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A term rewriting system (TRS) is said to be depth-preserving if for any rewrite rule and
any variable appearing in the both sides, the maximal depth of the variable occurrences in the
left-hand-side is greater than or equal to that of the variable occurrences in the right-hand-
side, and to be strongly depth-preserving if it is depth-preserving and for any rewrite rule and
any variable appearing in the left-hand-side, all the depths of the variable occurrences in the
left-hand-side are the same. This paper shows that there exist non-E-overlapping and depth-
preserving TRS’s which are not Church-Rosser, but all the non-E-overlapping and strongly

depth-preserving TRS’s are Church-Rosser.

1. Introduction

A term rewriting system (TRS) is a set of
directed equations (called rewrite rules). A
TRS is Church-Rosser (CR) if any two inter-
convertible terms reduce to some common term
by applications of the rewrite rules. This CR
property is important in various applications
of TRS’s and has received much attention so
far V~3)5)~8)  Although the CR property is
undecidable for general TRS’s, many sufficient
conditions for ensuring this property have been
obtained 1):2)9)~8).

However, for nonlinear and nonterminating
TRS’s, only a few results on the CR property
have been obtained. Our previous papers 5):6)
may be pioneering ones which have first given
nontrivial conditions for the CR property,
though these conditions can be applied only to
subclasses of right-linear TRS’s. On the other
hand, if we omit the right-linearity condition,
then it has been shown that only the non-E-
overlapping condition is insufficient for ensur-
ing the CR property of TRS’s 2). For example,
Ry = {f(z,a:) - a, g(z) = f(x,g(a:)), c -
g(c)}, where z is a variable and f,g,a,c are
function symbols, is non-E-overlapping, but not
CR.

In this paper, we consider the CR prop-
erty of nonlinear, nonterminating and depth-
preserving TRS’s. Here, a TRS is depth-
preserving if for each rule o — 8 and any vari-
able z appearing in both a and 3, the maximal
depth of the z occurrences in « is greater than
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or equal to that of the z occurrences in 8 %). For
example, TRS R, = {h(k(z),z) - f(z,9(z))},
where z is a variable, is depth-preserving, since
the maximal depth of the z occurrences of the
left-hand-side is 2 and that of the right-hand-
side 2. Note that Rg is not depth-preserving.

We first show that only the non-E-
overlapping and depth-preserving properties
are insufficient for ensuring the CR property.
That is, the following non-E-overlapping and
depth-preserving TRS R; is not CR:

R2 = {f(.’B,IL‘) —a, ¢c— h(C, g(C)),
h(z,9(z)) = f(z,h(z, 9(c)))}
where z is a variable and f, g, h, a, c are function
symbols.

Next, we introduce the notion of strongly
depth-preserving property (stronger than the
depth-preserving one). A TRS R is strongly
depth-preserving if R is depth-preserving and
for each a — 3 and for any variable x appear-
ing in a, all the depths of the x occurrences
in a are the same. For example, TRS Rz =
{h(g(2),9(z)) = f(z,h(z,9(c)))} is strongly
depth-preserving, since R3 is depth-preserving
and all the depths of z occurrences of the left-
hand-side are 2. In this paper, we prove that
all the non-E-overlapping and strongly depth-
preserving TRS’s are CR (Theorem 1).

This paper is organized as follows. Section 2
is devoted to definitions. In Section 3, we show
that the above TRS R, is not CR. Some asser-
tions to prove Theorem 1 are given in Section 4
and proven in Section 5, so that we obtain The-
orem 1. Some concluding remarks are given in
Section 6.
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2. Definitions

The following definitions and notations are
similar to those in Refs.2), 5). Let X be a set
of variables, F be a finite set of function symbols
and T be the set of terms constructed from X
and F'. ‘

For a term M, we use O(M) to denote the
set of occurrences (positions) of M, and M/u
to denote the subterm of M at occurrence u,
and M[u « N] to denote the term obtained
from M by replacing the subterm M/u by
term N. The set of occurrences O(M), where
M € T, is partially ordered by the prefix or-
dering: u < v iff 3w. ww = v. In this case,
we denote w by v/u. If u < v and u # v,
then v < v. If u£v and vZ£u, then u and v
are said to be disjoint and denoted uv. Let
V(M) be the set of variables in M, O,(M) be
the set of occurrences of variable z € V(M),
and Ox(M) = Uzey(a)0z(M) i.e., the set of
variable occurrences in M. O(M) is the set of
non-variable occurrences, i.e., O(M) = O(M) -
Ox(M). We use N[u + M/u | w € U] to
denote Nlu; + M/uj,us « M/ug,---,u, «
M/u,] where U = {u1,u2,--,u,}, and
uy,- -, u, are pairwise disjoint. Here, N[u; «
M/uj,us «~ Mfug, -, u, + M/u,] =
(Nui « M/uj,uz « M/ug, -, up_;
M1 funa))un & M/u,] if n > 1.

For a term M, H(M) = Maz{|u| | v €
O(M)}. H(M) is called “height of M”. The
depth of occurrence v € O(M) is defined by

Eixlample- H(f(9(z))) = 2, H(a) = 0, H(g(z))

A rewrite rule is a directed equation a —
B such that « € T - X,8 € T and V(ia) D
V(B). A term-rewriting system (TRS) is a set
of rewrite rules.

A term M reduces to a term N if M/u = o(a)
and N = M(u « o(B)] for some o = 3 € R
and 0 : X —» T. We denote this reduction
by M % N. In this notation u may be omitted
(i.e., M = N)and —* is the reflexive-transitive
closure of . Let M & N be M % N or
N3 M.

A parallel reduction M« N is defined as
follows: M« N iff 3U C O(M) such that
Vu,v €U u#v=>uly,Vue U M/ué N/ju
and N = M[u + N/u | u € U]. In this case, let
R(M«—N) =U. (Note. U = ¢ is allowed.)
Let ++»* be the reflexive-transitive closure of
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.

We assume that v : My M+ -
M, in the following definitions, which will be
used in Sections 4 and 5.

Let R(y) = Uo<icn R(Mi+++M;11) and
MR(7y) be the set of minimal occurrences in
R(7) under the prefix ordering.

For u € O(My), if there exists no v € R(y)
such that v < u, then 7 is said to be u-invariant.

Let § : No«4+>N;--- 3N, where N, =
o(a) or Ny = g(a) for some a - B € R and
0 : X = T. Then, § is said to be a-keeping
if 6 is u-invariant for all u € O(a), that is, &
is a-keeping iff all reductions of & occur in the
variable parts of a.

We denote by ~[i,;] the subsequence
MiH—)Mi..’.](_H"'H_)Mj of v where 7 > 0
and j < n.

If M, = N,, then the composition of
7 and ¢ Not3 N+ - Ny, e,
Moyt My - M, (= No)e N,
“++ ¢+> Ny is denoted by (v;6).

Let v € MR(y). Then, the cut se-
quence of vy at u is y/u = (My/u>M,; /u
o My fu).

We denote by [¢'/€] the sequence obtained
from reduction sequence v by replacing subse-
quence or cut sequence (or cut subsequence) ¢
of 4 by sequence ¢'.

Let v® be the reverse sequence of v, i.e., yR :
Myt - My M.

The number of parallel reduction steps of 07
is |vlp = n.

Note. If 6 : M«++M, then |4], = 1.
Example. Let § : f(c,c)¢+ f(g(c), g(c)) >
a, then |4, = 2.

Let net(7) is the sequence obtained from 4 by
removing all M;«+4> M, satisfying that M; =
M1,0<i<n.

Example. Let § : g(c)«+>g(g(c))++rastsa,
then net(d) : g(c)+++9(g(c))+ra.

We use |6],, to denote |net(d)],.

Definition of (H(v) — the height of
reduction sequence)

H(7) = Maz{H(M;) |0 <7 < n}
Example. Let § : g(c)«<+g(g(c))++>a, then
H(d) = H(g(g(c))) = 2.

