of our parallel programs is
the same as that in Ref. 13). A parallel program
S consists of processes shown as follows:

S=(Si ... || Sal-

In this construct, Si,---,S, are called pro-
cesses, which are executed concurrently. Each
S; mainly follows the syntax and semantics of
PASCAL or Ada and is executed sequentially.
We introduce labels in each S; in such a way
that a label is put at the control point before
each statement and after the last statement.
Control points are identified by these labels.
The parallel computational model adopted here
is that S;’s share global variables and are exe-
cuted asynchronously if there are no synchro-
nization statements.

We use the statement await B for indirect
synchronization and the pair accept(k) and
call(k) for direct synchronization primitives,
where k is to identify those primitives. If
the await B statement is in process S; and
B =false, it waits at this point until B is made
true by some other process. This is viewed
as synchronization using shared memory. If
accept(k) and call(k) are in processes S; and
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S, the two processes synchronize directly using
program counters. This is a simplified version
of rendezvous in Ada, that is, a buffered block-
ing wait.

Let a be the label of control point before
boolean condition B and 3 and v are those at
the exits of B with true and false respectively.
Then we define the connective between a and
3 by B and that between a and vy by —=B. Let
a and 3 be the labels of control points before
and after assignment statement z := e. Then
the connective between a and J3 is defined by
T :=e.

Let a and 8 be the labels of control points
before and after accept(k) in process S; and
v and & be those before and after call(k) in
process S;. Then the connective between («, )
and (3, d) is defined by accept(k)-call(k) which
is abbreviated by syn(k).

Definition 1 Let L,,---, L, be the sets of
control points of processes Sy,---,S, in a par-
allel program S = [Si|| --- ||S»]. The program
graph G = (V,E,C) for S is a directed graph
with the set of vertices, V', that of edges, F,
and the mapping C from E to connectives in
S, where

V=L x --- x L, (direct product)

E = {(§,€') | There is a connective
from £ to &' for €,& € V'}

C(€,¢') is the connective from £ to &'

There is a connective from (&;,---,&, --,€n)
to (&,---,€&,---,&,) if there is a connective
from & to & in S;. There also is a connec-
tive Syn(k) from (&17"')gi""agj""vgn) to
(&1, €L, &y 5 6n) syn(k) exists be-
tween (£;,§;) to (§,¢))-

Connectives are attached to edges in G as la-
bels. The execution of a parallel program cor-
responds to traversing over the program graph.
Our atomicity assumption for assignment state-
ments is that the evaluation of right-hand side
and the storing operation are separate ones. If
we have data dependency in two assignment
statements £ := e;, and y := ez in two pro-
cesses, we can expand them as 2; = e}; T := 23
and z9 := eg; Yy := z3. Alternatively for short
cut we can have diagonal edges to execute these
statements; two diagonal edges corresponding
to the two statements if x and y are the same
variables, and one diagonal edge corresponding
to the parallel execution of the two statements
if £ and y are different. If there is no data
dependency, the parallel execution is equiva-
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Fig. 1

Proof graph for Example 1.

lently divided into two edges, that is, interleav-
ing. A similar definition of parallel execution
of more assignment statements can be made.
We mainly focus on parallel programs with two
processes.

Definition 2 The valid triples for connec-
tives are defined as follows:

Assignment {P*}z := e{P}
Parallel assignment {PZ'Y }r :=e; par
yI:(Q{P}
Condition B {P}B{P A B}
Condition B {P}-B{P A -B}
Synchronization {P}syn(k){P}.
In the above P{'Y means the simultaneous

substitution of e; and e, for z and y in P, and
T := e; par y := es means the parallel execu-
tion of z :=e; and y := es.

In addition, we use frequently the following
consequence rule for valid triples with connec-
tive C.

