Vol. 38 No. 6

Regular Paper

Transactions of Information Processing Society of Japan

June 1997

Object-based Consistency in Distributed Checkpoints

KATSUYA TANAKA," HIROAKI HIGAKI' and MAKOTO TAKIZAWA'

In distributed applications, multiple objects cooperate to achieve some objectives. The
objects may suffer from kinds of faults. If some object o is faulty, o is rolled back to the
checkpoint and objects which have received messages from o are also required to be rolled back.
In this paper, we define influential messages whose receivers are required to be rolled back'if
the senders are rolled back in the object-based computation model. By using the influential
messages, an object-based (O) checkpoint is defined to denote a semantically consistent global
state of the system while inconsistent with the traditional message-based definition. We show
that fewer number of O-checkpoints are taken than the message-based ones.

1.

In distributed applications like teleconfer-
ences?, a group of multiple autonomous ob-
jects are required to cooperate by exchanging
messages through communication networks to
achieve some objectives. An object o is mod-
eled as a pair of a data structure and a collec-
tion P, of operations. The computation on the
objects is based on the message-passing mech-
anism. On receipt of a request message with
an operation op in P,, a thread of op is created
and is computed in o, and sends back a response
message with the result of op. During the com-
putation of op, op may invoke operations on
other objects, i.e. operations are nested.

In order to tolerate the fault of each object
0, o takes a checkpoint where the state of o is
saved in the stable storage log. If o is faulty,
o is rolled back to the checkpoint by restoring
the state information stored in the log taken
at the checkpoint and then the computation
on o is restarted. If o is rolled back, objects
which have received messages sent by o have to
be rolled back so that there is no orphan mes-
sage?®, i.e. message sent by no object but re-
ceived by some object. If the sending event of a
message m, happens before '©) my, my causally
precedes my 3. If 0 is rolled back, objects which
have received messages causally preceded by the
messages sent by o have to be rolled back in or-
der to prevent from the orphan messages.

Papers 2):4):9):12),13).15),18) (iscuss how to
take the consistent global checkpoints in the
message-based systems. Koo and Toueg?
present synchronous protocols for taking the

Introduction

1 Department of Computers and Systems Engineer-
ing, Tokyo Denki University

1245

global consistent checkpoint and rolling back
the processes, which are similar to the two-
phase commitment protocol’”). Leong and
Agrawal'?) present the concept of significant
operation messages if the state of an object
is changed by the operations. If o is rolled
back, only objects which have received signif-
icant messages sent by o are rolled back. Thus,
the number of objects to be rolled back can be
reduced. However, in the object-based systems,
objects send different types of messages, i.e. re-
quest, response, and data messages. In the sig-
nificant messages, the transmissions of requests,
responses, and data messages are not consid-
ered and operations are not nested.

In this paper, we define influential messages
by taking into account the kinds of messages
sent by the objects and the nested operations.
Then, we discuss object-based (O) checkpoints
which can be taken from the object point of
view even though it may not be consistent with
the traditional message-based definition. This
means that some objects do not need to take
the checkpoints even though they have to take
the checkpoints in the message-based system.
If an object o is rolled back, only objects which
have received influential messages sent by o are
rolled back.

In Section 2, we first present the system
model. In Section 3, we discuss the influen-
tial messages and define the object-based check-
point. In Section 4, we show how many check-
points can be reduced by taking only the object-
based checkpoint.

2. System Model

2.1 Objects
A distributed system is composed of multi-
ple objects interconnected by a communication

1246 Transactions of Information Processing Society of Japan

network. Each object o is defined to be a pair
of a data structure and a collection P, of opera-
tions. Another object o' can manipulate o only
through an operation op in P,. On receipt of a
request message m with op from o', op is com-
puted on o. Then, op sends back the response
message with the result of op. op is computed
as a sequence of actions on o. The actions are
private primitive units of computation of o, i.e.
cannot be directly invoked from the outside of o.
op may invoke operations on other objects, i.e.
op is nested. Thus, op is realized by a sequence
of actions and operations on other objects. The
operations are descendants of op if they are in-
voked by op or by descendants of op. op com-
mits only if all the actions and operations in op
complete successfully. If some action or opera-
tion invoked in op are faulty, all the effects of
op are removed, i.e. op aborts.