Definition of (peak?))

Reduction sequence 7 is said to be a peak if
Y My ¢~ Mie* M, -5 M, and the
subsequence M;«++* M, _; is e-invariant.
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reduction sequence ¢ :
F(e) f(g(g(e))) > fg(e)) > f(f(9(9(c))))
“A f(f(e)etrg(e) ]

3 height = 3
2

i zﬂ_ﬂ

height <~ 1dis(9,3

—

width(d,3) = 2
right(6,3) 1

Fig.1 Example of ldis, right and width.

Definitions of (left(v, h), right(~, h),
ldis(~, h), width(~, h))
left(v,h) =
Min{i | H(M;) = h}
if 34 (0 < i < n) such that H(M;)
=handVj(0<j<i) HM;)<h
L otherwise
right(y, k) =
Maz{i| H(M;) = h}
if 3i (0 < i < n) such that H(M;)
=hand Vi(i <j<n) HM;)<h
1 otherwise
ldis(vy,h) =

n— left('y’ h‘)
if left(y,h) # L1
1 otherwise

width(y,h) =
( right(7, h) — left(y, h)

if left(y,h) # L A right(v,h) # L
right(y, h) — left(v, k')

if left(y,h) =L A right(y,h) #L AR
ﬁ = Min{h' | k' > h Aleft(y,h') # L}

if left(y,h)#L A right(y,h) =L AR

= Min{h'|W’ > h A right(y,h') # L}
(L otherwise

We write P(y,h) | if P(v,h) # L and other-
wise P(v, h) 1 for P € {left,right,ldis, width}.

In Fig. 1, we illustrate width and ldis by ex-
amples.
Example. Let § : f(c)«+> f(g9(g(c)))«+>
fg(c)) < f(£(9(9(c)))) «H>f(f(c)) +>g(c)-
This ¢ is illustrated in Fig.1. Then, we have
left(d,1) = 0, left(6,2) 1, left(,3) = 1,
ldis(6,1) = 5, 1dis(6,3) = 4, right(4,1) =
5, right(8,3) t, width(s,1) = right(s,1) —
left(s,1) = 5, width(8,2) = 3, width(4,3) = 2.
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Definitions of (Kiis(Y), Kuwiath (), Krignt())
Kiais(7) = {(h,1dis(y, h)) | ldis(v, h) |}
Kuyian(7) = {(h, width(y, b)) | width(v, h) 1}
Kight(7) = {(h,ight(y, b)) | right(y, k) }
Example. For & : f(c)«> f(g(g(c)))«+>
flg(e)) « f(f(g(g(c)))) > f(f(c))
g(c) in the previous example, we have Kj4is(8)
= {(1a5), (314), (412)}7 Kwidth(d) = {(175):
(2$3)’ (352)1 (4’0)} and Kright(‘s) = {(175)7
(21 4)7 (4a 3)}

We define an ordering <;C N x N (where
N = {0,1,2,---}) as follows: (a,b) <,
(@', b)) & (a <ad Ab<V)V(a=d Ab<¥).
Let <, be <, |J =- We use <, to denote the
multiset ordering of this ordering <;. Let <,
be <, |J =- We use {-::}; to denote a mul-
tiset, e.g., {1,1,2},. We use <, to denote
the multiset ordering of a lexicographic order-
ing < (i.e., (a,b) < (a,¥) & a < a'V(a =
a' \b < V). Let €, be «,, |J =. Note that
if (a,b) <, (a',b'), then (a,b) < (a',}'), but
the converse does not necessarily hold. And if
A <, B, then A <, B. The orderings of >;
and > are well-founded, so that >, and >
are well-founded?).

In Sections 4 and 5, we will define orderings
of reduction sequences v, d by using Ky where
Y € {ldis,right, width} and <, (or €y).

3. Depth-preserving TRS’s

In this paper, we consider the CR proper-
ty of non-E-overlapping and depth-preserving
TRS’s. Now we give these definitions, and in-
troduce the class of strongly depth-preserving
TRS’s which is a subclass of depth-preserving
TRS’s.

Definition of (E-overlapping TRS R)

A TRS R is said to be E-overlapping iff
there exists an e-invariant reduction sequence
o(a/u)«>* o'(az) for some a; = Bi,as —
B; € R, u € O(a;) and mappings 0,0’ : X —
T where u = ¢ implies that (a1 = B1) #
(az = B2). In this case, the pair (o(o1)[u «
o'(B2)],0(B)) is called an E-critical pair. A
TRS R is non-E-overlapping if there exist no
E-critical pairs.

Definition of (depth-preserving TRS R%)

A TRS R is depth-preserving if YVa = B €
RVz € V()N V(B) Maz{|v||ve 0:(8)} <
Maz{|u| | u € Og(a)}.

Example. R, = {f(z,r) = a, ¢ = h(c,g(c)),
h(z,g9(z)) —= f(z,h(z,9(c)))} (where z is a
variable) given in Section 1 is depth-preserving,
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since for the first and the second rules, the
right-hand-sides contain no variables, and for
the third rule, the maximal depth of the z oc-
currences of the left-hand-side h(z,g(z)) is 2
and that of the right-hand-side f(z, h(z, g(c)))
is 2.

Definition of (strongly depth-preserving
TRS R)

A TRS R is strongly depth-preserving if R
is depth-preserving and Va -+ 3 € R Vz €
V(a) Yu,v € Oz(a) |u| = |v|.

Example. Let Ry = {f(z,z) = a, ¢ —
9(c), 9(z) = f(z,7)} and Rs = {f(z,2,z) -
h(z,z,z,z,9(c)), c = g(c)} where z is a vari-
able. Both R4 and Rjs are strongly depth-
preserving. (Note that both R4 and Rjs are
duplicating 9).)
In this section, we show that the TRS
R; = {f(xvz) —>a, ¢c— h(c,g(c)),
h(z,g(z)) = f(z, h(z,9(c)))}
given in Section 1 is non-E-overlapping and
depth-preserving, but not CR.

Obviously, R, is non-E-overlapping, since
there is no pair (a; /u,as) satisfying that the
root (topmost) symbols of a;/u and a; are
the same for a; — Bi, aa = B2 € Ry and
U e O(ay), except that a; = as, 8 = = (2 and
u = €. It has already been explained in the
above that R, is depth-preserving.

We can show that TRS R is not CR. Note
that ¢ — h(c,g(c)) — f(c,h(c,g(c))) —
f(h(c,9(c)), h(c,9(c))) — a and ¢ —*
h(a, g(a)).

Thus, a<+>* h(a,g(a)) holds, but we can
show that a and h(a, g(a)) are not joinable.

To prove this, we assume to the contrary that
a and h(a,g(a)) are joinable. Since a is in nor-
mal forms (i.e., there exists no reduction from
a), there must exist a sequence h(a,g(a)) —
f(a,h(a,g(c))) =* a. So, let v : h(a,g(a)) —*
a be a sequence with the minimal number of
reduction steps. Since there is only one re-
duction from h(a, g(a)), the first reduction of
v is h(a,g(a)) = f(a,h(a,g(c))), so that the
remaining subsequence is f(a,h(a,g(c))) —
a. It follows that there exists a sequence
h(a,9(c)) —* a in this subsequence, since
f(a, h(a,g(c))) =»* f(a,a) = a must hold. If
h(a,g(c)) —* a is possible, then the third rule
must be eventually used, ie., h(a,g(c)) —*
h(a,g(a)) and h(a,g(a)) =* a. This contra-
dicts to the minimality of . Hence, h(a, g(a))
and a are not joinable.

Thus, R; is not CR. Note that R is also non-
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ola) «+* o'(a)
v v hS
a(B) —t" o'(B)
é

16lp < lvlp —2
H(é) < H(v)

Kiais(8) s Kiaia(7)
Fig.2 Assertion S(n).

duplicating, since for each rule the number of z
occurrences of the left-hand-side is greater than
or equal to that of the right-hand-side.