[)31%7{PJ(HF§LIB:)Q
{P}C{Q}

Definition 3 The proof augmented graph
(proof graph, for short) for {P}S{Q}, where
S is a parallel program S = [a1: S1; B ||
o+ || an: Sp; Bn:), is a program graph of S
with assertions P attached to each vertex £ in
such a way that

P=P_, where a = (0, -, ap)
Q=PF,, where 8= (8, --,5,)
{PYC(E, €)}{P(£)} for all (£, &')€E.

If we have a proof graph for {P}S{Q}, we can
say we have established the partial correctness

of {P}S{Q}.
Example 1 The proof graph for
{true}
l:z:=1; 2 || 1: y:=2; 2
{z=1Ay=2}

is given in Fig. 1.
Example 2 The proof graph for
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x:y:lvx:yzz
v(ix=2Ay=1)

V(ir=2Ay=1)}

is given in Fig. 2.
The three “or” ed conditions at (2,2) corre-
spond to the three incoming edges. From this
point on, we assume that an assignment state-
ment is atomic for simplicity.
Example 3 A proof graph for a parallel
program
[S1= 1:z2:=1;

2 : accept(1);
3:

|| S2= 1:call(l);
2:1:=2
3:
]
is given in Fig. 3.
Example 4 A proof graph for a parallel
program

S =
[S1 = 1: while £ > 0 do begin
2: x:=zx-1;
end;
3:
I
So=1: z:=0;
2:

is given in Fig. 4.
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true x=0vx=-1

x:=x-1

x<0 x=0vx=-1
Fig.4 Proof graph for Example 4.

3. Logical background

We use only integer values for numerical val-
ues in our program. Since assertions are at-
tached to vertices in the program graph, they
depend only on program variables. For asser-
tions P and @, if P D @, we say P is stronger
than or equivalent to Q. If P D Q and P # Q,
we say P is stronger than Q.

Let the labels of control points in S; be given
by {1,2,---,m;} and the initial vertex in the
program graph be given by &, = (1,1,---,1).
A path is a sequence of edges.

Definition 4 Let assertion P, be given to
each vector €. The set of assertions {F,|§ € V'},
which is denoted by (F), is said to be induced
by program configuration (Pp, S), where P, is
the precondition of a parallel program S, if

ROE,
{P}C(&, &) {Py}forall (§ &) € E.

Note that if n = 1, (F,) is an assertion vector
and if n = 2, (P,) is an assertion matrix.

Theorem 1 Let (F;) and (Q) be sets of as-

sertions induced by (Py, S). Then sets of asser-
tions (P, A Q) and (P, V Q) are induced by
(POa S)
Proof. It follows directly from the “and” and
“or ” rules in Ref.6). a
We extend the “and” and “or” rules to count-
ably many assertions.

Definition 5 Let the set of paths from
& to & be denoted by PATH(E). Let
the strongest post-condition ¢ such that
{P}C{Q} be denoted by sp(P,C) and called
the strongest post-condition for P and C.
For the precondition P, for S and a path
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o = (&, &)(&1, &) -+ (Ex—1, &k), the asser-
tion @, is defined by
R() EPO
Ri -—':'Sp(Ri~laC(£i—1’ ei)), (izl? T k)
QUER/C.
Note that Q) = P, where X is the null path.
The assertion @ is then defined by

Qe V Q..
o € PATH(§)

Theorem 2 The set of assertions (Q) de-

fined above is induced by (P, S) and 1is the
strongest set of assertions among those induced
by (P03 S)
Proof. Since PATH(€,) has the null path,
we have Py D QEo' Next we observe that for
any (&, ¢') € E, PATH(¢') includes all paths
o (& &) such that o € PATH(E). Therefore
we have {Q}C(§, €'){Q'} from the extended
“or” rule.