A global state S of the system is given by a
tuple (s1, ..., Sp), where each s; is a local state
of 0;, and a state of the network. The network
state is a collection of messages transmitted but
not received by the objects. A message m is
referred to as lost in S iff m is sent but not re-
ceived by some destination object and m is not
in the network. If m is logged in the network,
the receiver of m can take m from the log af-
ter S. A message m is an orphan at S iff m
is received but not sent in the system. Chandy
and Lamport?) define a consistent global state
to be one where there is no orphan. Here, it
is not discussed what information each message
carries. Hence, it is called a message-based sys-
tem.

2.2 Types of Operations

Each object o is manipulated by the opera-
tions supported by o. For every state s of o,
op(s) denotes a state obtained by applying op
to s. For every pair of operations op; and ops,
op1.0p2 means that ops is applied after op; .
[Definition] Operations op; and ops of an
object o are compatible if and only if (iff)
op1.0p2(8) = opa.opy(s) for every state s of o.

O
op1 and opy conflict!) iff they are not com-
patible, i.e. op100ps(s) # s for some state s of o.
The conflicting relation among the operations is
assumed to be specified in the definition of o.
op1 and ops are mutually exclusive in o iff opy
and ops cannot be simultaneously computed in
0. Unless op; and ops are mutually exclusive,
they can be interleaved in 0. We assume that
op1 and ops are mutually exclusive if they con-

June 1997

0; o 5 0; (0] j
op; op;
op; OPj

Y J \

(1) Dependent (2) Independent
Fig.1 Closed computation.

flict. If op; is issued to o while opy is being

computed in o, op; has to wait until ops com-

pletes. For example, two withdrew operations

are mutually exclusive and conflict.

An object o supports two kinds of abstract
operations, i.e. one changes the state of o and
the other not. For example, deposit changes
the state of a Bank object and check does not
change the state. An operation op supported by
o is transforming if op changes the state of o,
i.e. op(s) # s for some state s of 0. op is stable
if neither op nor any descendant of op changes
any object. In this paper, the specification of
op defines whether or not each operation op is
stable. check is stable and withdraw is trans-
forming.

Suppose that a stable operation op; and an
unstable one op, are invoked by an untrans-
forming one op. Before invoking ops, neither op
nor any descendant of op changes any object.
On receipt of the response of ops, op knows that
ops is unstable. op is pending if op is unstable
but every descendant of op which is computed
so far is stable. That is, op has not change the
state, yet, but will change it later.

2.3 Invocations

Suppose that an operation op; of an object
o; invokes op; of o;. There are two ways to
compute op;: (1) dependent and (2) indepen-
dent computations. In the dependent one, op;
waits for the completion of op; after invoking
op; (Fig.1(1)). The invocation of op; and the
action for waiting for the completion of op; in
op; are named fork and wait, respectively. This
also shows the remote procedure call. In the in-
dependent one, op; does not wait for the com-
pletion of op; (Fig.1(2)). op; is computed in-
dependently of op;. The independent computa-
tion is called detach.

There are two kinds of messages transmitted
among the objects: (1) control and (2) data
messages. The control messages mean requests
and responses to be used to invoke the oper-

Vol. 38 No. 6

0; 0j 0; 0j
op; op;
op; op;

J /
(1) Dependent

Fig.2 Open computation.

(2) Independent

ations and notify the completion of the oper-
ations, respectively. After the operations are
invoked, they may communicate with other op-
erations by exchanging data messages through
send and receive primitive actions.

There are two kinds of computation of op; de-
pending on whether op; and op; exchange mes-
sages: (1) closed and (2) open computations.
Suppose that op, sends a data message m to
op;. The computation of op; depends on op;
after receiving m. Hence, if op; is aborted, op;
is also required to be aborted. Suppose that op;
invokes op;. If op; and op; do not communicate
with one another, op; is closed for op; (Fig.1).
Otherwise, op; is open for op; (Fig. 2).