In the following sections, we will prove that
all the non-E-overlapping and strongly depth-
preserving TRS’s are CR. Henceforth, we are
dealing with a fixed TRS R and assume that
R is non-E-overlapping and strongly depth-
preserving.

4. Assertions

We use the following six assertions S(n),
§'(n), P(k), P'(k), Q(k) and Q'(k) (where
n > 2,k > 0) to prove that non-E-overlapping
and strongly depth-preserving TRS R is CR.

Assertions S(n) and S'(n) are similar to the
Elimination lemma in Ref.4). Assertion Q(k)
ensures that TRS R is CR.

Assertion S(n)

Let v : 0(B8) « og(a)¢b* o'(a) = o'(B)
for some rule a - B € R and mappings
0,0’ where |y|, = n and the subsequence 7 :
a(a)(—l—)* '(a) is e-invariant.

Then 30 : o(B8)+>* o'(B) such that the fol-
lowing conditions (i)-(iii) hold:

() ol <n-2

(i) If B is a variable, then H() < H(y).
Otherwise, ¢ is e-invariant and H(§) <
H().

(ii))  Kigis(0) s Kiais().

(See Fig. 2.)

Assertion S'(n)

Let v : 0(8) « o(a)e* o'(a) = a(ﬁ)
for some rule @ - B € R and mappings
0,0’ where ||, = n and the subsequence 7 :
a(a)4—+—> o'(a) is e-invariant.

Then 34 : o(B8)++>* o’'(B) such that the fol-
lowing conditions (i)—(iii) hold:

(i) |5|p Ylps 161np < [Ylnp — 2

(i) If B is a variable, then H(J) < H(y).
Otherwise, ¢ is e-invariant and H(d) <
H(7).
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sla) b o)
v Y N
a(B) <———:s-—> a'(B)

MIP = |’7|P: Iélnp < I’Y'np -2
H(8) < H(7)
Kiaia(8) €0 Kidia(7)y Kright(8) £ Krigni(7)

Fig.3 Assertion S'(n).

. Y
M 4E—_i—z;l’? o(a)
¢
e E,
JN — a(B)
H($) < H(7)

Fig.-4 Assertion P(k).

(iii)  Kiais(8) €5 Kidis(7) and Kyign:(8)
Kright(7)'
(See Fig. 3.)

Note that v satisfies the same condition in
S(n) and S'(n).

Assertion P(k)

Let v : M«* o(a) — o(B) for some rule
a — € R and mapping o where H(y) < k and
the subsequence ¥ : M+4+* o(a) is e-invariant.

Then, there exists § : M ++>*N+>*o(3) for
some N such that the following conditions (i)-

(iii) hold:
(i) H(§) <H(v)
(i) M-*N

(iii) for the subsequence 8’ : N++=+* o(3) of 4,
either H(8') < H(v) or &’ is e-invariant.

(See Fig. 4.)

Assertion P’'(k)

Let v : Mo« M« M, --- > M, where
H(vy) < k, the number of e-reductions in v is
I (> 0) and each e-reduction is M; — M,
for some i (0 < ¢ < m). Let M;;, 5
M 41, -, My, = M;, 41 be the e-reductions
of v, 0 <4 <iy--- <t < n. Then, there exist
'ij (1 < ] S l) and ¢ : Mo(*—f—)*NH—)*Mij+1
for some N such that the following conditions
(i)—(iii) hold:

(i)  H() < H([0,3; +1])

(11) Mo -* N

(iii) for the subsequence ¢’ : N«+>* M; 4y of
4, either H(¢") < H(v[0,%; + 1]) holds or

N —F—" Mij+1"'—s—)"'Mn

H(0) < H(v[0,i; +1])
Fig.5 Assertion P'(k).

y
M +———* N
W% 0 LA
L
H(&) <k

Fig.6 Assertion Q(k).

M
T 2 N M
s M, M, ---M,
Ne e o
N

H() < k
Fig.7 Assertion Q'(k).

i; =4, and &' is e-invariant.
(See Fig.5.)
Assertion Q(k)
Let v: M«+>* N where H(y) < k.
Then, 36 : M«+>* L++>* N for some L such
that H(6) < k, M —-* L and N —* L (see
Fig.6).
Assertion Q'(k)

Let v; : M«+>* M;, where H(v;) <k, 1 <
i<nandn > 2.
Then, 36 : M<+* N for some N such that
H()<kandVi (1<i<mn) M;—>*N (see
Fig. 7).

To prove these assertions, we use the follow-
ing properties of left,right, width.
Property 1

Let v : Mot My - -+ M,,.

1 Vi(0<i<n)3j(0<j<i)such that
H(M;) > H(M;), left(y, H(M;)) | and
left(y, H(M,)) = j.

2 Vi(0<i<n)3j(t<j<n)such that
H(M,) > H(M,), right(y, H(M;)) | and
right(y, H(M;)) = 5.
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Property 2

Let « and 4 be parallel reduction sequences.
Let Y € {ldis, right, width}.

Ky (0) €, Ky(y) iff the following condition
(p-2) holds:

(p.2) V(h,l) € Ky(0)
(h,1) <5 (B, 1).
Property 3

Let v : My++->M,---«+>M,. Let u €
MR(y) and 5 = 9[i,j]/u where 0 < i <
J <n Leté: Li+t+Liy, ---+>L; where
L, = M,'/u,Lj = M;/u, 6|, = |7|, and
H(3) < H(). Let y' = [6/].

1 I Kigis(8) €5 Kiais(7), then Kigis(v')

€, Kiais(7)-

2 If Kright(8) €5 Krigne(7), then

Kright(7) €5 Krighe(7)-
3 If Ki4is(6) 5 Kigis(7) and Kyigne(8) S
Kyight(3), then Kuiaen(v') €5 Kuiaen(7)-
Property 3’

Let v : Mo« M, --- M, and 7 = 7[i, j]
where 0 < i < j < n. Let § : Li++>L;4,
++-«+>L; where L; = M;,Ly = M;, |4|, <
|7l and H(8) < H(%)- Let 7' =[5/3).

1 If Kigis(8) €5 Kiais(7), then Kigis(v')

<5 Kigis(7)-

2 If Kright(é) S.9 K'righ.t(;?)’ then Kright(7’)

< Kright(7)'
Property 4

Let 7 be a parallel reduction sequence. Then,
Kigis(net(7)) €5 Kigis(7) and Kyighs(net(y))
<=<s Kright(’Y)'

Property 5

Let v : Myo<+=+M; - -- ++> M, and 7 = (0, 1]
where 0 < ¢ < n. Let § : Lo++>Ly --- ¢+ L;
where 0 < j, L; = M; and H(d) < H(%). Let
7' = 7[6/7]- Then, Ki4is(v') €w Kiais(7) and
Kwidth(7,) Lw Kwidth(’)’)'

For the proofs of these properties, see Ap-
pendix.

A(r', 1) € Ky(7)

5. Proof of Assertions

We are now ready to prove these assertions.
We first prove S(n) A S'(n) by induction on
n > 2. Then we will prove that P(k) = P'(k)
and Q(k) = Q'(k). Using these results, we
will finally prove P(k) A Q(k) by induction on
k>0.

Proof of S(n) A S'(n)
Basis: the case of n = 2.

Let v : 0(8) « o(a) = o(B). Then obviously
0 : 0(B) = o(p) satisfies the required conditions
of S(n) and &' : o(B)«+>0(B)+>a(B) satisfies
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the conditions of S'(n).
Induction step: the case of n > 2.

Let v : Mo M+ My -+ M,_1++>
M, where My = o(8),M;, = o(a),M,_, =
o'(a) and M,, = ¢'(B). For the subsequence
¥ =7[1,n-1]: 0(a) = M++*o'(a) = M, _,,
let Ty = {vi | v = 7/u; for some u; € MR(¥)N
O(a)}. We prove S(n) A S’(n) by induction on
weight(I'y) which is defined as follows:

weight(L'y) = {(H(%:), [Yilnp) | 7 € Ty }m
where we use <«; as the ordering of
weight(T',)’s.