To prove that (Qf) is the strongest, we prove
by induction on o that Q, D F; for any
path ¢ € PATH(§) and any set of asser-
tions (F) induced by (P, S). For the ba-
sis of 0 = X, we have Q) = P D P0
by definition. For the induction step, as-
sume that @, D F; and take any path ¢’ =
o (& &). Since {P}C(€, €){F,}, we have
{Q,}C(&, &'){F;}, from the consequence rule.
Since ), is the strongest post-condition for Q,
and C(&, &), we have Qo D F. ]

Theorem 3 Let (F,) be a set of assertions
induced by (Py, S). For all & such that (€, 1) €
E assume that {F}C(§, n){Q,}. Let the set
of assertions (Q) be defined, for other vertices
than n, by

Q = true, for € #n.
Then the set of assertions (F; A ) is induced
by (P07 S)
Proof. From the “and” rule we have that for
all £ such that (§,m) € E,

{P}C(&m{P,} {F}CE m{Q,}
{P A true}C(§,n){P,AQ)}
We also have that for all 4 such that (n,v) €
E,
{P,}C(m, NP}, {Q,}C(n, 7){true)
{P, A@IC(m, ){F, A true}
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This theorem shows that we can verify the given
program incrementally, that is, we start with a
rather weak and simple set of assertions (P,)
and strengthen it gradually by finding Q,’s de-
scribed above. This concept of incremental ver-
ification becomes effective particularly if it is
combined with the concept of logical indepen-
dence defined in the next section.

4. Logical independence

We introduce the concepts in linear algebra,
such as vector and matrices, into program ver-
ification. We only treat the case that the num-
ber of processes is one or two in this section.
If we have only one process, the set of asser-
tions (F;) becomes an assertion vector. If we
have two processes, (P;) becomes an assertion
matrix. For two assertions P and Q, if P D Q,
we write P < Q. If P < Q and P # Q, we
write P < @. Similar notations are used for
assertion vectors and assertion matrices using
their elements. The “and” and “or” operations
on assertion vectors and matrices are defined by
using their elements. In the following, we treat
a parallel program S = [S; || S2] such that the
processes S; and S, have m labels {1,2,---,m}
and n labels {1,2,---,n} respectively.

Definition 6 The direct product p x q of
two assertion vectors p = (P,,---, P, ) and ¢ =
(Q1,---,Qx) is defined by the (m,n) assertion
matrix whose (1,5) element is P, A Q;. If an
(m,n) assertion matrix P is expressed as P =
P X g A M for some (m,n) assertion matrix M,
this expression is called a decomposition of P,
or we say P is decomposed into p x g A M. In
this form, p x q is called the independent part
and M is called the dependent part. When P
is induced by (P, S), the meaning of this form
is that P; holds at label ¢ in S| regardless of
where the control of S, is, and vice versa.

Theorem 4 Any assertion matriz P is de-
composed into the form p x q A M such that
P X q is the strongest assertion matriz and
M is the weakest assertion matriz satisfying
P =pxqgAM. This form is called the normal
form of P.

Proof. A decomposition of P trivially exists
since we can choose as p = t,,, p = t, and
M = P where t;, is the k-dimensional assertion
vector all of whose elements are true. Assume
that pxq and p’ xq' are two strongest assertion
matrices such that p x ¢ # p'’ x q¢' in P =
PXg@AMand P=p' xq' AM'. Then we have
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P=pxqAMADP xqg AM

=(PAP)x(gng)AM",
where M" = M AM'. Note that (p A p') x (gA
g)<pxqand (pAP)x(gAq)<p xq,
which contradicts the fact that px q and p’ x ¢’
are strongest. Now let P = p x ¢ A M and
P = p x ¢ A M' be two decompositions where
P X q is the strongest matrix whose unique ex-
istence is shown above and M and M’ are the
weakest matrices such that M # M’ in the de-
compositions. Then P = px g A (M v M')
is a decomposition and M v M' > M and
MV M' > M’ which is a contradiction. O
Theorem 5 Assume assertion matriz P be
induced by (P, S). Let assertion vectors p =
(Plv"'7P‘m) and q = (Qla"':Qn) be deﬁned

by

Pi=v 1]7 VPz]a
7j=1

where P = (P;). Then P X q is the unique
strongest part in the normal form P =p x g A
M.