A message m participates in an operation op
if (1) m is a request or response of op or (2) m
is a data message received in op. Let Op(m)
denote an operation in which m participates.
0; sends a request m; of an operation ops to
0;. On receipt of my, o; computes ops. Let
opfc‘ denote the computation of opy in ox. o;
sends back a response my of op} to o; if op
is dependent. Here, m; and ma participate in
opy, i.e. Op(my) = Op(mz) = op3.

3. Object-based Checkpoints

We discuss an object-based (O) checkpoint
which can be taken from the object point
of view but may not be consistent with the
message-based definition. We do not assume
that the computations of the objects are deter-
ministic.

3.1 Consistent Checkpoints

We assume that each object o; may stop by
fault. o; takes a local checkpoint ¢* where the
state of o; is stored in the log I;. If the state of
o is so large that it takes time or it is difficult to
store the state in the log, the operations com-
puted in o are stored in the log. If o; is faulty, o;
is rolled back to ¢’ by restoring the state stored
in the log I; to 0;. If 0; is rolled back to ¢, other

Object-based Consistency in Distributed Checkpoints 1247

(1) Consistent)
: checkpoint

(2) Inconsistent

Fig.3 Consistent checkpoint.

objects have to be rolled back to the local check-
points if they had received messages sent by o;.
A global checkpoint c is a tuple (¢!, ..., c*) of
the local checkpoints. From here, a term check-
point means a global one. If o; sends a message
m before taking ¢* but o; receives m from o;
after taking ¢, m is an orphan. c is consistent
if there is no orphan® at ¢. In Fig. 3, an ob-
ject o; sends a message m to o;. In Fig.3(1),
the checkpoint (¢, ¢’) is consistent with the
message-based definition. In Fig.3(2), (c, ¢’)
is inconsistent because m is an orphan. Many
papers 2:4):6):15) discuss how to take the consis-
tent checkpoints in the message-based system.

Leong and Agrawal'?) discuss the concept of
significant messages. For example, if a message
m is write in Fig. 3, m is significant because the
local state of o; is changed on receipt of m. If
0; is rolled back, o; has to be rolled back. How-
ever, o; is not rolled back if m is read, i.e. not
significant. In the object-based computation,
kinds of messages, i.e. request, response, and
data messages are exchanged among the opera-
tions in the objects. In the significant messages,
it is discussed if only the request messages are
significant. The message-based systems do not
discuss what information messages carry and
how messages are used among the objects.

3.2 Dependent Invocation

Suppose that an operation opt in o; invokes
op} in o;. There are four ways to invoke op}:

(1) closed dependent,

(2) open dependent,

(3) closed independent, and

(4) open independent computations of opj,.
Figure 4 and Fig. 5 show possible checkpoints
¢; and ¢, to be taken in o; and o;, respectively,
in the dependent invocation. Here, let wc;(op’,
¢’) be a set of operations which (1) precede op’
and (2) succeed a checkpoint ¢/ or are being
computed at ¢/ in o;. Suppose that mc;(opj,

C{) = {017%1, Tt Opél}'

1248 Transactions of Information Processing Society of Japan

3.2.1 Closed Invocation

We discuss whether or not each inconsistent
checkpoint (¢}, ¢},) shown in Fig. 4 can be taken.
A checkpoint c is object-based (O-checkpoint) iff
every object can be rolled back to ¢ and then
can be restarted from c¢ from the object point
of view. First, suppose that the operations are
invoked in the closed dependent way.

Here, the O-checkpoint ¢ may be inconsistent
with the message-based definition. For exam-
ple, (ct, &) and (c}, c}) are inconsistent. If
op} is stable, the state denoted by ¢} is the
same as ¢ and ¢}. (c¢i,) is consistent with
the message- ba.sed definition because there is
no orphan. Hence, (ci, ¢}) and (ci, c}) are
object-based. Even if op} is not stable, (¢, ¢})
is object-based if op) is pending because op)
has not yet changed the state at cj. If o; is
rolled back to ci, opj is undone. Suppose that
o, takes ¢} where op}, is partially computed. opj
is required to be undone while other operations
being computed at ¢} may not have to be un-
done.