Basis: the case of weight(T',) = ¢, i.e., ¥ is a-
keeping.

For each z € V(f3), we choose a redex occur-
rence u; € Oz(a). Let 0j, 1 < j < n-—1,
be mappings satisfying that o;(z) = M,/u,
for all z € V(B). Let N; = o,(8) where
1 <3 <n-1 Then, we have ¢ : o(8) =
Ni¢+3Ny - 3Ny = 0'(0).

We first prove that & satisfies the required
conditions of S(n). (i) holds by |4|, = n — 2.
By the depth-preserving property,

H(N;) < max(H(M;), H(B)) (*s1)
holds for 1 < j <n — 1. Hence
H(6) < H(v). (*s2)

If 3 is a variable, then obviously H(§) < H(y).
Otherwise, d is e-invariant. Thus, (ii) holds.

It remains to prove (iii) Kj4i5(0) <, Kiais(7)-

We first note that if left(d,h) |, then
H(o (B)) < h < H(6) holds. And left(d,
H(o (B))) = 0 = left(y, H(c( B))), so that
ldis(6,H(a(B))) = n — 2 < ldis(v, H(a(B))) =
n holds by (i). Thus, by Property 2, we only
need to prove that for any h where H(o(83)) <
h < H(6) if left(d, h) |, then I’ > h such that
Idis(6, k) < ldis(v, h').

To prove this, let left(d,h) = i > 0 for
h > H(o(B)). (Note that H(N;;,) = h.) Then,
ldis(d,h) = n—2—i. By (xs1) and h > H(c(8)),
H(Ni41) = h < H(M;,,) holds, so that 34’ >
h left(y,h') | and left(vy,h') < i+ 1 by Prop-
erty 1.1. Hence, ldis(y,h') > n—-(i+1) >
(n —2) — i =ldis(4, h), as required.

Thus, (iii) holds. Hence, S(n) holds.

We next prove S’(n). Let &' = (N;++>N,);
6 (Np—1 <> Nyo1) : Ni 5 Ny 0 N,
v+ ¢+> Np_y «+> Np_;. Then, (i) holds
by 18], = 7 and [Flnp < [1lnp — 2. Obvi-
ously H(8') < H(y) by (xs2). If B is a vari-
able, then obviously H(d') < H(y). Other-
wise, ¢’ is e-invariant. Thus, (ii) holds. It re-
mains to prove (iii) Kjais(8') €, Kigis(y) and
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Kright(‘s') S—<-s Kright('Y)'

We first prove Kigis(4') £, Kiais(7)-

The proof is similar to that of Kjgis(d) <
Kigis(y). That is we can easily prove that
ldis(¢', H(o(B))) = ldis(v, H(a(B))). And for
any h > H(a(B)) if left(d’, h) |, then there ex-
ists h' > h such that ldis(&',h) < ldis(y,h'),
since if left(6’,h) = ¢ > 0, then H(N;) = h <
H(M;) holds by (xs1) and h > H(a(B)), so
that 3k’ > h such that ldis(y,h') > n -1 =
Idis(d', h) by Property 1.1. Hence, Kiais(8) €,
Ki4is(7) holds by Property 2.

We next prove K"’ght(é.’) <=<3 Kright(')’)-

Note that if right(é’,h) |, then H(o'(B)) <
h < H(&') holds. And right(d', H(o'(B))) =
n = right(vy, H(o'(8))). Thus, by Property 2
we only need to prove that for any h where
H(o'(B)) < h < H(&), if right(6',h) |,
then 3k’ > h such that right(y,h') >
right(é8’,h). This proof is straightforward ,
since if right(é’,h) = i < n, then ¢ > 0
and H(N;) = h < H(M;) holds by (*sl), so
that 3k’ > h such that right(y,h’) > @ =
right(8', h) by Property 1.2. Thus, (iii) holds.

Hence, S’(n) holds.

Induction step: the case of weight(T',) >, ¢.

Let 1 = ’7/u1 : th—H"'(—HLn_1 € F—y
where u; € MR(3) N O(a) and 5 = 7[l,n —
1] : Mi+ Mt -+ M,y (Note that
Li -—-M,-/ul,l Siﬁn—l.)

By the definition of 7, there exists an
e-reduction in ;. Since TRS R is non-
E-overlapping, there exists a peak subse-
quence & = mfi — 1,5] @ L; & Ling(=
0" (a’))e++* L; (= 0"(a')) = Lj4y for some
i,jwherel1<i<j<n-10 — 8 €Rand
0", 0" : X = T. By the induction hypothesis
§'(n') for n' < m, Imy : Li+>* Lj41 such that

Mip = &1 ,771|n < |01)np — 2
Dl o T o)

Kiais(m) s Kiais(61) (*s4)
Krigh,t(nl) <§s Kright(61) (*55)
Let 7' = y[m/&1]. Then, by (+s3), we have
I’Y"p = |'7|p =n, Ifyltnp < l')'lnpa (*86)

and H(y") < H(v)
and, by (*s3), (xs4), (*s5) and Property 3, we
have

Kiais(7) £ Kiais(7) (*s7)

Kright('yl) §.s Kright(7) (*38)

Obviously weight(I'y) <, weight(T',) holds
since for 7, = 1[m /31l Pilnp < Palnp and
H(v}) < H(m) hold by (*s3). Thus, by the
induction hypothesis, S(n) holds for 7', so that
36’ : 0(B)«+>* o'(B) such that
) |9, <n-2
(ii) If B is a variable, then H(d') < H(Y").

Otherwise, ¢’ is e-invariant and H(4') <
H(Y').
(iii) Kldis(él) <5 Kldis(’)")-
By (ii) and (*s6), if 8 is a variable, then
H(d') < H(y). Otherwise, ¢’ is e-invariant and
H(8') < H(y). By (iii) and (+s7), Kiais(0") <s
Kiais(7') £ Kiais(7). Thus, S(n) holds.
Similarly, by the induction hypothesis, S'(n)
holds for 4/, so that 3§’ : o(B8)«>* o'(B) such
that
@) 18l = 11510 lnp < 1Y'lnp — 2
(ii) If B is a variable, then H(4") < H(®").
Otherwise, &' is e-invariant and H(d') <
H(Y').

(i) Kiais(8') €5 Kiais(v') and Krigne(d') <,
Kright('7l)'

By (i), () and (x56), &', = [l and |§'|np <
[Y|np — 2 hold. And if B is a variable, then
H(8') < H(y). Otherwise,d’ is e-invariant
and H(d') < H(v). By (iii), (*s7) and (*s8),
Kiais(0) €5 Kiais(v) and Krigne(8') L
K ight (7). Thus, S'(n) holds. ]
Proof of P(k) = P’'(k)

We prove P’(k) by induction on the num-
ber [ > 1 of e-reductions appearing in v where
v i Moeb* My, =5 My et M, 5
Mi2+1"'<—+—)* Mi, —5—) Mi,+1(—H* Mn and
H(y) <k.

Basis: Obvious.
Induction step: the case of [ > 1.

We first apply P(k) to ¥[0,i1 + 1], so that
there exists  : My«+>* N«* M;, 4, for some
N such that
(i) H@)<HO0,iL+1)<k (*p’1)
(i) My -"N (*p’2)
(iii) for the subsequence 8’ : N«4+>* M; 41 of

8, either H(8") < H(x[0,¢, + 1]) or &' is
e-invariant.

If H(8') < H(v[0,; + 1]) holds, then let j =
1, i.e., i; = %1, so that the above conditions
(i)-(iii) ensure P'(k).

