Vol. 37 No. 12

Transactions of Information Processing Society of Japan

Regular Paper

One Stroke Operations: A New Pen-based User Interface
that can Integrate or Separate Operand Specification,
Menu Opening and Selection, and Action Execution,

in One or More Strokes

S. NAVANEETHA KRISHNAN' and SHINJI MORIYA!

This paper proposes a new pen-based user interface based on the concept of integrating and
separating the operation stages in one or more strokes. That is, the user can perform operand
specification, menu opening and selection, and action execution, in one stroke (without need-
ing to lift the stylus pen from the tablet surface at any time during the operation) or in two
or more strokes (lifting the pen-tip after completing any operation stage). The above concept
enables one stroke operations, which we expect require fewer pen movements and lesser time.
As the starting step, we designed and implemented these operations on a prototype pen-based
ink-editor. One stroke operations were enabled due to two reasons — (i) Existence of the three
elements, namely, ink-states which denote various units of ink-data for performing operations
on, pen and pie menu and linear menu, and, data-cum-tools that possess properties of both
data and tools, and, (ii) “Integration and separation of the operation stages” in one or more
strokes. The concepts described in (i) and (ii) above can be extended to other user interfaces
that use direct pointing devices (for example, mouse or hand as in touchscreen). Some ex-
amples are, mouse-based user interfaces, other pen-based user interfaces (such as pen-based
text-editors or pen-based graphics-editors). We performed a preliminary experiment to com-
pare one stroke operations with two/three stroke operations, and compared pie menu with

Dec. 1996

linear menu.

1.

Pen-computers such as “Newton” and “ZA-
URUS” that use handwritten input are gaining
popularity. And more research is being done
to make them easy to use. Such research can
focus on hardware or on software. This paper
focusses on the software, specifically, the user
interface of pen-computers.

This paper aims to enable one stroke oper-
ations. In this paper, one stroke denotes the
movement of the pen, starting at the instant the
pen-tip (that is, the tip of stylus pen) touches
the tablet surface, and ending at the instant the
pen-tip is lifted from the tablet surface. One
operation includes all the operation stages —
the stage of specifying the operand (the data
to operate on), the stage of specifying the op-
erator (the “tool” with which to operate, such
as “Move”) and the stage of executing the ac-
tion (for example, moving the data). And one
stroke operations are those operations in which
users can complete all the above three oper-
ation stages in one or more strokes. Though

Introduction

t Department of Information and Communication En-
gineering, Tokyo Denki University

2419

the term one or more strokes operations may
be more appropriate for these operations, how-
ever to shorten the term, we use the term one
stroke operations.

As a specific example of performing opera-
tions in one stroke, let us consider “moving”
the data from one location of the pen-computer
screen to another. The user puts the pen-
tip down on the tablet surface and specifies
the operand by rubber-banding this operand.
While the pen-tip is still in contact with the
tablet-surface, the menu is displayed near the
location of pen-tip and the user selects from
this menu by moving the pen-tip in the direc-
tion of the menu-item. While the pen-tip is still
in contact with the tablet surface, he/she exe-
cutes the “move” action by continuing to drag
the pen-tip to the final “move” location, and
the moment he/she lifts the pen-tip, the data
is redisplayed at its new location.

One stroke operations are essential in tasks
such as discussions or teaching where users
want to operate (for example, delete or move)
their handwritten sketches or tables, while they
are talking with others (for example, the discus-
sion participants or the students). One stroke
operations are also essential in situations where

2420 Transactions of Information Processing Society of Japan

users are writing and operating on the narrow
screens of pen-computers, where, frequent pen-
down (putting the pen-tip down on the tablet-
surface) and pen-up (lifting the pen-tip from
the tablet surface) could result in mistakenly
placing the pen-tip on an undesirable part of
the screen, for example, the operand adjacent
to the desired operand. In addition, one stroke
operations can also be used in the important
research area that studies user behavior in var-
ious tasks or situations, where users integrate
the operation stages in one stroke or perform
operation stages in multiple strokes.

Some of the current pen-based user interfaces
let users perform operations using menu, some
use handwritten pen gestures, and some use
both.

In menu-based user interfaces*)")~12) the op-
eration stages (operand specification, menu se-
lection, and action execution) are performed us-
ing multiple pen-downs and pen-ups. This re-
quires large pen movements (especially in big-
sized pen-computers as in Ref.12)), and to
avoid mistakes the user must carefully point at
the operand or the menu. As a result, time
would be consumed, the user would get tired
and would be distracted from his/her work.

In gesture-based user interfaces!)~3):5)~7).12)
the operand and the operator can be specified
in one stroke. As a specific example, though
Ref. 3) enables operations (only move, copy and
delete) in one stroke using handwritten ges-
tures, Ref.3) integrates operand specification
and action execution, that is, menu opening and
menu selection are not integrated. Now, as ges-
tures increase in number, users must practice
them. Also, users must write gestures carefully
to avoid misrecognition, thus slowing down the
user. In addition, developers must construct
the recognition algorithm.

This paper resolves the above-mentioned
problems of menu-based pen user interfaces by
integrating and separating the operation stages
in one or more strokes. And by using the radial
(or pie) menu instead of gestures, we resolved
the above-mentioned problems of gesture-based
pen user interfaces. This is because, pie menu
enables menu selection when displayed, and
gesture-like pen movements when not displayed
(explained in more detail in Section 2.3.2).

For performing operations on pen-input sys-
tems, this research is the first to integrate and
separate operand specification, menu opening
and selection, and action execution, in one or

Dec. 1996

more strokes. This research is also the first to
use pie menu for operating on data while creat-
ing this data with pen-input in the same appli-
cation.

As the starting step, we implemented one
stroke operations on ink-data. Here ink-data
refers to the on-line handwritten text, sketches,
etc. that are input by writing on the tablet sur-
face with stylus pen, and exists as a sequence
of coordinate points denoting the pen-tip move-
ments over the tablet surface. In this paper,
unless otherwise specified, “data” refers to ink-
data. Now, we targeted ink-data for two rea-
sons. First, it would be convenient if users can
perform operations on ink-data while creating
this data side-by-side. Second, in many tasks
it is practical to keep the handwritten text, fig-
ures, etc. in handwritten form instead of recog-
nizing and converting into text-data, graphics-
data, etc. For example, in discussions, keeping
the sketches, etc. in handwritten form avoids
misrecognition problems, and does not disrupt
the flow of discussions.

Section 2 illustrates the concept of one stroke
operations, and also describes the reasons that
enabled these operations. Section 3 describes
the design of this paper’s user interface. Section
4 discusses how this paper’s proposed concepts
can be used in other user interfaces. Section
5 describes the experiment performed to eval-
uate one stroke operations. Finally Section 6
summarizes this paper.

2. Concepts of the Proposed User In-
terface

Section 2.1 describes the prototype ink-
editor, Section 2.2 illustrates one stroke opera-
tions, Section 2.3 explains the first reason that
enabled these operations, and Section 2.4 ex-
plains the second reason that enabled these op-
erations.

2.1 The Prototype Ink-editor

The “ink-editor” refers to the pen-based edi-
tor for inputting ink-data and operating (delet-
ing, moving, etc.) this data. Figure 1 shows
a hard-copy of the screen of the prototype ink-
editor. This screen has three regions — (i) The
wide region on the left for writing and oper-
ating on ink-data, (ii) “Global Menu” for per-
forming operations (such as “File Load”) that
affect all the ink-data in the document bein
created and/or edited, (iii) “Micro Screen”?!
for scrolling this document.

Figure 1 shows actually inputted ink-data in

Vol. 37 No. 12

One Stroke Operations 2421

Region For Writing And Operating On Ink—Data
)

Eraser |
Auto ‘
Real Batch
Comprs Of f- g’il:::l
Desegment
File Load
File Save
! Quit
Micro
<4
ol Miro.
| |
Frame-—Enveloped Raw Compressed
Ink —State Ink —State Ink—State

Fig.1 Hard-copy of the screen of the prototype ink-editor. “Global Menu”
is for operations that affect all the ink-data in the document. “Micro
Screen”21) scrolls the screen. The labels “Raw Ink-state”, etc. below
the screen denote various units of ink-data for operating on.

the form of various ink-states (explained later
in Section 2.3.1). In “Global Menu” the num-
ber of menu items that remain visible at all
times is few. This was done to reduce menu size
and allow more space for writing and operating
on ink-data. The other menu items for oper-
ating on ink-data are contained inside the pie
menu (explained in Section 2.3.2) or the rect-
angularly shaped “linear menu” (explained in
Section 2.2).