There are two kinds of checkpoints, i.e. com-
plete and incomplete ones. Suppose that o; is
rolled back to the O-checkpoint (:7 If cj is com-
plete, the state of o; is just restored If ¢} is in-
complete, the operations being computed at c]
have to be undone. However, no operation in-
voked by the operations needs to be rolled back
since the operations are stable. Hence, (ct, c})
is object-based where ¢} is incomplete. (c5, c})
and (c}, c}) are also object-based.

Let us consider the inconsistent checkpoints
(ci, &), (ck, &), and (ck, c}). If op} is stable, ¢
denotes the same state as cj since op), does not
change the state. Hence, (ci, c}) is object-based
since (cj, ;) is consistent. Here, suppose that
op}, is read and some write op}, preceding op}
is computed after ¢]. op) reads data written by
op}y,. Hence, ¢] denotes a state different from
¢;. If no operation following ¢] and preceding
op% conflicts with op,, op}, sends the same result
even if op} is computed before op},. Hence, if
op}, is stable and no operation in wc;(op},)
conflicts with op3, (ci, ¢]) is object-based. {c},
c}) is also object-based. (cj, c}) is object-based
where ¢} is incomplete. _

{ck,) is similarly discussed. (c§, i), {ck,
c)), and (ct, c}) are also object-based. Ta-
ble 1 summarizes the message-based inconsis-
tent but object-based (O) checkpoints, where

June 1997
0; 0j)
HH ¢t HA o
;M
i)
op1 opd,
HH ¢ S
opy,
A N
op)
HH ¢} H ¢l
KEL————"‘
, HH ¢
HH ¢
N .
HH C
\ Y time

Fig.4 Closed dependent.

Table 1 O-checkpoints for Fig. 4.
0; 0; Conditions
ct ré* op% is pending or stable.
ci opg is stable.
e cé* op% is pending or stable.
ci op]é is stable
cf1 cj1 opé is stable and‘noA
ct operation in 7;(op}, ¢})
conflicts with op}.
cé, c%* oprg is stable.

checkpoints marked * denote incomplete ones
if op}, is pending.

3.2.2 Open Invocation ‘

opj, is open for op! in Fig.5, where op} and
op! communicate by transmitting data mes-
sages. Here, cf; means a point where no data
message is communicated after invoking the op-
eration, and cf; means a point where data mes-
sages are communicated until the end of the
operation (h =1, j). For ¢, ¢, ci, ¢ and cf,
¢}, ¢, the same result as Table 2 is obtained.
(ck, cbp,) (b =1, 2, 3) is object-based if op} is
pending or stable. (¢}, c};) cannot be taken
because m4 is an orphan. Thus, the data mes-
sages are not allowed to be orphans.

3.3 Independent Invocation 4

Next, suppose that the invocation of opj is
independent. First, suppose that op% is closed
for op} (Fig. 6). (cl, ¢}) and (¢}, ¢}) are object-
based if op}, is stable. In addition, (ci, c}) and
(ck, c}) are object-based if op} is pending or sta-
ble where ¢ is incomplete. Table 3 shows the

Vol. 38 No. 6
0; 0;)
HH H o
opy opy,]
HH ¢ ok
opy,]
- ™ HA &
y —|C31\ ;
my mop% H 62]31
FW 33
- J
HH cl T G
N .
"V" cs Y time

Fig.5 Open dependent.

Table 2 O-checkpoints for Fig. 5.

Conditions

ct c?n , c§2*, op'; is pending or stable.

*
33
c c op} is stable
ety A op), is stable.
cl d op}, is stable and no
& operation in ; (opéf)

conflicts with op?,.
opg is stable.

- -
3 3%,

* *
™ G

message-based inconsistent but O-checkpoints.

Table 4 shows the message-based incon-
sistent but O-checkpoints where opl is open
(Fig. 7).