Proof. Assume there is another decomposition
form P = p’' xq' AM' where p' = (P{,---, P"),
q = (Q},-,Q%) and M’ is an (m,n) matrix
(M;;). Then by definition,

n

P, = \/ (P A QA M)

J=1
= P/ A \/(QJ A M)

from which wesee P, < P/ (i = 1,---,m). Sim-
ilarly we have Q] < Q’ (] =1, n). Hence
pxq<p xdq. Theorem 4 guarantees the
uniqueness of the strongest part p x q and the
weakest part M. a
Example 5 The normal form of the asser-
tion matrix in Example 4 is given as follows:

true z=0VvVz=-1
>0 r =0
<0 z=0Vvz=-1
true
=220 {x[true z=0Vz=-1]

<0

true true
Al >0 true
true true

Definition 7 Let a parallel program § =
[S1 || S2] and a program configuration (P, S)
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be given. An assertion vector p = (Py,- -, Pp)
and is said to be locally induced by (P, Sy) if
Py D P, and {P:}C(§,¢'){Pe} for any connec-
tive C(£,€') in S;. The local induction of g by
(P,, S») is similarly defined. The vector p is
said to be unaffected by Sz if {P¢}C(n,n"){P¢}
for any label £ in S; and any connective C(n,7')
in S;. The unaffectedness of g by S; is sim-
ilarly defined. If p and g are locally induced
by (Ps,S1) and (P, S2), and unaffected by 51
and S, they are said to be logically indepen-
dent with respect to (Py,S). The concept of
unaffectedness is slightly stronger and easier
to use than interference-freedom of Owicki and
Gries'%) .

Theorem 6 If p and q are logically inde-
pendent with respect to (P, S), p x q is induced
by (PO’ S)

Proof. We see Py D Py A Q;. From the “and”
rule, we have

{Pe}C(& &) {Pe }, {Pr}C(§, €){ P}
{Pe APYC(E,E) (P AP}
Similarly we have { PeAP,}C(n,n'){P: APy }.
O

Theorem 7 The assertion vectors defined
in Theorem 5 are locally induced by (P, S1) and
(Po, S2) respectively.

Proof. 1t follows directly from the “or” rule.
O

The assertion matrices px q in Theorem 5 is not
necessarily induced by (P, S). When we do not
know any assertion matrix P induced by (P, S)
that satisfies some condition desired by our pro-
gram verification purpose, how can we build
such an assertion matrix? Our strategy is to
find logically independent vectors p and g and
set P « p x q, which is induced by (P, S). If
P does not satisfy the desired condition, we at-
tach some M = (M;;) to set P «+ P A M where
all but one element of M are true, and prove
that P is induced by (P, S) based on Theorem
3. If P is not strong enough, we repeat this
process. This process is incremental because to
prove consistencies of newly attached M;; in P,
we use the information so far accumulated in P.
The procedure is summarized in the following.
Incremental Verification Procedure.
(1) Initialization.

Find logically independent vectors p and ¢

and set P «+ p x q.
(2) While P does not satisfy the given property

do

Find some M = (M;;)
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Set P—PAM

Prove that P is induced by (P, S)

Repeat (2).
With this method, in the process of working out
mn assertions of the final assertion matrix, we
only deal with m + n + #(M) assertions where
#(M) is the number of non-true assertions in
the final M. This number m + n + #(M) is
much smaller than mn in many applications,
whereby we can reduce verification effort.

Definition 8 If the strongest assertion ma-
trix P induced by a given program configura-
tion (Pp, S) is given by P = pxq, we say (P, S)
is logically independent.

Example 6 The Peterson-Fisher mutual
exclusion algorithm proven in Ref. 10) is given
below with a simpler proof.