The prototype ink-editor runs on the MS-
DOS based personal computer PC-9801 (NEC
Corporation), to which a tablet-cum-display
HD-640 and stylus pen SP-200A (WACOM
Corporation) are connected.

2.2 Examples of Integrating and/or

Separating Operand Specification,
Menu Opening and Selection, and
Action Execution, in One or More
Strokes

One stroke operations are illustrated in
Fig.2. This figure simulates the situation of
jotting down the main points of this paper.
In this figure, the labels “Stage 17 to “Stage
4” represent the four stages of a typical oper-
ation that uses menu. From top to bottom,
both Figs.2a and 2b show the four stages of
“Compress” operation. The ink-data in Stage
1 of Fig. 2a is the hard-copy of the bottom-right
portion of Fig. 1, and the ink-data in Stage 1 of
Fig. 2b is the hard-copy of the bottom-left por-
tion of Fig.1. The mock-up of the stylus pen

was not actually input, but was pasted later on.
In Stage 1 of Fig.2a, the user specifies the
operand by constructing a “rubber-band” be-
tween the points labeled @ and @ (the method
of constructing the rubber-band and how the
end of operand specification is denoted using
rubber-band, is explained in Section 3).
Immediately after operand specification, in
Stage 2, the pie menu opens (that is, is dis-
played) at location (Q), with its center exactly
coinciding with the bottom-right corner of the

-rubber-band.

Without lifting the pen-tip from the tablet
surface, in Stage 3, the user drags the pen-tip
to the “Comp” (abbreviation of “Compress”)
menu item (the borders of “Comp” menu item
are shown as thickened lines) and lifts the pen-
tip from the tablet-surface.

The moment the pen-tip is lifted, the ac-
tion (that is, “compression” of ink-data) is exe-
cuted in Stage 4, and “compressed” ink-data is
formed.

Thus, in one stroke, the user specifies the
operand, opens the menu, selects the menu and
executes the action.

Focussing on Stage 3 of Fig. 2a, if instead of
selecting “Comp” menu item, the user selects
“Seg” menu item (abbreviation of “Segment”),
then, already specified ink-data (which we call
as frame-enveloped ink-state, explained in detail
in Section 2.3.1) is created, shown in Stage 1 of
Fig. 2b. The moment this already specified ink-

2422 Transactions of Information Processing Society of Japan

Explanation *Compressing”
of O ti
Stl:;l:; ton Unsegmented Ink - Data
7 V*E;—”Do‘wn, Side—Switch On
Stage 1

Stage 2

Dec. 1996

"Compressing”
Segmented Ink - Data

‘ Pen—Down

Portions
of Frame

Frame-Enveloped
Ink —State

Compressed
Ink~State 2b

2a

Fig.2 Illustrates one stroke operations when a user “compresses” ink-data.

The ink-data shown in Stage 1 to Stage 4 of 2a and 2b is the hard-
copy of various portions of the screen of Fig.1. The mock-up of the
stylus pen was not actually written, but was pasted later on.

data is created, the frame is created along with
it. The frame, displayed by the symbols “ -”
“97 «L” and “J ”, denotes that the ink-data
contained within these symbols can be specified
as operand simply by touching this frame with
the pen-tip.

Now, focussing on Stage 1 of Fig. 2b, to “com-
press” already specified ink-data, the user sim-

ply puts the pen-tip down on the tablet surface
at the location of the frame.

The instant the pen-tip touches the frame,
in Stage 2, the pie menu opens exactly at the
location of pen-down.

Without lifting the pen-tip from the tablet
surface, in Stage 3 the user “drags” the pen-
tip to “Comp” menu item and lifts the pen-tip

Vol. 37 No. 12

from the tablet surface.

The moment the pen-tip is lifted, the action is
executed and “compressed” ink-data is formed.

As already explained in Section 1, the user
can also perform operations in this user inter-
face in multiple strokes, that is, the user can lift
the pen-tip after completing any operation
stage. With respect to Fig. 2a, in the first pen-
down the user rubber-bands the operand and
lifts the pen-tip. The rubber-band remains vis-
ible. The user puts the pen-tip down on the
already displayed rubber-band which opens the
menu, he/she selects the menu-item, and lifts
the pen-tip, thus executing the action. Simi-
larly, the “compress” operation of Fig.2b can
also be performed in multiple strokes.

The explanations till now described one
stroke operations with respect to “one operand”
type operations (such as “Compress” or “Seg-
ment”), in which the user specifies the operand
and selects the operator. Below, we describe
one stroke operations with respect to “two
operand” type operations, that is, operations
in which the user needs to specify the origi-
nal operand as well as the destination for this
operand. Two examples of “two operand” type
operations are the “Move” and “Copy” opera-
tions.

Now, let us focus on Fig.3, which shows
“move” operation performed in one stroke by
rubber-banding. This figure shows Stage 3
and Stage 4 of “move” operation, since Stage 1
to Stage 3 are similar to Fig.2a. Specifically,
in Stage 1 the user rubber-bands the ink-data
from the right side of the tablet to the left (for
reasons described later in Section 3.1.2), on do-
ing which the pie menu containing the “Move”
menu item opens in Stage 2. We can notice
that the pie menu of Fig. 2 and Fig. 3 are differ-
ent. Actually, this user interface has multiple
pie menus (described later in Section 3.1.2).

Without lifting up the pen-tip, in Stage 3 the
user drags the pen-tip to the “Move” menu item
and continues to drag till the pen-tip goes out-
side the outer circle of pie menu. At this in-
stant, the “Move” menu item gets selected, and
Stage 4a of Fig. 3 is reached, that is, the rubber-
band denoting the boundaries of the ink-data
automatically moves towards the left with its
bottom-left corner coinciding with the tip of
stylus pen. This was done to eliminate the need
to again move the pen-tip back to the operand.

From Stage 4a, the user drags the pen-tip un-
til reaching the final desired position (Stage 4b)

One Stroke Operations 2423

Path Of Drag
Pen Drag l Pen

2.1

Stage 4b

Fig.3 One stroke operations for “Move”. Stage 3 and
Stage 4 (a to c) of “Move” are shown. In Stage
1, the user rubber-bands ink-data from the top-
right to bottom-left corner of rubber-band; the
pie menu or linear menu opens in Stage 2.

and then lifts the pen-tip. On doing this, in
Stage 4c, the ink-data is redisplayed at its new
position.

Thus, “two operand” type operations can also
be performed in one stroke. The “move” opera-
tion of Fig.3 can also be performed in multiple
strokes, by lifting the pen-tip when it is over the
“Move” menu item, then positioning the pen-

2424 Transactions of Information Processing Society of Japan

Desq
Seg
Comp
UnBand
AlgCom
AlgSeg
Deco

Fig.4 Shows Stage 2 (menu opening stage) of one
stroke operations using linear menu. The menu
items in this menu are the same as the pie menu
of Figs. 2a and 2b.

tip over the operand, putting the pen-tip down
on the operand, and dragging the operand to
the final destination.

Figures 2a, 2b and 3 illustrated one stroke op-
erations using pie menu. Actually, in this user
interface, one stroke operations can also be per-
formed using the rectangularly shaped “linear
menu”. Figure 4 shows the linear menu dis-
played in Stage 2 (that is, menu opening stage),
after the user has finished operand specifica-
tion. In exactly the same manner as Fig.2a,
the user drags the pen-tip towards the desired
menu-item and lifts the pen-tip. As we can no-
tice, the menu items in the linear menu of Fig. 4
are the same as the pie menu of Figs. 2a and 2b.

Thus, in this user interface, operations with
one or two operands can be performed in both
one stroke or multiple strokes, by using pie
menu or linear menu.