The case in which ¢’ is e-invariant re-
mains. Let v = (&'; v [i1 + L,n]) : N7
M, 1++* M,. Note that H(y') < k by
(*p’1). Since &' is e-invariant, ' contains (I - 1)
e-reductions: M;, —= M4, , My —
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M;, 41, so that the induction hypothesis en-
sures that there exist i; (2 < j < I) and
N : Ne3* N'e* M; ., for some N’ such
that the following conditions (i)-(iii) hold:

(i) H(n) < H(y") where 4"

= (0"t + 1,4, + 1)) : (*p’3)
Ne? M;; 1
(ii) N->*N (*p’4)
(iii) for the subsequen 7' : N’
“+* M;, 41 of n, either (*p’5)

H(n') < H(4") holds
or i; = % and 7’ is e-invariant.

Let £ = (do;n) : My«+* Ne* N’
" M; ;1 where & : My++>* N is the sub-
- sequence of ¢ such that § = (éy;¢d’). Then, we
can show that ¢ satisfies the following required
conditions:

(i)  H(&) < H([0,4; + 1)) (*p’6)
(i) My ->*N' (*p’7)
(iii) for the subsequence 7’ : N’

" M; ;1 of €, either (*p’8)

H(n') < H(v[0,%; + 1]) holds
or ¢; = ¢; and 7’ is e-invariant.

Note that H(d) < H(d) < H(¥[0,4; + 1)),
and H(n) < H(y") = max(H('), H(v[i, +
1,45 +1])) < H(7[0,3; + 1]) hold by (*p’1) and
(*p’3), so that we have H(£) < H(v[0,i; + 1])
by & = (do,n). Thus, (*p’6) holds. By (*p’2)
and (xp’4), we have My —* N’, so that (xp’7)
holds. And (*p’8) holds by (*p’5) and H(y") <
H(~[0,%; +1)).

Hence, P’(k) holds. o
Proof of Q(k) = Q’'(k)

Let v; : M«4>* M; where H(v;) < k,1<i <
n. We prove that 36 : M«++* N for some N
such that H(d) < kand Vi (1<i<n) M; »*
N by induction on n > 2.

Basis: the case of n = 2.

By 71 : M«+>* M; and Y2 : Me* M,
where H(y,) < k, H(v;) < k, there exists 7} :
M;«—* M, such that H(’)’i) < k. By Q(k),
then there exists d; : Mj++>* Ny>* M, for
some N3 such that H(é2) < k and M; —* N,
AM; —* N,. By concatenating 7, and the
subsequence M;++* N, of §;, we have & :
M- My+>* N,. Then, H(8}) < k. Thus,
d; satisfies the required condition.

Induction step: the case of n > 2.

By the induction hypothesis, Q’(k) holds for
Yi : Me* M; where 1 < i < n — 1, so that
there exists
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6: M«* N,,_, for some
Ny 1 such that H(6) < kA
Vi(1<i<n-1) M; »* N,_;.

By applying Q(k) to (6%;v,) : Np_yje* M
++* M, where §® is the reverse of 4, there
exists

0' : Np_1++* Le>* M, for
some L such that H(¢') < k, (*q’2)
Npnoy—>*Land M, »* L
Let £ = (;0") : M«>* N,_+>* L for the
subsequence 6" : Np_;+++* L of §'. Then,
H() <kand M; »* Lforalli (1 <i<n)
by (xq’'1) and (*q’2). Hence, Q'(k) holds. O
Proof of P(k) A\ Q(k)

We prove P(k) A Q(k) by induction on k > 0.
We first prove P(k), then Q(k).

Basis: the case of k=0.
Proof of P(0)

In this case, for v : M+>* o(a) = o(B),
note that H(vy) = 0 implies that 3 is not a vari-
able, since a € F (i.e., a is a function symbol)
and o(a) = M since ¥ : M«>* o(a) is &-
invariant. Let N = o(3) and § : 0(a) = M —
o(B) = N. Then, H(§) = 0,M —* N and
0’ : 0(B) = N is e-invariant, as claimed.

Proof of Q(0)

Let v : Mo«>M; - - ++>M, where n >
0,H(y) = 0,My = M and M, = N. We
prove Q(0) by induction on » > 0. In the
case in which n = 0 or n = 1, the proof
is obvious. Note that Mo+t M; implies that
Mo -E—) M1 or Ml =y Mo holds by H(’)’) =0.
Consider the case of n > 1. If My - M;
holds, then by applying the induction hypothe-
sis to Y’ : My« M - - - M, Q(0) holds for
7. The case of M; —+ M, remains. In this
case, M; is a function symbol and M; — M,
is a rule in R by H(y) = 0. Similarly, for
MiH_)Mi-H where 1 <i<n M RN Mi+1
or M;y; = M, holds. If M;,, -5 M, for all
i (1 <i<mn),then v: My « M-« M,,
so that obviously Q(0) holds. Otherwise, i.e.,
if Mi = My, for some i (1 < i < n), then
M;_y <~ M; = M4, for some i (1<i< n).
Since TRS R is non-E-overlapping and M; is a
function symbol, M;_, = M,,; holds. Hence,
by applying the induction hypothesis to ' :
My « My -M,_1++>M; 5 M, where
|7, = n — 2, Q(0) holds.

Induction step: the case of k > 0.
Proof of P(k)
Let « My M, - M, M,

(*q’1)
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where H(v) = k, My = M, M,_; = o(a) and
M, = a(B).
Let ¥ = 7[0,n—1] and Ty = {v | 7 = ¥/u; for
some u; € MR(7) N O(a)}.

We define the weight of 7 as follows:

weighta(7) = | | Kiais(net(m:))
Y. €T
where | | denotes the union of multisets. We use
&, as the ordering of weights(7)’s.
Basis: the case of weight2(¥) = ¢,ie, 'y = ¢
(In this case, ¥ is a-keeping).

For any z € V(a), let Oz(a) = {uz,, Uz,, "+
Uz, }- Then, Jug,| = |ug,| == |ug,, | holds
by the strongly depth-preserving property.

Since the reductions of v occur only in the
variable parts o(z)’s, ¢ € V(a), we have

Gi:o(x)(= M1 /ug, )M SCYLTPREEE
«+> Mo/’ux..(= M/ut-‘)
for all u;, € O;(a),1 <i<l; and z € V(a).
Note that ¢ = (/uz,)F and
H(G) < HOY) = [ug| = k — luz | < k.
Let hy = Maz{H({;) |1 <i < I;}. Then,
hy + |ug,| <k and hy <k (xp0)
Hence, we can apply Assertion Q'(h:) to
(1, -+,¢, by the induction hypothesis. Thus,
there exists £ : o(z)++>* N, for some N; such
that
H(E,) < hy and Vi (1 <i < 1)

M/u;, 5* N (+p1)
Let o'(x) = N, for all z € V(a). Then,
& o(x)«* o'(z) and (+p2)

H(&I) + u.‘C.‘l S k
Let &z, = ((f&) © Mfug, " o(z) "
o'(z). Then, H(8z,) < hs holds by (xpl). Since
M = afug, « M/ug, | us, € Oz(a), z € V(a)],
we have 7 : M«* o'(a) where n/u;;, = o,
for all u;, € Oz(a), z € V(a).
Note that for any term M’ occurring in 7,
H(M') < Maz{|ug,| + he | uz, € Oz(0),T €
V(a)} or HM') < H(a). By (xp0) and
H(a) < k, we have H(M') < k, so that we
have

H(n) <k. (*p3)
(To obtain this (*p3), we need the strongly
depth-preserving condition, which is used only
to establish (*p3) in this paper.)

Since rule a — [ is depth-preserving,
H(d'(8)) < Maz{H(B),H(c'(a))} < k.
Hence, 7' = (ng;0'(a) «++d'(B)) : M«*
o'(a) ++> o'(B) satisfies that

H(n') <k and M =" o'(B) (xp4)
by (xpl). (See Fig.8.)

Using £8 : o' (z)+* o(z), let
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o
M & ol@ - of)
n 3, D VA
, (@) «»  d(B)(=N)
7

Fig.8 Parallel reduction sequences in the
proof of P(k).

& o' (B)e" o(B).