S={z=y=1/2= PR}

[S1 = loop

{local task 1}
1:z:= [yl;
2 : await z # y;
{critical section 1}
3:1:=1/2;
end loop

S loop
{local task 2}
l:y:=[1-zl;
2:await y #1 —1;
{critical section 2}
3:y:=1/2
end loop].
The symbol [ | means the rounding-up opera-
tion. Local tasks and critical sections are com-
mented out for simplicity. The proof graph is
given in Fig. 5. Note that conjunctions are put
in the assertions with “A” signs omitted. Also
we assume the global assertion that x and y
take only three values 0, 1 and 1/2 applies ev-
erywhere in the program.

We choose p and g as follows:

p=(z=1/2 z#1/2 z#1/2Ax#Yy)

q=(y=1/2 y#1/2 y#1/2Ay#1-z)
It is easy to see that p and q are locally induced
by (P, S,) and (P, S2). To see unaffectedness,
we examine assignment statements y := [1— |
and y := 1/2 for assertion z # 1/2Azx # y
in p and assignment statements x := [y] and
x := 1/2 for assertion y # 1/2Ay #1 -z in
g. It is easy to see that these statements keep
the corresponding assertions invariant. Thus p
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x:=1/2

x#1/2 x#1/2 await
=1/2 y:=[1-x 21/2 y#l-x x#£1/2
GIY 2 #QVP’ ! 2)y#1/2
y:=1/2 x=y
await await await
x#y xX#EYy X#EYy

y:=l1-x1

X

y=1/2

1
1

HHH
~~
DN

y

Fig.5 Proof graph for Example 6.

and q are logically independent, meaning that
P % g given below is induced by (PR, S).

pxq=

[2=1/2 z=1/2 z=1/2
y=1/2 y#1/2 y#1/2
y#l-z
T#1/2 z#£1/2 z#1/2
y=1/2 y#1/2 y#1/2
y#Fl-zx
z#1/2 z#£1/2 false
y=1/2 y#1/2
l z#y z#y ]

Since we have a desired condition of false at
(3,3), meaning that (3, 3) is mutually excluded,
P = p x q is the sought assertion matrix, which
is given in a normal form. The (2, 3) element of
P is equivalent toz #1/2Ay #1/2Az =y.

Example 7 The producer-consumer prob-
lem.

{m > 0An > 0}: precondition
1:=7:=0;
{i=j=0Am>1An>0}=P,
S =[S; =1: while i < n do begin
2: await i — j < m;
3 : buffer{i mod m| := A[i];
4:1:=1+1;
end

5:

S2 = 1: while j < n do begin

2: await i — j > 0;

3 : B[j] := buffer{s mod m]

4:5:=7+1;

end
5: ]
(VE(0<k<n-1=
A[k] = B[k]} = Qo; postcondition.

The program configuration (P, S) is logically
independent as seen in the following. A global
invariant I is defined by

I=Vk(i-m<k<i-1=
bufferlk mod m] = Alk])
AVE (0 <k <j—-1= A[k] = Blk))
ANO<i-j<m
AN <i<nA0<L )< n).
The operation “~” is defined by z -y

if £ > y then z — y else 0. Using I, we can
deﬁnep = (Pl7"'7P5) and q = (le“'?QS)

1

by

PIEI

Po=IANi<n
Ps=IANi<nAi—-j<m
Py=IAi<nAi-j<m

Abuffer(i mod m] = A[i]

Ps=IAi>n

Q=1

Q:=INj<n

Qs=IAj<nAi—j>0
Qi=IAj<nAi—j>0
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AB[j] = buffer(j mod m]
Qs=1Nj2>n

