IR~ 25500 (CPRUTERY) £EAE

1-—89

VHRBETEON—F Y 27 70T X L2220 T

5H—8
H5
%Efﬁqﬂ

1. Introduction

With advances of VLSI technologies, it becomes at-
tractive to accelerate important complex operations
hy special hardware. It is also nice to avoid interme-
diate rounding errors between atomic FP-operations,
but only have a bounded error for the final result of a
complex operation. In this report, we propose a digit-
recurrence algorithm for cube rooting which is used for
solving algebraic equations of third or fourth degree.

We consider computation of the cube root of the
mantissa part of a floating-point number. We com-
pute C' = X%, where 273 < X < 1. We assume X is
vepresented as an n-digit r-ary fraction where r = 2°.
We intend to compute the result C' in n-digit precision.

2. Algorithm
As digit-recurrence algorithms for division or square
rooting [1], the cube root digit ¢; is obtained step by
step. Let C[j] be the partial re‘;ult after j iterations.
Then, C[j] = C[0] + S.7_, gir~F, where C[0] is the ini-
tial value of the partial result. Fhe recurrence equatmn
on the partial result is
Clj +1]:= Cljl + gjaar ™7 (1)
We select the cube root digit g;,1 from a redundant
digit set {—a,---,—1,0,1,---.a}, where § < a < 7.
The final result is C = C[n] = Y1, ¢ir ™%, The result
has to be computed in n-digit precision. Namely,

TP X5 - C <, (2)
We define a residual Wj] as
Wljl = r/(X - C[31°). 3)

Subtracting 7 times (3) from the equation for W{j+1],
we get the recurrence equation on the residual as

3C[j]QQj-F1 3C[; 1%4«17“ K

3 =252
~Gj+1" :

Wi +1]:=rW[5] -
(4)

On a Hardware Algorithm for Cube Rooting
Naofumi Takagi and Yu Tanaka

Nagoya University

Nagoya 464-8603, Japan

email: ntakagi@nuiemnagoya-u.ac.jp

AP
Be L2 ekt

Since this equation includes the term —3C[j|%g;41, we
need squaring of j digit number C[j] for the calcula-
tion. To avoid the squaring, we keep C[j]? and update
it by addition/subtraction and shift.

Let C[j]? be S[j]. Then, the recurrence equation on
W{j] is rewritten as
W{j + 1) := 7 W{j] - 35[jlgjs1 — 3C]ilglyar ™7
~2j-2

(5)

3
e qj+17'
The recurrence equation on S{j] is

Sl + 1) := Sl + gi1r 77 2CH] + gjar 7). (6)

Since C = C[j] + Xi-;4, ir~* and the minimum
and the maximum cube root digit values are —a and
a, respectively, from (2) and (3),

~3Clj1%0 + 3Cjlp*r ™7 — pPr 2 < W]

<3CUPp +3CHl* T+ p M (7)
must hold, where p = ¢/(r — 1) is the redundancy
factor of the cube root digit set.

Since 27% < X < L-and § < p < 1, we can satisfy
the bounds for j = 0 by letting C[0] = 1 and W[0] =
X — 1. When p = 1, we can also satisfy the bounds by
letting C[0] = 0 and W[0] =

The algorithm for cube rooting consists in perform-
ing n iterations of calculation of the recurrence equa-
tions (1), (5) and (6). In each iteration, we first pro-
duce the shifted residual »W{j], and then select the
cube root digit g;41 by examining the shifted resid-
ual and the partial result C[j]. We will discuss on
this letter. Finally, we perform the (a,lculatmn of the
recurrence equations.

The general algorithm is summarized as follows:
Algorithm [CBRT]

Step 1:

Clo]:=1; S[o}:=1; W[0] := X ~ 1
Step 2:

for j:=0ton~-1do

{

Select gj41 from {—a,---,-1,0,1,--,a};
Cli+1]:=C[j]+q1+17 BN
Slj +1] == S[5] + q3+1r ~3=1(2C[j] + gjaar =1,
Wij + 1] :=rW[j] - 35[j]g;41 ‘
~3C[j]q]+17‘ it ‘1?4.17”—21~23

} O

1-90

When p = 1, we can replace Step 1 by C[0] := 0,
S[0] := 0, and W[0] := X.

We can increase the speed of the implementation
with a small increase in hardware complexity by per-
forming the addition/subtractions in the recurrence
equations without carry/borrow propagation by the
use of a redundant representation. Therefore, in this
report, we concentrate on this type of implementa-
tions. Namely, we represent the residual W[j] and
the square of the partial result S[j] in a redundant
representation, such as the carry-save form or the
(binary) signed-digit representation, and perform the
addition/subtractions without carry/borrow propaga-
tion. Since —3 < W[j] < 4, we can represent W(j]
by either a two's complement carry-save form with 3-
bit integer part (including the sign bit) or a binary
signed-digit representation with 3-bit integer part.

