EHRABF2FESTE (FEI0FEY) 2BXR

3 —471

Active Replication in Wide-Area Networks *

4G—-3

Hiroaki Higaki, Nobumitsu Morishita and Makoto Takizawa !

Tokyo Denki University ! ‘
e-mail{hig,nobu,taki}@takilab k.dendai.ac.jp

1 Introduction

According to the advance of computer and network
technologies, network applications are widely devel-
oped. These applications are realized by the coopera-
tion of multiple objects. Here, mission critical applica-
tions are also implemented and these applications are
required to be executed fault-tolerantly. Active repk-
cation has been proposed where multiple replicated
objects are operational in the network system. In the
conventional active replication, all the replicated ob-
jects are required to be synchronized. In the network
environment, each replicated objects may be placed
on different kinds of computers so that the synchro-
nization induces additional time-overhead. The au-
thors have been proposed pseudo-active replication [4].
Here, not all the replicated objects are required to be
synchronized. However, the proposed protocol for the
pseudo-active replication has been proposed for local-
area networks with different kinds of computers. In
this paper, we extend the pseudo-active replication to
be used in wide-area and large scale network environ-
ment and propose a novel protocol. In section 2, we
review the pseudo-active replication. The overview of
a modified pseudo-active replication for wide-area and
large-scale network environment and the design of a
protocol are shown in section 3 and 4, respectively.

2 Pseudo Active Replication

In a network system S, an application is realized by
cooperation of multiple objects. An object is composed
of data and methods for manipulating the data. A

client object of request a server object o} toinvoke a

method. o] manipulates the data and responds to of.
In this paper, the objects are assumed to communicate
in such style called client-server style. Each server
object of are replicated for fault-tolerance. of, (1 <
k < n;) are replicas of o!.

There are two main approaches for replicating ob-
jects: passive and active replication. In the passive
replication, only one of the replicas is operational. A
client object of sends a request message to one of the
server replicas say 0j,. Only o], invokes the methods
requested by of and sends back a result message to

of. o0;, sometimes sends the state information to of,

{3 7
(2 < k < n;) and of; updates the state information.
If o}, fails, one of the passive replicas say o}, becomes
operational. Hence, the recovery procedure takes time
because o;; has to re-execute the methods which o},
has already executed before the failure. In the active
replication, all the replicas are operational. A client
object of sends request messages to all of 0j;. Every
0} invokes the method requested by of and sends back
aresult message to of. After receiving all the messages
from o}, of accepts the result and continue to execute

i F o b7 BT AN S EIL
REE BT Bt @R A
‘HERERAKY

(@) S S
X/
faster \
slower
] ] 1

Figure 1: Pseudo-Active replication
the application. Since all the replicas are operational,
even if some replica 0] s fails, the other replicas of,
(k # k') can continue to execute the application.

In the conventional active replication, every replica
o}, are assumed to be placed on the same kind pro-
cessors. That is, all the replicas simultaneously finish
the computation for a request from a client object.
This assumption is reasonable in local area networks.
However, in wide-area networks, e.g. the Internet,
each replica may be placed on different kind proces-
sors with different speed, reliability and availability.
Here, it is difficult for of to receive all the responses
from o, (1 < k < n;) simultaneously. That is, the
synchronization overhead for receiving the responses
is required to be reduced. The authors have been pro-
posed a pseudo-active replication where of only waits
for the first response from the replicas. On receiving
the first response, of continues to execute the applica-
tion. Thus, the synchronization overhead is reduced.
However, since o;k are placed on processors with dif-
ferent speed and are not synchronized, some replica
Y might finish the computation for all the request
from the client objects and another replica Of g might
keep many requests not to be computed because O} 1
is placed on a slow processor. If Ofpr fails, the recovery
procedure takes time because of,, has to execute the
methods that of,, has already executed before the fail-

ure as in the passive replication. In order to solve this
problem, (1) each client object tells the server replicas
which server is fast, and (2) if o}, finds to be slower,
it omits some methods requested by client objects to
catch up the faster server replicas [Figure 1].
[Faster/Slower replica] If the response from of, has
been received and that from O}y has not yet when of
sends a request to o], of informs that o, is a faster
replica and of,, is a slower one. O
[Omissible request] If an operation op is identity or
idempotent, op is defined to be omissible [2]. O
(Omission rule] If the following conditions are satisfied,
an operation op is omitted in 0

1. o, is a slower replica.



3 —472

s S C
Ol Oj'k Ojk/ Oll
//,’ \\ \\
a— /;A\\ ~o
slower _|—— ~.