3.4 Influential Messages

Following the points discussed in this section,
we define the influential messages as follows.
[Deﬁmtxon] Suppose that op} sends a message
m to opi. Let c¢* be a checkpoint most recently
taken by o;. m is influential iff one of the fol-
lowing conditions is satisfied:

(1) Ifm is arequest message, Op(m) (= op})
is unstable.

(2) If m is a response message, Op(m)
(= op}) is unstable or some operation in
7c;(Op(m), ¢7) conflicts with Op(m).

(3) If m is a data message,

(3-1) Op(m) (= opl) is being computed,
or

(3-2) Op(m) is unstable or conflicts with
some operation in mc;(opt, ¢;). a

Object-based Consistency in Distributed Checkpoints 1249

0; Oj
HH ! HH o
. A .
opi oph,]
HH ¢ :
opy,]
w_’ C%
_ op), :
HH ¢} 2}-} cl
HH c;i
1, i
T
Y time

Fig.6 Closed independent.

Table 3 O-checkpoints for Fig. 6.

0; | 05 Conditions
i | ei* | op) is pending or stable.
c"é c op% is stable.

If an operation op; is undone, only operations
receiving influential messages from op; are re-
quired to be undone.

Now, we define an O-checkpoint where the
system state is consistent even if the objects
are rolled back to the O-checkpoints and then
are restarted.

[Deﬁmtlon] A global checkpoint ¢ = (c!, ...,
c") is object-based (O-checkpoint) iff no influ-
ential message is an orphan at c. i

For example, suppose that op} is not stable
in Fig.4. Here, (¢}, c}) is not object-based
since my is influential. If op) is stable, (ci,
c}) is object-based. The O-checkpoints may
not be consistent with the message-based defi-
nition. However, the objects can be rolled back
to the O-checkpoints and be restarted from the
O-checkpoints.

By using the synchronous protocols similar
to the two-phase commitment protocol 7)-%), the
O-checkpoints can be taken and the objects can
be rolled back and restarted. In the check-
pointing algorithm, each object o; has to decide
whether or not a message m received by o; is in-
fluential. First, o; has to know if an operation
op® receiving m is stable. o; can know from
the specification if op® is stable. Secondly, o;
has to identify the operations to be included in

1250 Transactions of Information Processing Society of Japan

0; 0y
HH ¢ HH o
i .
op; Op%1]
HH ¢ ok
opy,]
m 4
HH ¢ ;
31
ms mo 2 H C%l
HH i3
HH Ca3 HH ¢
1 i
HH ¢ :
5 [time

Fig.7 Open independent.

Table 4 O-checkpoints for Fig. 7.

Conditions

¢ | ¥, éy*, | op) is pending or stable.

33"
e A opl, is stable.
cfn ci opé is stable.
ck d op}, is stable and no

operation in Wj(op%, ci)
conflicts with op?,.

opg is stable.

mei(opt, ¢t) for the checkpoint ¢ most recently
taken in o,. Here, o; keeps in record the opera-
tions computed after ¢’ in the log I;. When op?
is initiated to be computed in o, 0; looks for op-
erations conflicting with op® in the log I;. Thus,
all information to make a decision on the in-
fluential messages is fixed when the operations
receiving the messages are initiated. That is, on
receipt of a message m, o; can decide whether
or not m is influential by using the information
obtained already.

4. Evaluation

First, we show how many influential messages
are transmitted from one object to others. In
order to make the evaluation simpler, we make
the following assumptions:

(1) There are two objects o; and o; in the

system.

(2) o; invokes an operation in o; every u time

units. ,
(3) o; invokes randomly one of four kinds of

June 1997

100 * \g * * * * ¥ ¥

60 -

40 B

Percentage of influential messages (%)
\

Ps=0 ~0— |
Ps=0.2 - +- - -
Pan0.5 ~El- -+
Ps=0.8 —}——
Pu=1.0 -A—-
o " i a A N A . "

1 2 3 4 5 6 7 8 9 10
cn

Fig.8 Number of influential messages.

operations, i.e. open dependent, open inde-
pendent, closed dependent, and closed in-
dependent ones.