Then, the strongly depth-preserving prop-
erty ensures that for all z € V(B) and v; €
04(B), vzl < |ug,| for ug, € O;(a), so that by
(*p2) we have

H(0") < k. (*p5)

Now, let N = ¢'(B) and 6 = (7';¢') : M
+«* o'(B) = N«* o(B). Then, we can
prove that the conditions (i)—(iii) of P(k) hold
for 6. Since H(0) < k = H(y) and M -* N
hold by (*p4) and (*p5), the conditions (i) and
(ii) hold.

If B is a variable, then for &' : o’ (8)«+>* a(8)
obviously H(8') < k holds. Otherwise, ¢’ is
¢-invariant. Thus, the condition (iii) holds.
Hence, P(k) holds.

Induction step: the case of weight2(7) >w ¢,
i.e, 7 is not a-keeping.

(Here, v : Mo(= M)+ M, - -+ Mn_1(=
o(a)) = My(= o(B)) and 7 = 7[0,n — 1].)

Let v, = 7/u; where u; € MR(%) N O(a).
Let & = net(y1) : Lo«+>Ly - +++L,, where
m S n-— 13 LO = MO/uls Lm = Mn—l/ul-
Note that there exists an e-reduction in ~;.

There are two cases depending on whether
there exists L; «— L;, for somei (0 < i < m)
or not.

Case 1. The case in which L; «— L;y; for
some i (0 < ¢ < m).

In this case, the non-E-overlapping property
ensures that there exists a peak subsequence
¢ = §8li,j + 1] : Li(= d'(8) ¢ Lin(=
o'(@)H* Lij(= 0" (@) == Lj1(= 0"(8))
of & for some i,j where 0 < i < j < m,a’ =
B e€Rando',o" : X = T.

By S(|€|,), there exists & : Li¢++* Lj,, sat-
isfying the conditions:

i) 1€l <|€lp—2

(ii) If B’ is a variable, then H(§') < H(£).
Otherwise, ¢’ is e-invariant and H(¢') <
H(¢).

(iii) Kldis(gl) <s Kldis(f)'
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Let o' = 4[¢'/€]. By the conditions (i) and
(ii), we have
16", < 16lp (*p6)
H(¢'") < H(9) (*p7)

By (i) and (iii), Property 3’.1 ensures that
Kldis(d,) < Kldis(é.)' Let §"” = net(d’). Then,
Ki4:5(6") §3 Ki4:5(6") holds by Property 4.
Hence, we have

Ki4i5(8") < Kiais(). (*p8)

Let 7] be a sequence satisfying that net(y]) =
6" and |vilp = Imlp. Let ¥ = F[v/m]
Note that net(y;) = 4. Thus, weights(¥') <,
weights(7) holds by (*p8), and H(¥) > H(¥')
holds by (xp7). (Note that A <, B implies that
A <, B.) Hence, by the induction hypothesis,
P(k) holds for v’ = (¥'; M,,_; +++M,,), so that
P(k) holds for ~.

Case 2. The case in which there exist no re-
ductions L; <~ L;;1, 0<i < m.

In this case, if L;++4>L;;, is an e-reduction,
then L; =+ L;,, holds, where 0 < i < m.

Assume that § : Lo++>* L, has I (> 0)
e-reductions, i.e., Ljy — L; 41,---,L; -
L; 4, are the e-reductions where 0 < i; < -+ <
i < m. By the induction hypothesis P(k’)
and P'(k'),k' < k (since P(k') = P'(k')), for
0 : Lo«+>* Ly, there exists i; (1 < j <) and
n: Lo++>* Ne+>* L, ;; for some N such that

(i)  H(n) < H(8[0,4; + 1)) (*p9)
(i) Lo—=*N (*p10)
(iii) for the subsequence ' : N

" L;; 4y of n, either (*p11)

H(n') < H(8[0,%; + 1])
holds or i; = 4; and 7’ is e-invariant.
Using this 7/, let § = (1';8[i; + 1;m]) :
Ne* Ly .1 4% L. Then, by (*p9) and
(*pll), we have

H(8) < H(é), (*p12)
either § is s_—invariant or
Ki4is(0) < Kiais(0), (*p13)

since H(n') < H(4[0,%; + 1]) implies that
K14i5(0) <o Kiais(8) by PrC‘pertY_5-

Let ¥ = A[(mo : Lo++>* N;d)/m] where
n = (no;7'). Note that net(y,) = 4. Let
M' = M[u; « N]. Then, ¥ : Mo«+* M,_,
is decomposed into two subsequences 7,
My«>* M' and 5 : M'«<-* M,_;. Since
H(y) < H(y) = k by (+p9) and My —* M’ by
(*p10), it is sufficient to show that P(k) holds
for (F2; (Mp_1¢42M,)) : M'«<+>* M, instead
of the original 7.

We can show that weights(7: )< ,weights (7).

Dec. 1996

Since weight,(72) is obtained from weight,(¥)
by replacing Kigis(net(m1)) = Kiais(6) by
UvEMR(g)Whel‘e w1 v€D(a) Kld"‘s(net(‘s/v))’ if ¢
is e-invariant, then obviously weights(72) <o,
weighta(7) holds by (xpl2). Otherwise,
Kigis(net(d)) <w Kigis(d) holds by (xp13)
and Property 4, so that weighty(72) <4
weight>(y) holds. Hence, the induction hy-
pothesis ensures that P(k) holds for (%,;
(My,_ 1+ My,)). Tt follows that P(k) holds for
v as already explained. O
Proof of Q(k)

Let v : Mo++>M«+>M, --- M, where
H(y) <k, My = M and M,, = N. We prove
Q(k) by induction on weight3(y) which is de-
fined as follows:

weights(y) = (H(7), Kwian(7),€(7))

where ¢(7) is the number of e-reductions in 7.
We use the lexicographic ordering < as the or-
dering of weights3(v)’s and <, as the ordering
of Kuyiatn(v)’s. If H(y) < k — 1 holds or ~ is
e-invariant, then the proof can reduce to that of
Q(k —1). So, assume that H(y) = k and + has
e-reductions. There are two cases depending on
whether or not there exists a peak.

Case 1. The case in which there exists a peak.

Let a peak be n: Mi < MH—IH—)* Mj —S')
M;y, such that 0 < ¢ < j < n and
M1 ++* M; is e-invariant.

There are two cases depending on whether
(1) & < left(y,H(m)) < j+1ori <
right(y, H(n)) < j + 1 or (1-2) not.

Case 1-1. The case in which ¢ < left(v, H())
<Jj+1lori<right(y,H(n)) <j+1.

By Assertion S'(|n|,), there exists £ : M;
++>* M;,, such that
(i) 1&lp = Inlp, Elnp < [0lnp — 2
(ii) either H(¢) < H(n) or H(¢) = H(n) and

£ is e-invariant.
(i) Kiais(§) =5 Kiais(n) and Krigni(€) €,
Krz'ght(n)'

Let 4" = «([¢/n]). Then, H(y') < H(v) holds

by (ii). By (i)—(iii) and Property 3.3,

Kwidth.(’Y’) <=<s Kwidth(7) (*qO)

holds. If H(y') < H(7) or Kuyian(Y) <
Kuyiatn(7), then the induction hypothesis for 4/
ensures that Q(k) holds for .

The case in which H(y') = H(y) and
Kuiatn(7) = Kuyian(y) remains. If € is e
invariant, i.e., €(§) = 0, then £(7') < &(7) holds
by e(n) = 2, so that weights(y') < weights(7).
Hence, the induction hypothesis for v’ ensures
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that Q(k) holds for 7.