Regarding pen-input systems, our research is
the first to put forward the concept of inte-
gration and separation of operand specification,
menu opening and selection, and action execu-
tion in one or more strokes.

The next two sections explain the reasons
that enabled one stroke operations. Section 2.3
explains the three elements, and Section 2.4
the integration and separation of the operation
stages.

2.3 The Three Elements: The First
Reason that Enabled One Stroke
Operations

This section describes the first of the two rea-
sons that enabled one stroke operations. Sec-
tions 2.3.1, 2.3.2 and 2.3.3 respectively describe

Dec. 1996

the three elements, namely, ink-states, pen and
pie menu and linear menu, and data-cum-tools.

2.3.1 Ink-states

Here, we explain the first of the three ele-
ments that enabled one stroke operations. Ink-
states denote different types of “operational
units” of ink-data, where an “operational unit”
of ink-data is that portion of ink-data on which
the user performs operations as if this portion
constitutes one block or unit of ink-data. The
ink-states have been shown in Figs. 1 and 2.

Till now, in the user interfaces of most pen-
based ink-editors, either ink-data was present
(written) or absent (not yet written or deleted).
Thus a concept of ink-state did not seem es-
sential. However, to explain newer operational
units of ink-data such as the one enveloped by
the frame (Fig.2b), and to explain the trans-
formations between such operational units, the
concept of ink-state became necessary.

The ink-states can be divided into pure ink-
states and compound ink-states. The pure ink-
states are shown in Fig.5 (explained a little
later). The compound ink-states are formed by
rubber-banding a mixture of pure ink-states, for
example, rubber-banding the compressed ink-
data and non-compressed ink-data of Fig.2.
Though basically the operations on both the
pure and compound ink-states are similar, how-
ever, various combinations of the pure ink-
states exist and different operations on these
compound ink-states yield various ink-states.
Since discussing all these combinations and re-
sults is outside the scope of this paper, this pa-
per focusses only on pure ink-states.

Let us focus on the state chart of Fig. 5, where
each circle along with the shaded label repre-
sents one pure ink-state. The contents inside
each circle denote the operand on which oper-
ations (such as “Compress” or “Segment”) are
performed to transform them to another ink-
state. For example, the ink-data inside the cir-
cle of raw ink-state is the top portion of Fig. 1.
The arrows in Fig. 5 denote the ink-state trans-
formations, and “Man. or Auto.” means that
the ink-states can be transformed manually (as
in Figs. 2a and 2b) or automatically (described
in Section 3.1.3).

Now, let us traverse Fig. 5 from the left to the
right. The raw ink-state in Fig.5 denotes the
ink-data formed after the user finishes writing
one stroke and no ink-state transformation has
taken place.

Now moving right in Fig. 5, when “Segment”

Vol. 37 No. 12

One Stroke Operations 2425

Fig.5 State chart where each circle (along with the shaded label) denotes
one pure ink-state. The arrows and the associated labels (such as
“Compress” or “Segment”) represent ink-state transformation opera-
tions.

operation is performed on raw ink-state, frame-
enveloped ink-state is created. This ink-state is
shown in the bottom-left of Fig. 1 and in Stages
1 to 3 of Fig.2b. The “Segment” operation
envelopes portions of ink-data by a frame (de-
noting spatial bounds), hence the name frame-
enveloped ink-state. All the ink-data inside the
frame becomes one operational unit of frame-
enveloped ink-state. These spatial bounds are
preserved along with the ink-data. We created
this ink-state so that the user can specify all the
ink-data inside an operational unit of this ink-
state, simply by touching the frame with the
pen-tip (Stage 1 of Fig.2b).

Moving further right in Fig.5, when “Com-
press” operation is performed on frame-
enveloped ink-state (Fig. 2b) or on raw ink-state
(Fig. 2a), compressed ink-state is formed, and is
displayed as a one-pixel thick line, giving the
impression that ink-data is compressed or flat-
tened. This one-pixel line functions as an op-
erational unit of ink-data, and also acts as the
frame which envelopes compressed ink-data, en-
abling operand specification by simply touching
the frame with the pen-tip.

In Fig.5, the operations “Desegment” and
“Decompress” respectively revert the frame-
enveloped ink-state and compressed ink-state
back to their former ink-states.

Lastly, we come to empty ink-state of Fig.5,

which exists by default immediately after the
user boots up the ink-editor. The state where
a stroke has not yet been written is empty ink-
state. In Fig. 5, the arrow “Write (one stroke)”
denotes that the user is in the process of writ-
ing a stroke, that is, the pen-tip is in contact
with the tablet surface. The instant the user
lifts the pen-tip, that is, signals the end of this
stroke, a new stroke (of raw ink-state) is cre-
ated and the transformation from empty ink-
state to raw ink-state is completed. Similarly,
the arrow from raw ink-state to empty ink-state
labeled “Delete” means that the user is delet-
ing a stroke. When the pen-tip is lifted up af-
ter deleting, raw ink-state is transformed into
empty ink-state. Similarly, the other arrows can
be explained.

From the viewpoint of enabling one stroke
operations, the ink-states described thus far
can be divided into “mandatory” ink-states
and “optional” (though useful) ink-states.
There are three “mandatory” ink-states—
empty ink-state, raw ink-state and frame-
enveloped ink-state, and one “optional” ink-
state— compressed ink-state.

The empty ink-state and raw ink-state taken
together are mandatory since they represent the
most basic tasks of writing and erasing. The
frame-enveloped ink-state is mandatory since
it enables operand specification with a simple

2426 Transactions of Information Processing Society of Japan

pen-down on the frame. Regarding compressed
ink-state, though this ink-state is “optional”
from the viewpoint of enabling one stroke oper-
ations, it is nevertheless useful because, by cre-
ating operational units of compressed ink-state,
users can efficiently use the narrow screen space
of pen-computers.

The raw ink-state and empty ink-state are the
only two ink-states that exist in the user inter-
faces of most ink-editors.

Our research is the first to propose the con-
cept of ink-states for classifying the various op-
erational units of ink-data and for describing
the transformations among them.

Regarding the creation of ink-states, both
the frame-enveloped ink-state and compressed
ink-state can be created either manually (as
in Figs. 2a and 2b) or automatically (described
later in Section 3.1.3).

Regarding the frame-enveloped ink-state,
though we first put forward the approach of
segmenting ink-data!®'4), the product “ZAU-
RUS” enables operations in units of segmented
ink-data by using gestures. However in “ZAU-
RUS” the spatial bounds of segmented ink-data
cannot be modified, and the individual strokes
inside segmented ink-data cannot be edited?).
Whereas, in the frame-enveloped ink-state of
this paper, first, the bounds can be modified.
Second, the individual strokes inside the frame-
enveloped ink-state can be edited without need-
ing to first desegment the frame-enveloped ink-
state, for example, tapping the strokes inside
this ink-state (after selecting “Eraser”) erases
the strokes, and so on.

2.3.2 Pen, Pie Menu and Linear Menu

Here, we explain the second of the three el-
ements that enabled one stroke operations. As
shown in Figs. 2a and 2b, to enable one stroke
operations, after the operand is selected, the op-
erator choices should appear exactly at pen-tip
location. Soon after operator selection, these
operator choices should disappear from view,
and let the user complete action execution in
the same one stroke.

Two example candidates that could possi-
bly satisfy the above requirements of operator
choices are pop-up linear menu and pie menu.
Both of these can be displayed at exactly the
location of pen-tip, and the desired menu item
can be selected.

The comparison of pie menu and linear menu
with respect to performing one stroke opera-
tions and two/three stroke operations is taken

Dec. 1996

up in Section 5.

From the viewpoint of memorizing the menu
item locations, we expect that the pie menu
would be relatively better than linear menu
because the radial arrangement of pie menu
items enables users in memorizing their lo-
cations, making possible menu selection by
“marking”'®)19) (that is, writing a straight
mark in the direction of the menu item with-
out displaying the pie menu). “Marking” is like
writing gestures, with the merits that these ges-
tures are faster to write (short straight marks),
and easier to memorize since users learn marks
by actually using pie menus. “Marking” speeds
up overall operations as it cuts the display time
of pie menu, and additionally does not obscure
ink-data.