(4) Every two stable operations are compat-
ible but every unstable operation conflicts
with every other operation.

(5) In the open invocation of 0;, o; sends one
message to o; and o; sends one to o;.

(6) o; takes a checkpoint after every cn op-
erations are invoked.

Here, let P, denote a probability that an oper-
ation invoked by o; is stable. Figure 8 shows
the percentages of influential messages for the
total number of messages which o; receives. For
example, if 80% of operations are stable in o;,
i.e. P, = 0.8, only 20-40% of messages are in-
fluential. If Py, = 0.5, 50-60% of the messages
are influential.

Next, we show how many checkpoints taken
by o; are object-based. o; takes one checkpoint
each time cn operations are computed in o;. If
o; receives no influential message from o; after
taking the checkpoint most recently taken, the
checkpoint is object-based. Figure 9 shows the
probability that each checkpoint taken every
cn time units is object-based. Figure 9 shows
that the more frequently the object initiates
the checkpoint procedure, the fewer number
of O-checkpoints are taken than the consistent
message-based checkpoints. Figure 10 shows
the number of O-checkpoints for the checkpoint
frequency f = L. f =1 means that the check-
point procedure is initiated each time one op-
eration is computed in o;. For P, = 0.8, the
number of O-checkpoints gets only 1.51 times

Vol. 38 No. 6
T T T T T T T T
Consistent Checkpoint ~—
O-checkpoint (Ps = 0.2) - - *
O-checkpoint (Ps = 0.5) -~
O-checkpoint (Ps = 0.8) ——
1
@ | o mcemmmemmm—e—e————
g L
R 08+ P 4
) .-
I .
3 S
S e
g wk s
: 8 I, e 4
S I e
S e
2 L
b=} -
é 04 o]
e
7
//
/
02 ¥ 4
0 L ! I s L L 1 L

cn

Fig.9 Ratio of O-checkpoints.

1000 T T T

T
Consistent Checkpoint ~——
O-checkpoint (Ps = 0.2) - - -
200 |- O-checkpoint (Ps = 0.5) - - 4
O-checkpoint (Ps = 0.8) ==

800 |- o
700 i
600 4
sof A

400 - g

Number of checkpoints

300 - 1
200 -

100 | 2 4

) . L)
% 0.2 04 0.6 08
Checkpoint frequency (f = 1/cn)

Fig.10 Number of O-checkpoints.

more even if the checkpoint procedure is ini-
tiated two times more frequently for f = 0.1.
If the checkpoint procedure is four times more
frequently initiated, only 2.02 times more O-
checkpoints are taken for f = 0.1. This means
that the objects required to be more available
can take the checkpoints more frequently. Even
if some object takes the checkpoint more fre-
quently, the objects which do not receive in-
fluential messages do not take the checkpoints.
These results obtained here can be adopted to
more cases including more than two objects.

5. Concluding Remarks

This paper has discussed how to take the
object-based (O) checkpoints which can be
taken from the application point of view and

Object-based Consistency in Distributed Checkpoints 1251

may not be consistent with the traditional
message-based definition. We have defined the
influential messages on the basis of the seman-
tics of requests, responses, and data messages
where the operations are nested. Only objects
receiving influential messages are rolled back if
the senders of the influential messages are rolled
back. By using the influential messages, we
have defined the object-based checkpoint which
can be taken from the object point of view
but may be inconsistent with the message-based
definition. We have shown how much we can re-
duce the number of checkpoints to be taken if
each object takes only O-checkpoints.

References

1) Bernstein, P.A., Hadzilacos, V. and Goodman,
N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley (1987).

2) Bhargava, B. and Lian, S.R.: Independent
Checkpointing and Concurrent Rollback for
Recovery in Distributed Systems — An Opti-
mistic Approach, Proc. 7th Symp. on Reliable
Distributed Systems, pp.3-12 (1988).

3) Birman, K.P. and Joseph, T.A.: Reliable
Communication in the Presence of Failures,
ACM Trans. Computer Systems, Vol.5, No.1,
pp.47-76 (1987).