The case of H(§) < H(n) remains. Note
that width(y,H(n)) | in this case (1-1).
So, width(y',H(n)) | and width(y',H(n)
= width(y,H(n)) hold by Kuian(y') =
Kuwiatn(7)-

We first assume that ¢ < left(y,H(n)) <
j + 1 holds. Then, if right(y,H(n)) !, then
right(y, H(n)) > j + 1 since width(y',H(n)) {
and H(f) < H(n). Thus, Min{h" |
K" > H(n) Aright(y,k") 1} = Min{h" |
K" > H(n) Aright(y',h") 1} (= h"). Let
K = Min{h' | k' > H(n) Aleft(~',r') 1}
Then, left(y',h') > j + 1 holds by H({) <
H(n). Hence, width(y, H(n)) = right(~, h") —
left(v, H(n)) = right(y',h") — left(y, H(n))
> right(y', k") — left(y, k') = width(y', H(n)).
This is a contradiction. Next, we assume that
i < right(y,H(n)) < j+ 1. By a similar
argument, we have a contradiction. Hence,
H(€) = H(n) must hold. Thus, Q(k) holds for

7.

Case 1-2. The case in which if left(y, H(n)) {,
then left(y, H(n)) < i and if right(vy, H(n)) {,
then right(y, H(n)) > j + 1.

By Assertion S(|n|p), there exists £ : M,
++>* Mj;, such that
() el < Inlp — 2
(ii) either H(¢) < H(n) or H(§) = H(n) and

£ is e-invariant.
(iil)  Kigis(€) <o Kiais(n)

Let 4" = 7[/n]- Then, H(y') < H(7) holds
by (ii).

Let hy = Min{hy | by > H(n),left(y, h1) I}
and hy = Min{hy | hy > H(n),right(y,h1) 1}
Then, left(y,h1) < ¢ and right(y,h2) > j+1
hold in this case (1-2). Let h = Min(hy, h2).
Then, width(y,h) = right(y, h2) — left(y, h1)
and width(v',h) = right(y', he) — left(y', h1).
Since (i) holds, i.e., |l < Inlp — 2, obvi-
ously width(y,h) > width(y',h). And, for
any h' > h, if width(y,h) | or width(y',h) |,
then the both are defined and width(y,h) >
width(y',h) by |l < |nlp — 2. Hence,
Kwidth('yl) <Lw Kwidth('7) holds. ThllS,
weights(y') < weights(7). The induction hy-
pothesis for 7' ensures that Q(k) holds for ~.
Case 2. The case in which there exist no peaks.

In this case, there exists [ (0 < ! < n) such
that for any e-reduction M;«+>M;y; (0 <i <
n) either i < { and M; =+ M;;; or i > l and
M,' < Mi+l holds.

So, let 11 = v[0,1] : Mo« M, -+ M,

and 2 = 7[,n] MM - -+ M,
where 7 = (71;72)-

If 11 has e-reductions, then by P'(k) there ex-
ists s (0 <i<l)and n: Moe* N'+" M;
for some N’ such that H(n) < H(v[0,3]),
M, —* N’, and for the subsequence %' :
N'«—* M; of 5 either H(y') < H(~[0,1]) or
i =l and 7’ is e-invariant.

We first consider the case of H(n') <
H(x[0,4]). Let 7' = (n';7[i,n]) : N+ M,
“* M, -t M,

By H(n') < H(v[0,1]) and Property 5,

Kuiatn(Y') €w Kuwidin(7)
holds. Thus, the induction hypothesis Q(k) for
~' ensures that @(k) holds for v by Mo«++* N !
and My —»* N'.

The case in which i =1 and ' : N'«* M,
is e-invariant remains.

We apply the same argument for R, (Note
that Kuwigth(Y) = Kuwiatn(7®).) There exist
j(1<j<n)and : Mp+* N" < M; for
some N such that
H(D) < H(MyetrMp_y -+ M;), My =°
N" and either j = [ and the subsequence
7'+ N"«M; of 7 is e-invariant or H(7') <
H(M,—M,_, - «+M;) holds.

Similarly, the case in which j =1 and 7 : N”
«43* M, is e-invariant remains. In this case,
note that

3¢ : Mg+* N+ Mie* N M,
where H(¢) < k, Mg =»* N', (' : N'«>*
M;<>* N is e-invariant and M, =* N".

Thus, the proof can reduce to the proof that
Q(k) holds for ¢’. Since ¢’ is e-invariant, the
induction hypothesis Q(k—1) ensures that Q(k)
holds for ¢’. Hence, Q(k) holds for v. o

6. Conclusion

In the previous section, we have proven that
Q(k) holds for all k > 0, so that we have the
following main result.

Theorem 1
All the non-E-overlapping and strongly depth-
preserving TRS’s are CR. 0
Example. If the third rule of Rz in Section 1
is replaced by h(g(x),g(z)) = f(z,h(z,9(c))),
then we obtain a new TRS
5 = {f(z,z) = a, c > h(c, g(c)),

h(g(z), 9(z)) = f(z, h(z,9(c)))}
which is non-E-overlapping and strongly depth-
preserving, so that Theorem 1 ensures that Rj
is CR, though R, is not CR.

A TRS is said to be non-w-overlapping if
it is non-overlapping even if we use mappings
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from variables to infinite terms. Matsuura,
et al.®) showed that if a TRS R is non-w-
overlapping and depth-preserving, then R is
non-E-overlapping, so that we have the follow-
ing corollary.

Corollary

All the non-w-overlapping and strongly depth-
preserving TRS’s are CR. a
Note

Whether TRS R is non-w-overlapping can be
checked efficiently®.

We make a comment on the strongly depth-
preserving property. This property is defined
by the depth-preserving property and the con-
dition that for each rule @« — g and for any
z € V(a), all the depths of the z occurrences
in a are the same. By replacing the restriction
on a by that on 3, we can define an analogous
property. That is, this new property is defined
by the depth-preserving property and the con-
dition that for each rule @ — B and for any
z € V(B), all the depths of the z occurrences
in 3 are the same. However, this new prop-
erty and non-E-overlapping do not necessarily
ensure CR.

Example.
Rs = {f(g(z),) - a, ¢ - h(c, g(c)),
h(z, 9(z)) = f(9(z), h(z, g(c)))}-

TRS Rs is non-E-overlapping and satisfies
this new condition, but Rg is not CR.

Finally, we make a comment on an extension
of the notion of depth-preserving. Note that the
depth of an occurrence of a variable z is defined
by the length of the path from the root to this
x occurrence, which is equal to the number of
function symbols appearing in this path. By as-
signing a positive integer (we call weight of the
function symbol) to each function symbol, the
notion of depth is naturally extended to that
of weight: The weight of the = occurrence is
the sum of weights of function symbols appear-
ing in this path. Using the notion of weight,
we can define strongly weight-preserving TRS’s.
We can easily show that non-E-overlapping and
strongly weight-preserving TRS’s are CR.

It will be a next step following the work
of this paper to study the CR property of
E-overlapping and strongly depth-preserving
TRS’s. That is, to find restriction conditions
that E-critical pairs must satisfy for ensuring
the CR property of strongly depth-preserving
TRS’s.

(This work was supported in part by Grant-
in-Aid for Scientific Research 08680362 from
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the Ministry of Education, Science and Cul-
ture.)
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Appendix

The proof of Property 1 is obvious by the
definitions.

Proof of Property 2

We only prove the case of Y = Idis, since the

proofs of the other cases are similar.
(<) Let (h1,hh),(h2,l2) € Kiais(86) where
hy > hy. Then, I, > I holds, so that
(hg,lz)gs(hl,h). For (h’,l’) € Kldis(7); if
(hlvll) <s (hl)l,) and (h2’l2) <s (hl’l’)a then
h > hy > hy and U > b > l1, so that
(h],ll) <s (h’,l') and (hz,lz) <s (h',l’).

Let B = Ki4is(7) () Kiais(6). Note that
Kigis(v) (and also Kj4:5(6)) does not contain
the same value more than once. Then, V(h,1) €
Ki4is(8) — B (W', ') € Kiais(y) = B (h,1) <,
(K',1'). Because, if this is not true, then ei-
ther 3(h",1") € Kiais(v) — B (h",1") = (h,1)
or 3(k"I") € B (h,l) <s (R",I") and
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(h,1) # (h",1"). The former case contra-
dicts to the choice of B and in the latter case
(h”1l”),(ha l) € Kldia(é), (h”al") € Kldia(')’)
and (h,l) <, (R",1"), so that (B",l") <,
(r”,1") and (h, l) <g (h",1") by the above ar-
guments, which is a contradiction.