This paper is the first to use pie menu to per-
form operations on data created with pen-input
in the same application. Now let us look at the
other pie menu research.

The research of Ref. 17) empirically compares
linear menu and pie menu, however no opera-
tions are performed on data using pie menu.
The research of Ref. 18) investigates how many
levels and items in hierarchial pie menu are
practical with “marking”, however no opera-
tions are performed on data using pie menu.
Though the research of Ref. 19) uses pie menu
to operate on data, however this data is not
created with pen-input. The research of Ref. 3)
uses pie menu to create (coded) graphics data
(each pie menu item denotes a geometrical
shape), however pie menu is not used to operate
on this data. The research of Ref.20) creates
(coded) text characters (symbols, etc.) using
pie menu, but no operations are performed on
data using pie menu.

2.3.3 Data-cum-tools

Here, we explain the last of the three elements
that enabled one stroke operations, namely,
data-cum-tools. In this user interface, there
are three data-cum-tools. The first data-cum-
toolis the rubber-band along with the ink-data
contained within it. The second data-cum-
tool is the frame (of frame-enveloped ink-state)
along with the ink-data contained within it.
The third data-cum-tool is the frame (of com-
pressed ink-state) along with the compressed
ink-data contained within it. All these three
data-cum-tools possess properties of both data
and tools. These three have properties of data,
since when the user manipulates the frame
(Fig. 2b), rubber-band (Fig.2a) or the frame

Vol. 37 No. 12

of compressed ink-state, the operand (ink-data)
inside gets operated on. And all the three data-
cum-tools have properties of tools since they
contain embedded tools (pie menu or linear
menu, and the operators inside pie menu or
linear menu) which pop up immediately after
operand specification.

We created data-cum-tools so that the user
need not change modes between writing (and
erasing) and performing operations. These
modeless operations are realized because a pen-
down on the data-cum-tool denotes the start of
an operation, and a pen-down on any other area
of the screen denotes writing, erasing, etc. de-
pending on the mode in use at that time, for ex-
ample, writing mode, erasing mode, etc. Thus,
the strokes need not be recognized to distin-
guish between writing/erasing/etc. and start
of operation, and users need not worry about
misrecognitions during writing. The modeless
feature of data-cum-tools greatly assists devel-
opers as it relieves them from having to develop
an ink recognition algorithm.

The data-cum-tools of this user interface can
be divided into “action-deferred” data-cum-
tool, and, “on-the-fly” data-cum-tool. The
frame of frame-enveloped ink-state and the
frame of compressed ink-state are “action-
deferred” data-cum-tools, since users can cre-
ate them and defer action on them till later on.
Whereas the rubber-band is the “on-the-fly”
data-cum-tool since the rubber-band is formed
and immediately operated on.

Though the researches in Refs.22) and 23)
describe the simultaneous specification of the
operand and operation by using the “See-
Through Tools”??) and “Magic Lenses”?3), they
do not talk about the concept of an object pos-
sessing properties of both data and tools. But,
at the end of the presentation of Ref. 23) at CHI
'94 conference (Boston, April 1994), the dis-
cussant talked about the concept of integrat-
ing data and tools (which is incidentally the
concept behind our data-cum-tools). However,
this paper is the first to actually implement this
concept.

Now, the tools of Refs.22) and 23) can be
used with one hand or two hands. When used
with one hand, the operations are performed in
two distinct steps—in the first step the tools
are positioned over the operand, and in the sec-
ond step the operation is performed. When two
hands are used, the tools are positioned over the
operand with one hand, while the operation is

One Stroke Operations 2427

performed with the other hand. That is, the
tools and the data are originally separated.

In contrast, in the data-cum-tools of this pa-
per, since the data and tools are integrated, one
step operations are possible at all times.

2.4 Integration and Separation of the
Operation Stages: The Second
Reason that Enabled One Stroke
Operations

Here, we explain the second of the two rea-
sons that enabled one stroke operations. “In-
tegration of operation stages” in one stroke
means that, the user transfers from one opera-
tion stage to the next, while the pen-tip is in
contact with the tablet surface.

When the operation stages are performed in
separate pen-down (and pen-up) motions, as in
most of the current pen-based user interfaces,
then the operation stages are said to be “sepa-
rated”.

As explained in Section 2.2, in this user in-
terface, the user is “free” to integrate all the
operation stages in one stroke, or to separate
the operation stages, that is, “free” in the sense
that he/she can lift the pen-tip after completing
any operation stage.

This research is the first to put forward the
concept of integration and separation of the op-
eration stages, and to actually implement this
concept in a pen-based user interface.

Now, in Fig.2a, we call the integration of
Stage 1 and Stage 2 as “automatic integration”
because, immediately after the operand is spec-
ified, the pie menu opened automatically with-
out further prompting. Whereas Stage 2 and
Stage 3 of Fig.2a are “manually integrated”,
since the user must perform the drag action to
select the menu.

Thus, from Sections 2.3 and 2.4, we can see
that one stroke operations were enabled be-
cause of the existence of the three elements (ink-
states, pen and pie menu and linear menu, and,
data-cum-tools) and the “integration and sepa-
ration of the operation stages” in one or more
strokes.

3. Design of the Proposed User Inter-
face

As an application of the concepts of Section
2, here we explain the design of the proposed
user interface. We aim to show the design prin-
ciples behind the design of each operation stage.
We describe the ink-state transformation oper-
ations in Section 3.1 and editing operations in

2428 Transactions of Information Processing Society of Japan

Dec. 1996

Rubber Band

Eﬂvelope of
Compressed Ink—State

Fig.6 Shows the three pie menus and the data-cum-tools of this paper. The
shaded arrows indicate which pie menu is displayed when the tip of
stylus pen comes in contact with the respective portion of the data-

cum-tool.

Section 3.2. Though Section 2 described the
concept of one stroke operations using both pie
menu and linear menu, in this chapter, we de-
scribe the design of this user interface using
only pie menu.
3.1 Design of the Ink-state Transfor-
mation Operations
Section 3.1.1 explains the design of the inte-
gration and separation of the operation stages.
Next we describe the design of each operation
stage in Sections 3.1.2 to 3.1.4, by starting with
the design of pie menu opening.
3.1.1 Design of the Integration and
Separation of the Operation
Stages
Figures 2a and 2b showed one design method
in which all the operation stages were inte-
grated in one stroke. Other possible design
methods are, for example, specify the operand
in the first stroke and integrate the other op-
eration stages in the second stroke; specify the
operand and open the menu in the first stroke
and integrate the other operation stages in the
second stroke; and so on. It remains a future
research issue for us to determine which design
of the integration or separation of the opera-
tion stages leads to faster operations and fewer

€errors.

Though the research of Ref. 3) explains about
deferred operations in which the user specifies
the operand and the operation in two steps,
however Ref.3) does not mention about other
separations of the operation stages.

3.1.2 Design of Pie Menu Opening

Let us focus on Fig. 6 which shows the three
pie menus of this user interface. The shaded
arrows indicate which pie menu opens when the
pen-tip comes in contact with which part of the
data-cum-tool. This user interface has three pie
menus instead of only one, so as to enable one
stroke operations when using rubber-band, as
explained below.

Immediately after specifying the operand
with rubber-band, the pie menu should be dis-
played. If all the operators (corresponding to
all the ink-state transformation and editing op-
erations) are crowded into one pie menu, spot-
ting the menu items will take time and errors
will rise during menu selection. Possible ways
of reducing the pie menu items are, using “hier-
archial pie menus”!®), requiring users to make
distinct pen movements to indicate which pie
menu should be opened, dividing the pie menus
based on functionality, etc. We adopted the ap-

Vol. 37 No. 12

proach of dividing the pie menus based on func-
tionality.

As shown in Fig.6, when the user rubber-
bands from the left side of the tablet to the
right, the ink-state transformation pie menu
opens, using which the user selects the pie menu
item and executes the action in the same stroke.
And when he/she rubber-bands from the right
to the left, the ink-data editing pte menu opens.
Thus, one stroke operations are enabled with
rubber-band.

