\bar{S}_k - factorization algorithm of 4 C - 3 symmetric complete multipartite digraphs

Kazuhiko Ushio

Let K_{n_1,n_2,\ldots,n_m}^* denote the symmetric complete multipartite digraph with partite sets V_1,V_2,\ldots,V_m of n_1,n_2,\ldots,n_m vertices each, and let \bar{S}_k denote the evenly partite directed star from a center-vertex to k-1 end-vertices such that the center-vertex is in V_i and every (k-1)/(m-1) end-vertices are in V_j $(j=1,2,\ldots,i-1,i+1,\ldots,m)$. A spanning subgraph F of K_{n_1,n_2,\ldots,n_m}^* is called an \bar{S}_k - factor if each component of F is \bar{S}_k . If K_{n_1,n_2,\ldots,n_m}^* is expressed as an arc-disjoint sum of \bar{S}_k - factors, then this sum is called an \bar{S}_k - factorization of K_{n_1,n_2,\ldots,n_m}^* .

Notation. Given an \bar{S}_k - factorization of $K^*_{n_1,n_2,\ldots,n_m}$, let

r be the number of factors

t be the number of components of each factor

b be the total number of components.

Among r components having vertex x in V_i , let r_{ij} be the number of components whose center-vertex is in V_j .

Among t components of each factor, let t_i be the number of components whose center-vertex is in V_i .

Theorem 1. If $K_{n_1,n_2,...,n_m}^*$ has an \bar{S}_k - factorization, then (i) $k-1 \equiv 0 \pmod{m-1}$ and (ii) $n_1 = n_2 = ... = n_m$ for k = m and $n_1 = n_2 = ... = n_m \equiv 0 \pmod{k(k-1)/(m-1)}$ for $k-1 \geq 2(m-1)$.

Proof. Suppose that $K_{n_1,n_2,...,n_m}^*$ has an \bar{S}_k - factorization. Then $b=2(n_1n_2+n_1n_3+...+n_{m-1}n_m)/(k-1)$, $t=(n_1+n_2+...+n_m)/k$, $r=b/t=2(n_1n_2+n_1n_3+...+n_{m-1}n_m)k/(n_1+n_2+...+n_m)(k-1)$. By the definition of \bar{S}_k , $k-1\equiv 0\pmod{m-1}$. Put k=(m-1)a+1.

For a vertex x in V_i , we have $r_{ii}a = n_j$, $r_{ij} = n_j$ $(j \neq i)$, and $r_{i1} + r_{i2} + ... + r_{im} = r$ (i = 1, 2, ..., m). Therefore, we have $n_1 = n_2 = ... = n_m$. Put $n_1 = n_2 = ... = n_m = n$. Then $r_{ii} = n/a$, $r_{ij} = n(j \neq i)$, $b = mn^2/a$, t = mn/((m-1)a+1), and t = n((m-1)a+1)/a.

Moreover, in a factor, we have $at_1 + at_2 + ... + at_{i-1} + t_i + at_{i+1} + ... + at_m = n \ (i = 1, 2, ..., m)$ and $t_1 + t_2 + ... + t_m = t$. Therefore, we have $t_i = (at - n)/(a - 1) = n/((m - 1)a + 1)$ for $a \ge 2$. So we have $n_1 = n_2 = ... = n_m$ for a = 1 and $n_1 = n_2 = ... = n_m \equiv 0 \ (\text{mod} \ ((m-1)a+1)a))$ for $a \ge 2$.

Theorem 2. If $K_{n,n,\dots,n}^*$ has an \bar{S}_k - factorization, then $K_{sn,sn,\dots,sn}^*$ has an \bar{S}_k - factorization. Proof. Let $K_{q_1,q_2\oplus q_3\oplus \dots \oplus q_m}$ denote the multipartite digraph with partite sets U_1,U_2,U_3,\dots,U_m of q_1,q_2,q_3,\dots,q_m vertices such that q_1 start-vertices in U_1 are adjacent to all q_2 end-vertices in U_2 and q_3 end-vertices in U_3,\dots , and q_m end-vertices in U_m . Then \bar{S}_k can be denoted by $K_{1,a\oplus a\oplus \dots \oplus a}$ for k=(m-1)a+1. When $K_{n,n,\dots,n}^*$ has an \bar{S}_k - factorization, $K_{sn,sn,\dots,sn}^*$ has a $K_{s,sa\oplus sa\oplus \dots \oplus sa}$ has an \bar{S}_k - factorization. Therefore, $K_{sn,sn,\dots,sn}^*$ has an \bar{S}_k - factorization.

Theorem 3. When k = m, $K_{n,n,\dots,n}^*$ has an \tilde{S}_k - factorization.

Proof. Let $V_i = \{v_{i,1}, v_{i,2}, ..., v_{i,n}\}$ (i = 1, 2, ..., m). Construct $mn \ \bar{S}_k$ - factors F_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n) as following:

 $F_{ij} = \{(v_{i,1}; v_{1,j}, v_{2,j}, ..., v_{i-1,j}, v_{i+1,j}, ..., v_{m,j}), \ (v_{i,2}; v_{1,j+1}, v_{2,j+1}, ..., v_{i-1,j+1}, v_{i+1,j+1}, ..., v_{m,j+1}), \ ..., \ (v_{i,n}; v_{1,j+n-1}, v_{2,j+n-1}, ..., v_{i-1,j+n-1}, v_{i+1,j+n-1}, ..., v_{m,j+n-1})\},$

where the additions are taken modulo n with residues 1, 2, ..., n. Then they comprise an \bar{S}_k - factorization of $K_{n,n,...,n}^*$.

Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, Osaka 577-8502, JAPAN. E-mail:ushio@is.kindai.ac.jp

Theorem 4. When k is odd, $k \ge 5$, and $n \equiv 0 \pmod k(k-1)/2$, $K_{n,n,n}^*$ has an \bar{S}_k - factorization. Proof. Put k=2a+1, n=s(2a+1)a, and N=(2a+1)a. When s=1, let $V_1=\{1,2,...,N\}$, $V_2=\{1',2',...,N'\}$, and $V_3=\{1'',2'',...,N''\}$. Construct $(2a+1)^2$ \bar{S}_k - factors F_{ij} (i=1,2,...,2a+1); j=1,2,...,2a+1) as following: $F_{ij}=\{((A+1);(B+1,...,B+a)',(C+1,...,C+a)'')$ ((A+2);(B+a+1,...,B+2a)',(C+a+1,...,C+2a)'') ... $((A+a);(B+(a-1)a+1,...,B+a^2)',(C+(a-1)a+1,...,C+a^2)'')$ $((B+a^2+1)';(A+a+1,...,A+2a),(C+a^2+1,...,C+a^2+a)'')$ $((B+a^2+2)';(A+2a+1,...,A+3a),(C+a^2+a+1,...,C+a^2+2a)'')$... $((B+a^2+a)';(A+a^2+1,...,A+a^2+a),(C+a^2+(a-1)a+1,...,C+2a^2)'')$ $((C+2a^2+1)'';(A+a^2+a+1,...,A+a^2+2a),(B+a^2+a+1,...,B+a^2+2a)')$ $((C+2a^2+2)'';(A+a^2+2a+1,...,A+a^2+3a),(B+a^2+a+1,...,B+a^2+3a)')$... $((C+2a^2+a)'';(A+2a^2+1,...,A+2a^2+a),(B+2a^2+1,...,B+2a^2+a)')$ $((C+2a^2+a)'';(A+2a^2+1,...,A+2a^2+a),(B+2a^2+1,...,B+2a^2+a)')$

Theorem 5. When $k-1 \equiv 0 \pmod{3}$, k is odd, $k \geq 7$, and $n \equiv 0 \pmod{k(k-1)/3}$, $K_{n,n,n,n}^*$ has an \bar{S}_k - factorization.

Proof. Put k = 3a + 1, n = s(3a + 1)a, and N = (3a + 1)a. When s = 1, let $V_1 = \{1, 2, ..., N\}$, $V_2 = \{1', 2', ..., N'\}$, $V_3 = \{1'', 2'', ..., N''\}$, and $V_4 = \{1''', 2''', ..., N'''\}$. Construct $(3a + 1)^2 \bar{S}_k$ - factors F_{ij} (i = 1, 2, ..., 3a + 1; j = 1, 2, ..., 3a + 1). Then they comprise an \bar{S}_k - factorization of $K_{N,N,N,N}^*$. Applying Theorem 2, $K_{n,n,n}^*$ has an \bar{S}_k - factorization.

Theorem 6. When $k-1 \equiv 0 \pmod{4}$, $k \equiv 1, 2 \pmod{3}$, $k \geq 13$, and $n \equiv 0 \pmod{k(k-1)/4}$, $K_{n,n,n,n}^*$ has an \bar{S}_k - factorization.

Proof. Put k = 4a + 1, n = s(4a + 1)a, and N = (4a + 1)a. When s = 1, let $V_1 = \{1, 2, ..., N\}$, $V_2 = \{1', 2', ..., N'\}$, $V_3 = \{1'', 2'', ..., N''\}$, $V_4 = \{1''', 2''', ..., N'''\}$, and $V_5 = \{1'''', 2'''', ..., N''''\}$. Construct $(4a + 1)^2 \bar{S}_k$ - factors F_{ij} (i = 1, 2, ..., 4a + 1; j = 1, 2, ..., 4a + 1). Then they comprise an \bar{S}_k - factorization of $K_{N,N,N,N,N}^*$. Applying Theorem 2, $K_{n,n,n,n}^*$ has an \bar{S}_k - factorization.

References

has an \bar{S}_k - factorization.

- [1] H. Enomoto, T. Miyamoto and K. Ushio, C_k factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [2] K. Ushio, P₃ factorization of complete bipartite graphs, Discrete Math. 72 (1988), pp. 361-366.
- [3] K. Ushio and R. Tsuruno, P_3 factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- [4] K. Ushio and R. Tsuruno, Cyclic S_k factorization of complete bipartite graphs, Graph Theory, Combinatorics, Algorithms and Applications (SIAM, 1991), pp. 557-563.
- [5] K. Ushio, G designs and related designs, Discrete Math. 116 (1993), pp. 299-311.
- [6] K. Ushio, Star-factorization of symmetric complete bipartite digraphs, Discrete Math. 167/168 (1997), pp. 593-596.
- [7] K. Ushio, $K_{p,q}$ factorization of symmetric complete bipartite digraphs, To appear in Graph Theory, Combinatorics, Algorithms and Applications (New Issues Press, 1998), pp. 823-826.
- [8] K. Ushio, Cycle-factorization of symmetric complete multipartite digraphs, To appear in Discrete Math. (1998).
- [9] K. Ushio, \ddot{S}_k factorization of symmetric complete tripartite digraphs, To appear in Discrete Math. (1998).