3 —376

Protocol for A Group of Multiple Objects *

4F—8

Tomoya Enokido, Hiroaki Higaki, and Makoto Takizawa !

Tokyo Denki University *
e-mail{eno, hig, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications are realized by a group of
multiple application objects. Many papers have dis-
cussed so far how to support the causally ordered de-
livery of messages at the network level. An object o
is an encapsulate of data and abstract operations for
manipulating the data. On receipt of a reguest mes-
sage with an operation op, o computes op and sends
back a response message. States of the objects de-
pend on in what order operations are computed. A
conflicting relation among operations is defined for
each object based on the semantics of the object. The
significantly precedent relation among request and re-
sponse messages can be defined based on the conflict-
ing relation. In this paper, we present an Object-based
Group (OG) protocol which supports the significantly
ordered delivery of messages where only messages to
be ordered are delivered to the application objects in
the order. We propose an object vector to significantly
order messages, which are based on the logical clocks
of the objects.

In section 2, we discuss the significant precedency

among messages. In section 3, the OG protocol is
discussed.

2 Significantly Ordered Delivery

2.1 Object-based systems

A group G is a collection of objects oy, ..., o,
(n > 1) which are cooperating by exchanging requests
and responses through the network. We assume that
the network is less reliable and not synchronous. Let
op(s) denote a state obtained by applying an opera-
tion op to a state s of o;. Two operations op, and
op, of an object o; are compatible iff op,(op,(s)) =
opy(opy(s)) for every state s of o;. op, and op, con-
fict iff they are not compatible.

Each time o; receives a request of op, a thread is
created for op. The thread is referred to as an instance
of op. op* denotes an instance of op in o;. Only if all
the actions computed in op complete successfully, the
instance of op commits. Otherwise, op aborts. That
is, op is-atomically computed. op; may further invoke
operations. Thus, the computation of op is nested.

2.2 Significant precedence

An operation instance op} precedes opy (oph =
op}) iff op} is computed after op} completes in o;.
op} precedes op} (op} = op}) iff 0p} =>; op for i = j,
op} invokes op’é, or op} = iopg => op’é for some opt.
op} and op), are concurrent (op' || op;) iff neither op!
= op), nor op), = op!.

A message m, causally precedes m; if the sending
event of m, precedes m;[(2]. Suppose an object o;

‘A 7V PEBTOS N —TEBIETO TN
T Bt KB B &R X
IERER AR

sends m; to o; and o, and o; sends m, to o after

receiving m;. i{ere, m, causal(y precedes m;. Hence,

o has to receive m, before my;. We define a precedent

relation “—” among m; and m; which is significant

for the application based on the concept of objects.
o; a;

N

ops | |op

time ¥ Y
Figure 1: Precedence of operations
Definition] A message m; significantly precedes m;
m; — m;) 1iff one of the following conditions holds:
1. m, is sent before m; by an object o; and
a. m; and m; are sent by a same operation
instance, or . . .
b. an operation sending m; conflicts with an
operation sending m; in o;.
2. m, is received before sending m; by o; and
a. m; and mj are received and sent by the

same operation instance, or . .
b. an operation receiving m; conflicts with an
operation sending m;.

3. m; — mz — m; for some message mz. O
[Proposition] A message m, causally precedes m; if
m, significantly precedes my(m; — m;). O
2.3 Ordered delivery

We define a significantly ordered delivery (SO) of
message which order only significant messages.
[Significantly ordered delivery (SO)] A message
m, is delivered before m; in a common destination o;
of m; and m; if the following condition holds :

e if my — my,. ~ .

e m; and m; are received by the same opera-
tion instance, or '
e an operation instance op} receiving m; con-
flicts with op} receiving m; in o; and one of
m, and m; is a request, T
e if m; and m; are conflicting requests and m, ||

mgy, m, is deliveréd before m; in anotheér common
destination of m; and m,;. O

3 Protocol

3.1 Object vector

The vector clock (7] V = {Vy, ..., V,.) is used to
causally order messages received in most group pro-
tocols. Significant messages are defined in context of
operation instances and in nested invocations. Hence,
a group is considered to be composed of instances. In

ERUBFLF57E (FRICERE) £2EXS

3 371

the vector clock, the group has to be frequently resyn-
chronized each time instances are initiated and termi-
nated. In this paper, we propose an object vector to
causally order only the significant messages.

Each instance op} is given a unique identifier ¢(op})
satisfying the following properties :

I1. If op} starts after op}, starts in an object o;, t(op})
> t(op},). ‘
I2. If o; initiates op} after receiving a request op

from opl, t(op}) > t(op).

o; manipulates a variable oid showing the linear
clock[2] as follows : (1) Initially, oid := 0. (2) oid
= oid + 1 if an instance op} is initiated in o;. (3)
On receipt of a message from opf‘, oid := max(oid,
oid(op))). When op is initiated in oy, oid(op}) :=
oid. Then, t{op}) is given a concatenation of oid{op})
and the object number ono(o;) of o;. t(op}) > t(opl,)
if 1) oid(op!) > oid(op]) or 2) oid(op}) — oid(op)
and ono(o;) > ono(o;). It is clear that the instance
identifiers satisfy I1 and I2.