Now let us consider “undo” and error recov-
ery during pie menu opening. After the pie
menu opens, the pie menu can be closed by
lifting the pen-tip from the tablet-surface while
the (z,y) coordinates of the pen-tip lie inside
the inner circle of pie menu. In the event the
user has already moved the pen-tip to one of
the menu items, he/she can simply bring the
pen-tip back into the inner circle and lift the
pen-tip.

Now let us consider that the user opened the
wrong pie menu by rubber-banding from quite
the opposite side of rubber-band than he/she
must have. For example, the user wanted to
open the ink-data editing pie menu, however
he/she wrongly rubber-banded from the left
side of the tablet to the right and opened the
ink-state transformation pie menu. Out of the
various error-recovery design options possible,
in this user interface, the following two meth-
ods exist.

(1) The user lifts the pen-tip, which closes
the wrongly opened pie menu. Then, he/she
simply “taps” with the pen-tip on the same cor-
ner of the rubber-band where he/she opened
the wrong pie menu. This pen-tap acts as a
toggle switch which opens the next pie menu.
If this pie menu is not the desired pie menu,
the user taps again, and so on, until he/she
opens the desired pie menu. For example, if the
wrong pie menu opened after rubber-banding
is the ink-state transformation pie menu, the
“tap” opens the ink-data editing pie menu. And
another tap opens the ink-state transformation
pie menu. This method of tapping at the same
corner eliminates the need to move the pen-tip
to the other rubber-band corners, and thus re-
duces pen movements.

(2) He/she lifts up the pen, which closes
the opened pie menu. Then he/she moves the
pen-tip to the horizontally opposite corner, and
puts down the pen-tip, thus opening the desired
pie menu.

One Stroke Operations 2429

To make the pie menu division visually dis-
tinguishable, the left, center and right portions
of the frame of frame-enveloped ink-state and
compressed ink-state are displayed as lines of
various styles (solid, bold, etc.). However the
top and bottom portions of the frame (of frame-
enveloped ink-state) are identical, to maintain
consistency between and left (or right) portions
of the frame of frame-enveloped ink-state and
compressed ink-state, and the rubber-band.

In order that the user be able to open the pie
menu by pointing at the data-cum-tool in the
first try, we did the following. When the pen-
tip is directly above or very close to a portion of
the frame of frame-enveloped ink-state or com-
pressed ink-state, this frame portion temporar-
ily widens (a dotted rectangle appears around
the respective portion of the frame of frame-
enveloped ink-state or compressed ink-state) to
show current pen-tip location. Thus, even if the
location of pen-down does not exactly coincide
with the location of frame, but lies inside this
widened frame, the frame is said to be selected.

3.1.3 Design of Operand Specification

We discuss manual operand specification in
(1) and automatic operand specification in
(2).

(1) Manual operand specification

Let us consider “rubber-banding”. Stage 1
of Fig.2a showed the rubber-band being con-
structed between the locations @ and @. The
starting point and ending point of rubber-band
could be denoted in various ways, such as, keep-
ing the pen-tip still for a pre-determined time
at D and @, varying the pressure of the pen-
tip on the tablet surface at (D and ®, etc.
Focussing on Stage 1 of Fig.2a, the start of
rubber-band is denoted by pressing the side-
switch of stylus pen at (@, and the end is de-
noted by releasing the side-switch at @. In this
user interface, the start and end of rubber-band
are denoted in this way, in order to differentiate
between the pen-down of writing ink-data and
the pen-down of constructing a rubber-band.
In this method, the user could mistakenly press
or release the side-switch. Thus as an alter-
native we implemented another method of de-
noting the end of rubber-band. Specifically, on
reaching the location @), the user keeps the pen-
tip still for about 0.3 seconds, and the end of
rubber-band is specified.

Now, during rubber-banding, only those
strokes that lie completely inside the rubber-
band are included as the operand.

2430 Transactions of Information Processing Society of Japan

If the user mistakenly releases the side-switch
at an undesirable part of ink-data, he/she can
“undo” (that is, remove) the rubber-band by
selecting “Un Band” (abbreviation of “Undo
Rubber Band”) from the pie menu that opens
Jjust after operand specification.

(2) Automatic operand specification

“Automatic” means that the spatial bounds
are created around ink-data, without needing to
rubber-band every time. The automatic mode
is activated by tapping the “Auto Off” button
of “Global Menu”. “Automatic compression”
means that the ink-data gets compressed in ad-
dition to being enveloped by spatial bounds.

For automatic operand specification, this
user interface uses a slightly modified version
of the segmentation algorithm of Refs. 13), 14),
that segments handwritten text lines from the
original ink-data. This algorithm looks for
“break” in the pen movements while writing.
“Break” represents a “big change” in the values
of the pen-input parameters (such as the x and
y coordinates of the pen-tip position, pressure
at pen-tip position, etc.). And “big change”
is measured relative to pre-determined thresh-
old values, and depends on the type of “break”.
Some examples of “break” are, a “break in line
while writing” is said to occur when the user
ends writing on one line and is about to write
on another line, “break while writing and draw-
ing” occurs when the user just finishes writing
a stroke of a character and is about to write
the stroke of a sketch, etc. (For more details
about this algorithm, kindly refer to Refs. 13),
14).) This paper detects only “break in line
while writing”.

Mistakenly segmented ink-data are corrected
using frame-editing pie menu shown in Fig. 6,
and is described later in Section 3.2.2.

Users can automatically create frame-enve-
loped ink-state or compressed ink-state while
they are writing (that is, in real-time) or at
an arbitrary time (that is, by batch process-
ing). These two modes are toggled by tapping
the “Real Batch” button of “Global Menu”.
The batch processing mode is useful when users
want to eliminate mistaken segmentation of
handwritten figures, tables, etc. by the seg-
mentation algorithm. Specifically, after man-
ually segmenting the figures, etc. he/she uses
the segmentation algorithm to segment the re-
maining handwritten text.

To automatically segment only a portion
of the document, the appropriate ink-data is

Dec. 1996

rubber-banded and “Alg Seg” (abbreviation of
“Algorithm Segmentation”) is selected from the
ink-state transformation pie menu. To auto-
matically compress only a portion of the docu-
ment, “Alg Com” (abbreviation of “Algorithm
Compression”) is selected.

To revert (or undo) the Jrame-enveloped ink-
state and compressed ink-state to their older
ink-states, “Desg” (abbreviation of “Deseg-
ment”) and “Deco” (abbreviation of “Decom-
press”) are selected from the pie menu. To
speedily desegment all the ink-data in the doc-
ument, the “Desegment” button of “Global
Menu” is tapped.

3.1.4 Design of Pie Menu Selection

and Action Execution

During menu selection, if the user mistak-
enly drags the pen-tip to an undesired menu
item, he/she can drag the pen-tip back to the
correct menu item, then lift up the pen-tip to
complete menu selection or he/she can drag the
pen-tip outside the outer circle of pie menu.
The method of dragging the pen-tip outside the
outer circle of pie menu was provided to enable
“move” (“copy”, etc.) operations without need-
ing to first lift up the pen-tip (already illus-
trated in Fig. 3).

Regarding pie menu selection and action ex-
ecution, some of the issues to be tackled are,
determining the optimal size (radius of inner
and outer circle) of pie menu, optimal number
of items inside pie menu, optimal placement of
the menu items, etc.

3.2 Design of the Editing Operations

Section 3.1 explained the design of each de-
sign stage. Here we describe only the design
issues related to the editing operations. Sec-
tions 3.2.1 and 3.2.2 respectively describe the
design of the ink-data editing operations and
the frame-editing operations.

3.2.1 Design of the Ink-data Editing

Operations

The most basic ink-data editing operations
are writing and erasing. Writing is done while
the “Pen” stationery tool in “Global Menu” is
highlighted. To erase ink-data, the user tog-
gles between the pen/eraser tools, and taps on
the ink-data strokes or drags the pen-tip over
the ink-data strokes that are to be erased. The
user can toggle between the pen/eraser tools
in two ways — by pressing twice the side-switch
of the pen, or by tapping the “Eraser” button
of “Global Menu”. The former toggling method
was provided to reduce pen movements and dis-

Vol. 37 No. 12

traction.