To see that pxq is induced by (P, S), first note
that Py A Q; = I and that P D I. Next we
can check that p is induced by (P, S1) and g
is induced by (P, S2) each locally. We also see
that p is not affected by Sz since only one state-
ment in S, that might affect some part of p is
j := 7 + 1, which does not violate : — j < m
but strengthens it. Similarly, ¢ := 2 + 1 in
S; does not affect  — j > 0 in g. Obviously
Ps A Qs D Qo. The progress property can
be shown as follows. One of the conditions
i—j<mandi-—j>0is true since m > 0. If
one process is waiting at label 2, then i :=i+1
or j := j + 1 will enable it to proceed.
Example 8 The Peterson algorithm for
mutual exclusion %) is given below.
S = {thinking: = yes
A thinkings = yes: Po}
[S1 = loop
{local task 1}
1: thinking: := no;
2 : turn := 2;
3 : await thinking: =yesVturn=1;
{critical section 1}
4 : thinking, := yes;
end loop
I
S, = loop
{local task 2}
1: thinkings := no;
2:turn = 1;
3 : await thinking, =yesViurn=2;
{critical section 2}
4 : thinking, := yes;
end loop
]
Its program graph is given in Fig.6. We ab-
breviate thinking, and thinking; as t; and t3.
The vectors p and ¢ are chosen as follows:

p=(t, =yes t; =no t; =no t, =no)
(I=(t2=yes to = no t2 =no t2='n,0)_

Then clearly p and q are logically independent,
since t; and t, are changed locally in S; and S
respectively. We set P = p x q as the starting
matrix. First we attach M given below and set
P+« PAM.

true true true true

true true true true
M =

true true true true

true true turn =1 true
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The consistencies over edges (4,2) — (4,3) and
(3,3) = (4, 3) are verified as
{t1 = no Aty = nojturn :=1
{ti =noAty =noAturn = 1}
{t1 = noAt: =no}ts =yesViturn =1
{t =no Aty =noAturn = 1}.

Next we choose M whose elements are all true
except for M3y = (turn = 2) and set P «
PAM. The new P is similarly proved to be in-
duced by (P, S). Finally, we choose M such
that M;; are true except for My = false.
Since the accumulated information tells us that
Pz = (t; = noAty = noAturn = 1) and P3y =
(t;, = no Aty = no A turn = 2), we can verify
the consistencies over edges (4,3) — (4,4) and
(3,4) = (4,4). Thus we have

t, = yes
pP= t1 = no
t1 = no
ty = no

x[tgzyes t, =no o =no t2=no]

true true true true
true true true true
true true true turn = 2
true true turn=1 false

Taking disjunctions over rows and columns of
P yields p and ¢, and hence the above form of
P is the normal form. Although P is not the
strongest assertion matrix induced by (P, S),
P is strong enough to prove the desired con-
dition of false at (4,4), which means mutual
exclusion. In this example, #(M) = 3, and we
worked on eleven assertions.

5. Composite infinite loops

Infinite loops in parallel programs are harder
to detect than in sequential programs. We give
an obvious sufficient condition for infinite loops.
The path from &, to £ is said to be admissible
with respect to ag if we can actually start from
x = ag and traverse the path, performing the
labels on the edges. If a label is a Boolean con-
dition, performing the condition means that it
is induced by the instances of the variables at
the vertex. Let the resulting condition at § be
x = a. If there is another admissible path from
£ to € with respect to a and the resulting con-
dition is £ = a, then there is an infinite loop
from £ to £. If the infinite loop involves two or
more processes, it is called a composite infinite
loop or a racing.
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await
i =yes v

1= 13 twnw

R R
ty:=no

await t:=yes
Hh = yes v

1 := yes

Fig.6 Program graph for Example 8.

Example 9
{true}
S = [ 1: while z > 0 do begin
2:z:=z-1;

end
3:
I
1: while z < 10 do begin
2:x:=zx+1;
end
3: ]
{z=0Vvz =10}
The proof graph is given in Fig.7. With ini-
tial condition £ = b5, for example, we tra-

verse the path (1,1) = (2,1) = (2,2) —(1,2)
— (1,1) and we have £ = 5. In this pro-
gram we can prove the partial correctness of
{true}S{z = 0V z = 10} despite the infinite
loop, whereas if a sequential program T has
an infinite loop with precondition P we have
{P}T{false}. Note that each process in this
parallel program terminates if executed sepa-
rately. We can prove that the computer comes
to (3,3) with probability one under the regular-
ity assumption given next.