Each action e in op} is given an event number nole).
o; manipulates a variable no; to give the event number
to each event e in o; as follows : (1) Initially, no; :=
0. (2) no; := no; + 1 if e is a sending action. nof)
:= no;; That is, the event number is incremented by
one each time a sending event occurs. Each action e
in op} is given a global event number tno(e) as the
concatenation of t{op}) and no(e).

o; has a vector of variables V* = (V}, ..., V}}). Each

Vj" is initially 0. Each time an instance op} is initiated
in o;, op} is given a vector V' = (V}i, ..., Vi) where
Vi ;= Vj for j =1, ..., n. op; manipulates V;' as

follows : (1) If op! sends a message m, m carries the
vector V' as m.V where m.V; := Vi forj=1,..,

n{j #1i), no ;= no; + 1, and Vt" = no;; (2) If op;
receives a message m from o;, Vj; := m.V;; (3) If op;
commits, V! := max(V}, Vi) forj=1,..., n;

3.2 Message transmission and receipt

A message m includes the following fields : (1)
m.src = sender object of m. (2) m.dst = set of
destination objects. (3) m.type = message type, i.e.
request, responce, commit, abort. (4) m.op = oper-
ation. (5) m.tno = global event number (m.t, m.no),
i.e. tno(m). (6) m.V = object vector (V1,..., V). (7)
m.SQ = vector of sequence numbers (sqy, ..., 3g,).
(8) m.d = data.

An object 0; manipulates variables sq;, ..., sg, to
detect a message gap, i.e. messages lost or unexpect-
edly delayed. Each time o; sends a message to o;, sq;
is incremented by one. Then, o; sends a message m
to every destination o; in m.dst. o; can detect a gap
between messages received from o; by checking the se-
quence number. o; correctly receives m if o; receives
every message m’ where m’.sq; < m.sq;. That is, 0;
receives every message which o, sends to o; before m.

Suppose op; sends a request op’. o; constructs a
message m as follows : (1) m.src := o;; (2) m.dst :=
set of destinations; (3) m.type := request; (4) m.op
= op/; (5) m.tno = (m.t, m.no) = (t(op), nox)); (6)
mV;i= Vi forj=1,...,n;(7) sg; := sg; + 1 for

every o; in m.dst; (8) m.sq; :=sg; for j =1,..., n;
3.3 Message delivery

A receipt vector RV = (RVy, ..., RV,) is given to
each message m received from o;. m.RV is manipu-
lated as follows :

s mRV; := m.ino;

s mRARVy, :=mVyforh=1 ..,n(h#i)

m.RV is the same as m.V except m.RV; for an ob-
ject o; which sends m. Messages m; and m; received
an object are ordered by the following rule.

[Ordering rule] A message m, precedes my (m; =
m,) if the following condition holds :

If mi.V < my.V and m;.RV < m;.RV,
s m;.0p = my.0p, or
e m;.op conflicts with m;.op.

else m,.type = my.type = request, ml..op conflicts
with 'mg.op, and m;.tno < my.ino. O

It is clear that the following theorem to hold.
(Theorem] m; significantly precedes my (my — mj)
iff my = mj. a

The messages in RQ; are ordered in =. Messages
not ordered in = are stored in the receipt order.
[Stable operation] Let m be a message which o;
sends to o; and is stored in RQ;. m is stable iff one
of the following conditions holds :

1. There exists such a message m; in RQ, that
my.s¢; = m.s¢; + 1 and m; is sent by o;.
2. o; receives at least one message m; from every
ot»'ect such that m — m;. O

[Definition] A message m in RQ; is ready if opera-
tion conflicting with m.op is not computed in o;. O

In addition, only significant messages in RQ; are
delivered by the following procedure.
[Delivery procedure] While each top message in
RQ); is stable and ready, m is delivered from RQ);.
O

Theorem] The OG protocol delivers a message m;
efore mn; if m; significantly precedes m,;. O -

If o; sends no message to o;, messages in RQ; can-
not be stable. In order to resolve this problem, o;
sends o, a message without data if o; had sent no
data to o; for some predetermined 6 time units. § is
proportional to delay time between o; and o;.

4 Concluding Remarks

In this paper, we have discussed how to support
the significantly ordered delivery of messages from
the application point of view. Based on the conflicting
relation among abstract operations, we have defined
the significantly precedent relation among request and
response messages. We have discussed the object vec-
tor to significantly order messages in the object-based
systems. The size of the object vector depends on the
number of objects, not the number of operation in-
stances.

References

(1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implementing
Causally Consistent Distributed Services,” Proc.
of IEEE ICDCS-18, 1998, pp.86-93.

{2] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” ACM, Vol.21,
No.7, 1978, pp.558-565.