The other ink-data editing operations are
“move”, “copy”, “delete” and “glance” oper-
ations. All these operations can also be per-
formed in one stroke or multiple strokes. Here
we consider the “move” and “glance” opera-
tions as examples.

In the explanation of the move operation in
Section 2.2, it was mentioned that the “move”
operation can be performed in two methods—
in one stroke or in multiple strokes. While both
these “move” methods have their merits and
demerits, performing “move” in one stroke is
useful while the user is performing other tasks,
for example, talking during discussions. In dis-
cussions, if the multiple stroke “move” opera-
tion is adopted, then the user is distracted from
his/her main task of discussion, because he/she
has to move his/her eyes and/or hand back to
the operand to position the pen-tip, and then
drag the operand.

An important thing to note is that, after the
“move” (or “copy” or “delete”) operation is
completed, the other ink-data (not specified as
operands of these operations) do not automat-
ically move to occupy the space created as a
result of “move” (or “copy” or “delete”) oper-
ation. This is because the ink-data in this user
interface does not exist in any pre-determined
structure (such as the sequential structure in
“ZAURUS”), because of which the user will not
expect the unrelated ink-data to automatically
move.

The “glance” operation is used to quickly
browse compressed ink-state. The user puts the
pen-tip down on the left edge of compressed
ink-state and selects “Glan” (abbreviation of
“Glance”) in the ink-data editing pie menu. On
doing so, about one-third the width of ink-data
inside this ink-state comes into view. Only a
portion of this ink-state is displayed, since the
user can recollect the contents of this ink-state
just by looking at this limited portion.

By creating compressed ink-state and brows-
ing it with “glance”, users can view both the lo-
cal details as well as global context of the whole
document. Though other research targeting the
viewing of details and global context (such as
Refs. 15), 16)) have their own merits and de-
merits, our approach of “compressing” ink-data
and “glancing” is especially useful when writing
on the narrow screens of pen-computers.

One Stroke Operations 2431

(a)

(b)

(c)

@

Fig.7 “Cut” operation for breaking up one unit of

the frame-enveloped ink-state into two, per-
formed in one stroke. (a) to (d) respectively
show pie menu opening, the instant just af-
ter menu selection, adjusting the “cut” posi-
tion, and the ultimate formation of two units
of frame-enveloped ink-state.

3.2.2 Design of the Frame-editing Op-
erations

The frame-editing operations are “cut” and
“join”, and they modify the frames of frame-
enveloped ink-state, for example, when the seg-
mentation algorithm mistakenly segments or
when users want to break up or join together
the operational units of this ink-state. Here,
the “cut” operation is explained using Fig. 7.

Figure 7 shows “cut” operation performed in
one stroke for cutting the frame-enveloped ink-
state into two. Fig.7(a) shows the instance the
pie menu opens when the user puts the pen-
tip down on the date-cum-tool at the center of
the right-edge of data-cum-tool. He/she drags
the pen-tip towards the outside of the pie menu
(here, in the downward direction). The mo-
ment the pen-tip goes outside the pie menu,
a horizontal dotted line appears, as shown in
Fig.7(b). By continuing to drag the pen-tip
in the up-down direction, he/she positions this
dotted line at an appropriate position between

2432 Transactions of Information Processing Society of Japan

two handwritten lines of text (Fig.7(c)), and
then lifts the pen-tip. On doing so, the orig-
inal ink-state is divided into two as shown in
Fig.7(d).

Figure 7 shows an example of “horizontal
cut”. In this user interface, there is also “verti-
cal cut”, which breaks up (for example) a hand-
written text line (containing handwritten char-
acters) into left and right portions. Regarding
compressed ink-state, after the user opens the
frame-editing pie menu and selects “Cut”, this
ink-state remains unchanged.

The “join” operation joins two or more op-
erational units of frame-enveloped ink-state, or
joins raw ink-state with frame-enveloped ink-
state. To “join”, the user rubber-bands the nec-
essary ink-data and selects “Join” from the ink-
data editing pie menu. Since the “join” opera-
tion is a type of editing operation, we placed the
“Join” operator inside the ink-data editing pie
menu. The “Join” operator has not been placed
inside the frame-editing pie menu along with
“cut” because, the “join” operation is not per-
formed from the positions at which the frame-
editing pie menu opens.

4. Extending the Concepts of this
User Interface to Other User Inter-
faces

The concepts of this paper, namely, “integra-
tion and separation of the operation stages”
in one or more strokes, ink-states, pen and
pie menu and linear menu, and data-cum-tools,
can be extended to other user interfaces that
use direct pointing devices (such as mouse or
hand/finger as in touchscreen). We describe
this extension of our concepts, by taking up
editing of text-data and graphics-data in (1)
and (2).

(1) Using our concepts for editing text-data
in other user interfaces

Let us suppose that a user wants to delete
a paragraph (say, of a research paper) using a
mouse-based Windows™ word processor. To
specify this paragraph as the operand, the user
would press the mouse button and drag the
mouse from the start of the paragraph to its
end, and release the mouse button. At this
instant, a pie menu could be displayed, and
the “Delete” pie menu item selected. To speed
up operand specification, the user could cre-
ate frame-enveloped text-state (such as individ-
ual lines or paragraphs) surrounded by a frame,
so that such operands can be selected simply by

Dec. 1996

clicking the mouse button when the mouse cur-
sor is on the frame.

We can similarly explain one stroke opera-
tions for pen-based text-editors, the design is-
sue being the detection of the start/end of the
operand, for example, by toggling the side-
switch of the pen.

And, to perform the operation of the above
example on a touchscreen, the user would drag
his/her finger or hand from the start to the end
of the paragraph, then select the pie menu item.
Here also the design issue is the detection of
the start and end of operand specification, for
example, keeping the finger at the same position
for a pre-determined time, etc.

Now, the concept of ink-states (or more gen-
erally, data-states) can be extended to all the
above three examples. In addition to frame-
enveloped text-state explained above, empty
text-state exists just after boot up, raw text-
state is formed on inputting a character from
the keyboard (for mouse-based user interfaces)
or recognizing and converting a handwrit-
ten character into text-data (for pen-based or
touchscreen-based text-editors).

(2) Using our concepts for editing graphics-
data in other user interfaces

In a mouse-based graphics application, af-
ter rubber-banding the desired graphics-data,
a pie menu could pop up and the menu item
selected. To quicken operand specification,
frame-enveloped graphics-state could be created
and operated on by clicking the mouse button
on the frame.

In similar manner, the above graphics edit-
ing operation can be performed in one stroke
in pen-based graphics-editors and touchscreen-
based graphics-editors.

And, in addition to frame-enveloped graph-
ics-state explained above, we could have empty
graphics-state and raw graphics-state in the
mouse-based, pen-based and touchscreen-based
graphics-editors.

5. Experiment

5.1 Aim of the Experiment

This section describes the preliminary exper-
iment performed to compare the following two:
(1) Operations with one stroke, two strokes,

and three strokes

(2) linear menu, and, pie menu

Here, “operations with one stroke” are those
in which the user completes the whole opera-
tion (that is, from the start of operand specifi-

Vol. 37 No. 12

One Stroke Operations 2433

File | Edit | State

Frame | Resume | Start

/lo
v
1

R

ove - Stive, Operalion

(:-*A‘ P
o A
Bk - rﬁdm\% :;%\‘*

Fig.8 Hard-copy of the screen of the experiment tool, showing the ink-data
used. The eight dotted rectangles, used only for explaining, denote
the eight operands t hat the subjects operated on.

cation to the end of execution) without lifting
the pen-tip. “Operations with two strokes” are
those operations in which the user lifts the pen-
tip only once during the operation, that is, the
user completes the operation in two pen-downs.
For example, in the first pen-down, he/she puts
the pen-tip down on the tablet-surface, rubber-
bands the operand and lifts up the pen-tip.
Then, in the second pen-down he/she puts the
pen-tip down on the tablet-surface, opens the
menu, selects the menu and executes the action.
And in the “operations with three strokes”,
he/she completes the operation in three pen-
downs. Specifically, in the first pen-down the
user completes rubber-banding, and lifts up the
pen-tip. In the second pen-down, he/she opens
the menu, selects the menu-item, and lifts the
pen-tip. In the third pen-down, he/she executes
the action.