Although we may represent the partial result C[7] in
a redundant representation as well, we keep the non-
redundant representation of it by the on-the-fily con-
version [2].

Now we consider selection of cube root digit g;4.1.
We have to select ¢j4q from {—a,---,-1,0,1,---,a}
so that the bounds for W[j + 1], i.e., =3C[j + 1]%p +
3C’[' Np?2r=3=1 = p32=272 < W[j +1] < 3C[j +

112p + 3C[j + Up2r=9=1 4+ p%r ~2j=2 , are satisfied.

Let the interval of W[j] where k can be selected as
¢j+1 be [Ly[7], Uklj]). Then,

Li[j] = 3C[j12(k = p) + 3C[j](k = p)*r—7 1
HE—pPr ()
Unls] = 3CU1 (k + p) + 3C[j)(k + p)*r 7!

+(k+p)r 7 (9)

Note that the lower bound of the interval for & = —a
and the upper bound of the interval for £ =
equal to the lower bound and the upper bound of W[j],
respectively.

The continuity condition Uy_1[j] > Li[/] yields

(29 ~ LYBCL + 3C[] 2k — 1)r 3

+(3k% ~ 3k + p> —p+ 1)) > 0. (10)

The left hand side of {10) indicates the overlap be-
tween consecutive selection intervals, which is used to
simplify the selection function.

g;+1 depends on 7W([j] and C[j]. Using the overlap,
we can select g;11 by estimates of them. Let the digit
selection function be Select(rW/j],C[5]) where r¥[5]
and C[j] are estimates of W [j] and C[j], respectively.
Then the function is described by a set of selection con-
stants, {m(C[j])|k € A-a+1,---,-1,0,1,---,a}},
where g1 = k if my(C[j]) < TY/V[] < mp1(Ch)).

We obtain »W[j] by truncating +W/[j], which is in
a-redundant representation, to ¢ fractional bits. We
obtain C[j] by truncating C[j] to d fractional bits.
(Note that not 7-ary digits but bits.) Since C[j] is

a are

in the non-redundant representation, C[] = C[j] for
small j’s such that =7 > 27 and C[j] < C[j] <
C[j] + 27 — r~7 for the other j’s.

When W{j] is in the carry-save form, Wi <
rW1{j] < rW[j] + 27*+1. Therefore,

mi(C5]) 2 max(Lelj]),
C[3]

(mi(Clj]) = 27" + 271 < min(Uy—1[j])
Cljl

(11)

(12)

must be satisfied. Namely, my(C[j]) must be a
multiple of 27! that satisfies (11) and (12). Here,
max ;) (Le[j]) denotes the maximum value of the
lower bound of the interval of rW{j] where k can be
selected as g;11 when the estimate of C[j] is Clj].
mingy;(Up-1[7]) denotes the minimum value of the
upper bound of the interval of rW[j] where £ ~ 1 can
be selected as gj4; when the estimate of C[j] is C[j].
Note that the maximum value of W |j] for which & — 1
is selected as g;41 is mp(C[j]) — 274

Since maxa;(Lels]) and ming;(Uk-1[j]) depend
on j, a different selection function might result for dif-
ferent j. When r = 2, 2 = 1 and p = 1, a single
selection function for all j exists. When r > 4, no sin-

gle selection function for all j exists, and therefore, we

should find J so that a single selection function can
be used for ; > J and consider the cases for j < J
separately.

Whenr =2,a=1 (p = 1), and W{j] is in the carry-
save form, by letting C[0] = 0 and W[0] = X, we ob-
tain a single selection function {mg = ~2‘1,m1 =0}
with ¢ =1, which is independent of C[j].

3. Conclusion

We have proposed a digit-recurrence algorithm for
cube rooting. We have shown a general algorithm. Dif-
ferent specific versions of the algorithm are possible,
depending on the radix, the redundancy factor of the
digit set of the cube root, the type of representation of
the residual and the square of the partial result {carry-
save or signed-digit), and the digit selection function.
Implementation of any version of the algorithm can
be sequential, or combinational, or a combination of
both. Pipelining can also be used. Any implementa-
tion has a regular structure suitable for VLSI.

References

[1] M. D. Ercegovac and T. Lang. Division and
Square Root - Digit-Recurrence Algorithms and
Implementations, Kluwer Academic Publishers,
1994.

[2] M. D. Ercegovac and T. Lang. On-the-fly con-
version of redundant into conventional represen-
tations, IEEE Trans. Comput., C-36(7): 895-897,
July 1987.