Hence, Kldzs(‘s) =4 Kiais(7)-

(=) I Ki4is(0) = Kigis(7y), then the proof is
obvious. Assume that Ki4is(6) <s Kigis(7)-
Then, 35, T such that S C Ki4is(7), Kiais(0) =
(Kigis(v)-S)UT and V(h,1) e T I(W',I')€ S
(h,1) <s (R, 1)

For V(h,l) € Kigis(9), if (h,1) € T, then
(W', I') € Kyais(7y) such that (h,1) <, (B,V).
If (h,1) € (Kiais(7) — S), then (h,1) € Kiais(7)-
Thus, the condition (p.2) holds. )
Proof of Property 3

Proof of the condition 1.

Assume that (h,ldis(y',h)) € Kiais(7') for
h < H(¥'). Then, left(y',h) . So let
left(y',h) = | where 0 < 1 <n. Ifl2> jor
[ < 4, then H(M;) = h holds, so that 32" > h
such that left(vy,h') < left(+',h) = | by Prop-
erty 1.1.

If i <1< j, then h = H(Mifu < L;]) holds.
If |u| + H(L;) < h, then H(M;) = h, so that
3k’ > h such that left('y,h’) < left(y',h) =1
by Property 1.1. If |u| + H( L[) = h, then
left(d, H(L;)) | and left(6,H(L;)) = 1 — 1.
So, by Kiais(6) €, Kidis(7) and Property 2.1,
3h' > H(L;) such that left(y,h') <1 -1, ie,
3I' < I such that H(M; /u) > H(L;). Thus,
H(My) > |u| + H(My Ju) > h, so that 3h/ > h
such that left(y,h’) <l <l =left(y', h).

In either case, 3h' > h such that ldis(y,h") >
Idis(v', k). Hence, (1, ldis(v,h')) € Kiais(7)
such that (h,ldis(y', b)) <; (K, ldis(y,h')). By
Property 2, this condition 1 holds.

The proof of condition 2 is similar to that of
condition 1.

Proof of the condition 3.

By the conditions 1 and 2 of Property 3, we
have

Kldis(’)’l) §s Ki4is(y) and (3'1)
Kright(')’,) <=<s Kright(’Y)

Assume that (h,width(vy',h)) € Kuyian(Y')
for h < H(4'). Then, either left(y',h) | or

right(v', h) |. Let
B = Min{h' | k' > h, left(y',h') |} and
R" = Min{h" | " > h, right(y',h") |}.
Then, width(y',h) = right(y',h") -

left(v',h') holds. Since Kright(7') £,

Krignt(7y) by (3.1), 3 3h" > k" such that
right(y',h") < right(y, h"). _

Since Kais(7') €5 Kiais(v) by (3-1), 30’ > b’
such that

left(v, k') < left(y' ,h')

Let s = Min(k/, h") s = Min{s' | s > s,
left(y,8') |} and s” = Min{s" | s" > s,
right(y,s’) 1}. Then, width (v,8) = 'right
(v,s") — left(y,s') and s > h hold. By &’ > ¢/,
we have left (v,s') < left (y,h') and by R >
s", right (7,h") < 'rzght (7,8"). Since width
(v,8) = right (v.8") — left (v,s') > right
(v,h") — left (v,k') > right (v',r") — left
(7', h') = width(', h), we have (h, wzdth('y h))
<, (s,width(y,s)), so that Kuian(Y) Su
Kyiatn(y) holds by Property 2. a
Proof of Property 3’

Proof of the condition 1.

Note that left(v, h) | implies that H(Mp) <
h < H(¥'). And ldis(v',H(Mp)) = W'lp <
Idis(y, H(My)) = |v|p holds by |d], <
|¥l,-  Hence, (H(Mo),|v'lp) € Kiais(7),
(H(Mo),|¥lp) € Kiais(7) and (H(Mo), 17'lp) <s

(H(Mo), 17lp)-
Next, assume that (h,ldis(y', k) € Kigis(7')

for h > H(M,). Then, left(y',h) }. So,
let left(y',h) = 1. {1 > jorl < i, then
H(M;) = h holds, so that 3k’ > h such that
left(y,h') < left(y',h) = | by Property 1.1.
Thus, ldis(y, k') > ldis(y'. h).

Ifi <1< j,then h = H(L;) holds. Note that
H(M;) < hforallé € {0,---,i} and H(L;) <
h for all i € {i,---,l —1}. And ldis(v',h) =
n — j + ldis(d, h), left(& k) 4, left(d,h) =1—1i
and Idis(4,h) = ldlp—(l——z) So, by Kiais(8) <,
Kldis('—Y)a E(h’ ldzs('y, )) € Kldu( ) such that
(W, ldis(7,h")) =5 (h,ldis(d,h)), ie, A" >
h and Idis(y,h') > Idis(6,h). Note that
H(My) = h' holds for k = j — ldis(3,R').
Hence, left(y,h') = k and ldis(y,h') =n —k
= (n—j) - (G -k = (n—j)+ ldis(y, )
> (n — j) + ldis(d,h) = ldis(y',h). Thus,
(R, ldis(7, k")) 25 (h,1dis(¥', h)).

Hence, Kjais(7') €5 Kiais(v) by Property 2
and Kiais(Y') # Kidis(7), so that Kiais(v') <s

Kldis('Y) holds. 0O
The proof of the condition 2 is similar to that
of condition 1. a

Property 4 is a direct consequence of Prop-
erty 3’.
Proof of Property 5

Let hy = H(v[0,7]). Then, left(v,h:) | and
0 < left(v,h1) <1, so that Idis(y,h1) > n —1
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holds. If left(y', hy) {, then Idis(v',hy) < n—1
holds, since H(§) < hy. Thus, left(y',h;) 1
or left(v',h1) | and ldis(v', h1) < Uldis(vy, hy).
And for any h > hy, if left(y,h) ) or
left(v', h) 1, then left(y, h) l,left(v', h) | and
ldis(vy,h) = ldis(v', h) hold, since H(8) < h;.
Hence, Ki4is(Y') €w Kigis(7). (Note that <,
is used in Property 5, while <, is used in the
other properties.)

Similarly, for any h > hq, if width(vy,h) | or
width(y', h) ], then width(vy, h) |, width(y',h)}
and width(y,h) = width(y',h) hold, since
H(J) < hy. )

Let h2=Min{h2 | hz _>_ hl /\’I“ight(’}’,hz) .L }
Note that width(y,h,) | and width(y,h,) =
Tight(’)’,hg) - left(’% h‘l) I wzdth(’y',hl) 1
then Kyign(v') <w Kuiaen(y) holds.  So,
consider the case of width(y',h;) . Let
width(y',hy) = right(y',h{) — left(y',h})
where h) = Min{h} | hy > hy Aleft(y',h}) 1},
ki = Min{hy | b > hy ATight(y',hY) |}, and
hi = Min(h},hy). Then, left(y',h}) > |4],
and right(y',h{) > ||, , since H(§) < h;.
Thus, right(y,hY) |, so that h, < hY holds
by the definition of hy. If h, < hY, then
right(vy, hY) < right(~, hz) would hold, so that
right(y’,he) | which contradicts to the def-
inition of Ay by hY > h, > h;. Hence,
ho = h{ holds. Since ldis(y,h;) > n —
t > ldis(y', h}), it follows that width(y',h;) =
right(y,hY) — left(y,h,) = Idis(+',h})
(1| — right(y', KY)) = ldis(y', ) — (rlp -
right(7, ha)) < ldis(y, h1)~(|7l, —right(, h,))
= right(y, ha) — left(7, h1) = width(y, h;)

Hence, Kiqth(7') €w Kuwiatn () holds. O
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