We compared operations with one stroke and
operations with two/three strokes, in order to
determine whether operations with one stroke
are faster than and produce fewer errors as com-
pared to operations with two/three strokes.

Now, referring to (2) above, we aimed to
determine whether pie menu is faster than
and produces less errors as compared to linear
menu.

5.2 Experimental Method

The experimental method is explained using
Fig. 8 which is a hardcopy of the screen of the
experiment tool. The dotted rectangles in Fig. 8
(denoting the operands to be operated on) are
used only for explaining, and are not actually

A
e AV

Glan

Fig.9 The linear menu and pie menu actually used
in the experiment. Each menu contains six
menu items, including the “one-operand type”
operators (“Del”, “Seg”, “Comp”, “Glan”)
and “two-operand type’ operators (“Move”,
“Copy").

displayed during the experiment.

Each subject performs a fixed number of op-
erations, each operation performed according to
the following four steps.

(D Each operation is triggered by tapping
the “Start” button (upper-right portion of the
screen) with the pen. On doing which, one
operand out of eight possible operands, is ran-
domly displayed on the screen as bold strokes,
that is, the ink-data contained in one of the
eight dotted rectangles of Fig. 8 is displayed on
the screen as bold strokes, and the operator (for
example, “Delete”) is shown on the top of the
screen.

@ The subject envelopes the specified operand
by creating a rubber-band around this operand.
@ The subject opens the menu (linear menu
or pie menu of Fig.9) and selects the menu-
item corresponding to the operator displayed
on the top portion of the screen. This being a

2434 Transactions of Information Processing Society of Japan

preliminary experiment, we used only six menu-
item linear menu and six-item pie menu.

@ The subject executes the action, for example,
moving the operand from its initial position to
the final destination. Here, the final destination
is displayed as a bold rectangle on a random
position on the screen. The random positions
are explained a bit later.

There were four subjects, and each subject
performed 480 operations in all. The number
“480 operations” is obtained by multiplying the
following four quantities:

(1) The 3 “operational methods”, that is,
operations with one/two/three strokes.

(i) The 2 menu shapes, that is, linear menu
and pie menu.

(iii) The 4 menu items in each of pie menu
and linear menu.

(iv) The 24 operations with each of the four
menu-items mentioned above.

Though multiplying the above four quantities
yields a total of 576 operations, however, out of
this, 96 operations can be deleted as explained
below.

In this experiment, we used “one operand
type” operations (in which users need to sim-
ply select from the menu, as already explained
in Section 2.2) and “two operand type” op-
erations (in which users need to specify both
the original and final positions of the operands).
Now, the operations with three strokes were not
performed with “one operand type” operations,
because the “one operand type” operations re-
quire maximum only two strokes to complete
the whole operation. Therefore, 96 operations
(that is, 24 times each of the four menu items)
can be deleted from the total of 576 operations.
Therefore, we obtain 480 operations in all.

These 480 operations were spread over six
sessions. These six sessions were divided on
the basis of operational method types (that
is, one/two/three stroke operations) and menu-
shapes (linear/pie menu). For example, in a
particular session, the subject performed the
specified 96 operations by using the method of
operations with one stroke and linear menu.
While in another session, the same subject
performed the same 96 operations using the
method of operations with one stroke and pie
menu, and so on. The order of the six sessions
was different for the four subjects. Now, the
subjects were allowed to rest after completing
each session, and they were allowed to practice
for a few minutes before each session.

Dec. 1996

All the four subjects performed the 480 op-
erations on the same operands and operators,
however, the order of the operands and the op-
erators was random, in order to make it dif-
ficult for the subjects to guess. Regarding
the operands, two types of operands were se-
lected — (i) horizontally written text, (ii) verti-
cally written text.

Regarding the “two operand type” opera-
tions, the location of the destination of “move”
and “copy” was generated at random, out of a
possible 16 locations on the screen, that is, eight
directions (up, down, left, right, and the 4 di-
rections in between them) and two distances.
These directions as well as distances are mea-
sured with respect to the bottom-right corner
of the rubber-band, since the subjects rubber-
banded from the top-left corner to bottom-
right corner of the rubber-band. Here, two dis-
tances — “far” (near the screen edge in each di-
rection) and “near” (roughly 1/3 of the “far”
distance) were set up.

5.3 Experimental Results

Figure 10 shows the experimental results.
The horizontal axis shows the six combinations
of the operational method types and menu-
shapes, and the vertical axis shows the average
time taken to perform each operation. Here
the time taken is measured from the start of
rubber-banding to the end of execution. The
start of rubber-banding is the instant the pen-
tip touches the tablet surface. The end of ex-
ecution is slightly different for “one operand
type” and “two operand type” operations. For
“one operand type” operations, the end of ex-
ecution is the instant the pen-tip is lifted from
the tablet surface just after selecting the menu
item, or the instant the pen-tip goes out of the
outer circle of pie menu. And the end of ex-
ecution for “two operand type” operations is
the instant the pen-tip is lifted from the tablet
surface after dragging the operand to its desti-
nation.

As shown in Fig. 10, from the viewpoint of av-
erage time taken, operations with one stroke are
relatively faster than both operations with two
strokes and operations with three strokes. Also,
operations using pie menu are relatively faster
than using linear menu for all the three opera-
tional methods (operations with one/two/three
strokes).

Statistical analyses of variance, however, did
not yield significant differences (F; 4 = 0.58,
p < 0.05) between the three operational meth-

2435

Vol. 37 No. 12 One Stroke Operations
Average time for one operation, for one/two/three stroke operations,
with linear/pie menu

5.00 4.77
4.50
4.00
3.50

. 3.00

[*]

E‘ 2.50
2.00

1.50
1.00
0.50

0. 00
3 stroke

2 stroke
operations operations operations

1 stroke

——
Linear Menu

S —

3 stroke

1 stroke 2 stroke

operations operations operations
—

~
Pie Menu

A

Fig. 10 Graph showing the average time taken to complete one operation,
where each operation is performed with one/two/three strokes and
two menu shapes (linear menu and pie menu).

ods (operations with one/two/three strokes) for
both the linear menu and pie menu. Also, no
statistically significant differences (F¢ = 0.65,
p < 0.05) were found between linear menu and
pie menu for all the three operational methods
(operations with one/two/three strokes).

Possible reasons for not observing significant
differences between the three operational meth-
ods and between the two menu shapes could be
that, the subjects were too few in number or
the operations were few in number.

We need to further determine whether there
are statistically significant differences between
the three operational method types (operations
in one/two/three strokes), that is, whether the
integration/separation of operation stages pro-
duce statistically significant differences, and if
so, then determine the reasons for these differ-
ences and determine which design of integration
or separation of the operation stages is best or
worst. Further, we need to determine whether
there are statistically significant differences be-
tween the two menu shapes (linear menu and
pie menu). In order to do all the above, we
need to perform further experiments by increas-
ing the number of subjects and/or operations.

6. Conclusion

This paper proposed one stroke operations,
in which operand specification, menu open-
ing and selection, and action execution, can
be integrated and separated in one or more

strokes. The following two reasons enabled one
stroke operations— (i) Existence of the three el-
ements, namely, ink-states, pen and pie menu
and linear menu, and data-cum-tools, and, (ii)
“Integration and separation of the operation
stages” in one or more strokes.

We showed that the concepts described in (i)
and (ii) above resolve the problems of multiple
pen-down and pen-up in menu-based pen user
interfaces, and the problems of gesture recogni-
tion in gesture-based pen user interfaces.

We performed a preliminary experiment to
compare operations with one stroke and oper-
ations with two/three strokes, and to compare
linear menu with pie menu. Comparison of the
average time taken for each operation showed
that the operations with one stroke were rela-
tively faster than operations with two strokes
and three strokes, and that pie menu was rel-
atively faster than linear menu. However no
statistically significant differences were found
between the three operational methods (opera-
tions with one/two/three strokes), and between
linear menu and pie menu.