Deﬁnition 9 Ifit is possible to follow edges
€1, -, e at vertex & after evaluation of P(z)
thh T = a, they are said to be compatlble at
§ with respect to a@. Let the probability that
such e; is followed in this situation be p(e;).
Note that p(e;) + --- + p(ex) = 1. If p(e;) > 0

(1 = 1,---,k) for compatible edges at & and
these probabilities are independent from vertex
to vertex and among visits to £, then the com-
putation of the given parallel program is said
to be regular.
Note that the concept of regular computation
is stronger than that of fair computation.
Theorem 8 In a parallel program S =
[S1 || S2] with pre-condition Py, we assume that
there is no synchronization primitives in S| or
S2. Let P = (F,) be the strongest assertion
matriz induced by (FPo,S). If S1 and Sy termi-
nate when they are run separately from any £
with any x satisfying P.(x) at &, and the reach-
able state of T is bounéed e.g., independent of
program variables, then the parallel program S
terminates with precondition Py with probability
one under regular computation.
Proof. Without loss of generality, suppose there
is a composite infinite loop ¢. If we execute only
Sy in ¢, we assume we have a loop ¢; in S; and
similarly we have ¢5 in S, by executing only S,
in £. Both S; and S go out of loop after finite
numbers of repetitions, say k; and k. We can
set these finite k; and k, because the reachable
state of « is bounded and we can take the max-
imum numbers of repetitions starting at £ with
z satisfying P,(z) for all possible £ and x. The
probability that k1 successive repetitions of S,
or ky successive repetitions of So do not occur,
tends to zero in the long run of S within ¢ under
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Fig.7 Proof graph for Example 9.

regular computation. O

After we follow one composite loop from (1, 1)
to (1,1) in Example 9, we can have 0 < z < 10
for P, 1(z), instead of true. Then Example
9 satisfies the conditions of Theorem 8 with
the new P; 1(z) and k; and k; being ten and
hence eventually terminates. The program may
not terminate under the fairness assumption.
Note that the racing will stop much earlier than
the above pessimistic observation. Racing that
stops with probability one is not hazardous in
a sense. Regular computation requires random-
ized scheduling of processes, which may be time
consuming. Special hardware for scheduling
may reduce the overhead time for scheduling.
Based on the above observations, we have a new
concept of correctness “eventual correctness” in
the following.

Definition 10 For a parallel program, as-
sume that the partial correctness {P}S{Q} is
proved. If we can prove that S terminates with
probability one under regular computation, we
say {P}S{Q} is eventually correct.

Note that we have

totally correct
< eventually correct
< partially correct,
where a < b means a is stronger than b.

Exercise. Show the normal form of the as-

sertion matrix of Example 9.

6. Concluding remarks

We only dealt with the partial and even-
tual correctness of parallel programs. There
are many more technical issues in parallel pro-
grams such as semaphores, deadlocks, progres-
sive property under a fairness assumption, etc.
The technique in this paper with assertion ma-
trices and directed graphs is useful for the anal-
ysis of these problems as well. To put the
new concept of eventual correctness in practice,
we need an efficient and reliable random num-
ber generator, which is still difficult and shares
the same fate with randomization techniques in
other areas of computer science. It is still worth
while to investigate the properties of the new
concept assuming the existence of good ran-
domization techniques. The visual technique
with directed graphs will also be suitable for in-
teractive parallel program verification, where a
human verifier can work on a directed graph on
the display. If we have three or more processes,
this technique will lose visibility and things will
become difficult. If we have many processes,
however, the processes tend to be identical. In
such a case, we can have the set of control points
as one dimension and the set of process num-
bers as the other dimension, and we can extend
the technique in this paper. The details will be
in a future report.
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