- slower>
e 1
faster \ faster

v L 1

Figure 2: Pseudo-Active in a wide-area network
2. op is an omissible operation.
3. Some o, has already executed op. D

In [2) and [4], by using vector clocks [3], rule 1 and
3 are checked in oj;- In addition, every request is

assumed to be delivered to all the server replicas in the
same order, i.e. totally ordered delivery is assumed.

3 Pseudo-Active in a Wide-Area Network

First, we remove Omission rule 3 in order for slower
servers to catch up faster servers. By removing the
confirmation whether op has been executed before
omitting op, the difference of the number of the op-
erations not yet executed among the replicas can be
reduced. This is because the procedure omitting the
operations can be invoked more frequently.

In a wide-area network, processors on which the
replicas o], of server objects may be connected to dif-
ferent sub-networks, e.g. one is in Japan and another
is in Europe, for executing applications more fault-
tolerantly. In this case, all the replicated server ob-
jects may be informed to be slower [Figure 2]. Here,
some operation op may be omitted by all the replicated
servers o;, and the client object of which requests op

cannot receive any response from the servers.

In a wide-area network, the difference among the
times when a client object of receives a response from
each 0}, is caused by both the processing speed of the

processors on which o, are placed and the message
transmission delay in the channel between o}; and of.
Furthermore, in a large-scale network, i.e. the sys-
tem S includes large number of client objects, since
multiple clients may send requests simultaneously and
the processing speed information piggy backed to the
request is relative, all the replicas may be informed
to be slower. Finally, the judgment of the processing

speed is based on the receiving order of the previous.

responses in a client object. This information does
not reflect current processing speed. In order to solve
these problems, we design another protocol where the
processing speed information is piggied back to the
messages used for a total ordering protocol.

4 Protocol
In this section, we propose another protocol for
pseudo active replication based on the total ordering
protocol [1}. Each replicated server object o}, manip-
ulates the following variables:
o Logical clock cl;, for totally ordering the requests
from client objects.
e Last executed operation index loij, for the mea-
surement of processing speed of server objects.
In the following total ordering protocol, the informa-
tion which operations have been executed in every 05}

C ) S
o) ok

{ maxCl. maxlo]

' v

Figure 3: Total ordering protocol for pseudo active
is exchanged among the replicated servers [Figure 3]:

[Total ordering protocol]

1. A client object of sends request messages reg(op)
with an operation op to all the replicated server
objects of, (1 < k < n;).

2. On receipt of reg(op), 0;, stores op in the buffer
with cljx. o}, sends back an ordering message
ord(cl;;, loijk) piggy backing cl;, and loijk. clj;
is incremented by one.

3. After receiving all the ordering messages from
oy (1 < k < nj), of sends final messages
fin{maxcl,max loi) where maxcl = max; clj;
and maxloi = max; clj;.

4. On receipt of fin(maxecl, maxloi), op is restored
from the buffer and enqueued to APQ ordered by
oi{op) = maxcl. O

APQ is an FIFO message queue and the application
dequeues messages from APQ. If the application fin-
ishes an operation op with oi{op), loi;, is updated to
oi(op). Hence, loi;, is always incremented. max loi
piggy backed to fin message means that the fastest
server object has finished to execute an operation with
max loi. Hence, the procedure for omitting operations
is invoked as follows:

[Omitting operations]

o If maxloi—loi;p > threshold, omissible operations
in APQ is removed. O

5 Concluding Remarks

In order to apply pseudo active replication in wide-
area and large-scale network systems, we proposed a
novel protocol which is designed based on the total
ordering protocol. We are now implementing a pro-
totype system and evaluating our protocol comparing
our previous pseudo active replication protocol.

References

(1] Birman, K.P. and Joseph, T.A., “Reliable Commu-
nication in the Presence of Failures,” ACM Trans.
on Computer Systems, Vol. 5, No. 1, pp. 47-76
(1987).

[2] Ishida, T., Higaki, H. and Takizawa, M., “Pseudo-
Active Replication of Objects in Heterogeneous
Processors,” IPSJ Technical Report, vol. 98,
No. 15, pp. 67-72 (1998).

(3] Mattern, F., “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed Al-
gorithms, North-Holland, pp. 215-226 (1989).

(4] Shima, K., Higaki, H. and Takizawa, M., “Pseudo-
Active Replication in Heterogeneous Clusters,”
IPSJ Trans., Vol. 39, No. 2, pp. 379-387 (1998).