Regarding the originality of this paper, for
performing operations on pen-input systems,
this paper is the first to put forward the concept
of integration and separation of operand specifi-
cation, menu opening and selection, and action
execution, in one or more strokes. This paper
is also the first to classify the operational units
of ink-data into ink-states, and also the first to

2436 Transactions of Information Processing Society of Japan

use pie menu for performing operations on data
while creating this data using pen-input in the
same application. In addition, this paper is the
first to actually realize data-cum-tools.

By developing a prototype ink-editor based
on the proposed concepts, we showed that these
concepts can be designed and implemented in a
pen-based application. The operations in this
ink-editor are performed in consistent manner,
which we expect will reduce the learning time.

We showed that the concepts of ink-states,
pen and pie menu and linear menu, data-cum-
tools, and “integration and separation of the op-
eration stages” in one or more strokes, can be
extended to other user interfaces that use direct
pointing devices (such as mouse, hand/finger,
etc.) and process various data (text-data,
graphics-data, etc.).

As future research work, we need to do the
following:

e Perform further experiments by increas-
ing the number of subjects, and compare
one/two/three stroke operations, and com-
pare linear menu with pie menu, and the
menus used in conventional graphical user
interfaces.

e Determine which design of the integration
and separation of the operation stages is
suitable in which task(s).

e Design, implement and evaluate one stroke
operations in mouse-based and touch-
screen based user interfaces.

e Explore how to further enhance one stroke
operations so as to enable multiple “oper-
ations” (where each “operation” includes
operand specification, menu opening and
selection, and action execution) in one
stroke.

e Determine in what situations, users want to
create which type of frame-enveloped ink-
state, for example, handwritten text lines,
figures, etc.

Acknowledgments The authors would

like to thank the reviewers for the constructive
comments.

References

1) Hardock, G., Kurtenbach, G. and Buxton, W.:
A Marking Based Interface for Collaborative
Writing, Proc. UIST 98, pp.259-266 (1993).

2) Zhao, R.: Incremental Recognition in Gesture-
Based and Syntax-Directed Diagram Editors,
Proc. INTERCHI 93, pp.95-100 (1993).

3) Kurtenbach, G. and Buxton, W.: Issues in

Dec. 1996

Combining Marking and Direct Manipulation
Techniques, Proc. UIST ’91, pp.137-144 (1991).

4) Moriya, S., Morita, T., Inai, K. and Shimizu,
S.: Stroke Editor, and Direct Pointing and Ma-
nipulation (in Japanese), Trans. IPS Japan,
Vol.32, No.8, pp.1022-1029 (1991).

5) PenPoint User Interface Design Reference,
Addison-Wesley, (1992).

6) Kamo, O., Sakurai, Y., Sakurai, Y., Shitanda,
H. and Sugita, T.: Personal Pen Input Technol-
ogy (in Japanese), Human Interface News and
Report (32nd Meeting on Human Interface),
Vol.10, No.1, pp.59-64 (1995).

7) aha! InkWriter Handbook, aha! Software Cor-
poration (1994).

8) Minneman, S.L. and Bly, S.A.: Managing a
Trois: A Study of a Multi-user Drawing Tool
in Distributed Design Work, Proc. CHI 91,
pp.217-224 (1991).

9) Ishii, H., Kobayashi, M. and Grudin, J.: In-
tegration of Inter-personal Space and Shared
Workspace: ClearBoard Design and Experi-
ments, Proc. CSCW ’92, pp.33-42 (1992).

10) Wolf, C.G. and Rhyne, J.R.: Communica-
tion and Information Retrieval with a Pen-
based Meeting Support Tool, Proc. CSCW 92,
pp-322-329 (1992).

11) Elrod, S., Bruce, R., Gold, R., Goldberg, D.,
Halasz, F., Janssen, W., Lee, D., McCall, K.,
Pedersen, E., Pier, K., Tang, J. and Welch,
B.: Liveboard: A Large Interactive Display
Supporting Group Meetings, Presentations and
Remote Collaboration, Proc. CHI ’92, pp.599-
607 (1992).

12) Pedersen, E.R, McCall, K., Moran, T.P. and
Halasz, F.G.: Tivoli: An Electronic Whiteboard
for Informal Workgroup Meetings, Proc. IN-
TERCHI '93, pp.391-398 (1993).

13) Moriya, S., Shimizu, S. and Krishnan, S.N.:
Classification of Handwritten Stroke Data into
Lines (in Japanese), Trans. IEICE, Vol.J73-D-
11, No.7, pp.973-981 (1990).

14) Krishnan, S.N. and Moriya, S.: Segmenta-
tion of Handwritten Text and Editing-symbols
from Ink-data, Proc. HCI Intl. 93, pp.1010-
1015 (1993).

15) Sarkar, M. and Brown, M.H.: Graphical Fish-
eye Views of Graphs, Proc. CHI '92, pp.83-91
(1992).

16) Sarkar, M., Snibbe, S.S., Tversky, O.J. and
Reiss, S.P.: Stretching the Rubber Sheet: A
Metaphor for Viewing Large Layouts on Small
Screens, Proc. UIST ’93, pp.81-91 (1993).

17) Callahan, J., Hopkins, D., Weiser, M. and
Shneiderman, B.: An Empirical Comparison of
Pie vs. Linear Menus, Proc. CHI ’88, pp.95-100
(1988).

Vol. 37 No. 12

18) Kurtenbach, G. and Buxton, W.: The Limits
of Expert Performance Using Hierarchic Mark-
ing Menus, Proc. INTERCHI 93, pp.482-487
(1993).

19) Kurtenbach, G. and Buxton, W.: User Learn-
ing and Performance with Marking Menus,
Proc. CHI '94, pp.258-264 (1994).

20) Venolia, D. and Neiberg, F.: T-Cube: A Fast,
Self-Disclosing Pen-Based Alphabet, Proc.
CHI 94, pp.265-270 (1994).

21) Moriya, S. and Taninaka, H.: Concept of
Minute Operation and Its Application to Pen-
based Computers, Proc. HCI Intl. ’93, pp.1034-
1039 (1993).

22) Bier, E.A., Stone, M.C., Fishkin, K., Bux-
ton, W. and Baudel, T.: A Taxonomy of
See-through Tools, Proc. CHI 94, pp.358-364
(1994).

23) Stone, M.C., Fishkin, K. and Bier, E.A.: The
Movable Filter as a User Interface Tool, Proc.
CHI ’94, pp.306-312 (1994).

24) Krishnan, S.N. and Moriya, S.: A New Pen-
based User Interface that Combines Operand
Specification, Menu Opening and Selection,
and Operation Execution, Human Interface
News and Report (38rd Meeting on Human In-
terface), Vol.10, No.2, pp.143-152 (1995).

25) “ZAURUS” User Reference Manual, SHARP
Corporation.

(Received May 29, 1995)
(Accepted September 12, 1996)

One Stroke Operations 2437

S. Navaneetha Krishnan
was born in India in July 1965.
He received the B.Sc. (Honours)
degree in Physics from Delhi
University in 1986. He joined
Tokyo Denki University, Tokyo,
Japan in 1988 and received his
M.E. degree in Electrical Engineering in 1991.
He was awarded the Ph.D. degree from Tokyo
Denki University in 1996. His research inter-
ests include pen-based interactions, and pattern
recognition and understanding. He is a mem-
ber of IEICE Japan, IPSJ Japan and Society of
Instrument and Control Engineers of Japan.

Shinji Moriya was born in
December 1944. He received the
Ph.D. degree from Tokyo Denki
University in 1980. He was Vis-
iting Associate Professor in the
State University of New York
at Buffalo in 1981 and in the
University of Illinois at Urbana-Shampaign in
1982. He was Yunnan Computer Society Pro-
fessor (China) in 1992 and Visiting Professor in
the Yunnan Polytechnic University in China in
1994. He is currently professor of Tokyo Denki
University, Tokyo, Japan. He was with the Ed-
itorial Review Board of Information Resources
Management Journal, and the Special Editorial
Board of Interacting with Computers Journal.
His research interests include pen-based inter-
actions, voice input user interfaces, and evalu-
ation and modeling of human-computer inter-
action. He is a member of IEICE Japan, IPSJ
Japan, Society of Instrument and Control En-
gineers of Japan, Ergonomics Society of Japan,
Television Society of Japan, ACM and IEEE.