4) Chandy, K.M. and Lamport, L.: Distributed
Snapshots : Determining Global States of Dis-
tributed Systems, ACM Trans. Computer Sys-
tems, Vol.3, No.1, pp.63-75 (1985).

5) Ellis, C.A., Gibbs, S.J., and Rein, G.L.:
Groupware, Comm. ACM, Vol.34, No.1, pp.38—
58 (1991).

6) Fischer, M.J., Griffeth, N.D., and Lynch,
N.A.: Global States of a Distributed Sys-
tem, IEEE Trans. Softw. Eng., Vol.SE-8, No.3
(1982).

7) Gray, J.: Notes on Database Operating Sys-
tems, An Advanced Course, Lecture Notes in
Computer Science, Vol.60, pp.393-481 (1978).

8) Higaki, H. and Takizawa, M.: Group Commu-
nication Protocol for Flexible Distributed Sys-
tems, Proc. IEEE ICNP-96, pp.48-55 (1996).

9) Koo, R. and Toueg, S.: Checkpointing and
Rollback-recovery for Distributed Systems,
IEEE Trans. Computers, Vol.C-13, No.l,
pp.23-31 (1987).

10) Lamport, L.: Time, Clocks, and the Order-
ing of Events in a Distributed System, Comm.
ACM, Vol.21, No.7, pp.558-565 (1978).

11) Lin, L. and Ahamad, M.: Checkpointing and
Rollback-recovery in Distributed Object Based
Systems, Proc. 9th Symp. on Reliable Dis-
tributed Systems, pp.97-104 (1990).

1252 Transactions of Information Processing Society of Japan

12) Leong, H.V. and Agrawal, D.: Using Mes-
sage Semantics to Reduce Rollback in Op-
timistic Message Logging Recovery Schemes,
Proc. IEEE ICDCS-14, pp.227-234 (1994).

13) Manivannan, D. and Singhal, M.: A Low-
overhead Recovery Technique Using Quasi-syn-
chronous Checkpointing, Proc. IEEE ICDCS-
16, pp.100-107 (1996).

14) Nakamura, A. and Takizawa, M.: Causally
Ordering Broadcast Protocol, Proc. IEEE
ICDCS-14, pp.48-55 (1994).

15) Ramanathan, P. and Shin K.G.: Checkpoint-
ing and Rollback Recovery in a Distributed
System Using Common Time Base, Proc. 7th
IEEE Symp. on Reliable Distributed Systems,
pp-13-21 (1988).

16) Tachikawa, T. and Takizawa, M.: Commu-
nication Protocol for Group of Distributed
Objects, Proc. IEEE ICPADS’96, pp.370-377
(1996).

17) Tanaka, K. and Takizawa, M.: Distributed
Checkpointing Based on Influential Messages,
Proc. IEEE ICPADS’96, pp.440-447 (1996).

18) Wang, Y.M. and Fuchs, W.K.: Optimistic
Message Logging for Independent Check-
pointing in Message-passing Systems, Proc.
IEEE Symp. on Reliable Distributed Systems,
pp.147-154 (1992).

(Received July 22, 1996)
(Accepted March 7, 1997)

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degrees in computers
and systems engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
He is now working for NTT
Data. His research interests include distributed
transaction management, and distributed re-
covery algorithms, and distributed object sys-
tems.

June 1997

Hiroaki Higaki was born in
Tokyo, Japan, on April 6, 1967.
He received the B.E. degree from
the Department of Mathemati-
cal Engineering and Information
Physics, the University of Tokyo
: in 1990. From 1990 to 1996,
he was in NTT Software Laboratories. Since
1996, he is in the Department of Computers
and Systems Engineering, Tokyo Denki Univer-
sity. He received the D.E. degree from Tokyo
Denki University in 1997. His research inter-
est includes distributed algorithms, distributed
operating systems and computer network pro-
tocols. He received IPSJ Convention Award in
1995. He is a member of IEEE CS, ACM and
IEICE.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku University,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
. Computer Science from Tohoku
University in 1983. From 1975 to 1986, he
worked for Japan Information Processing De-
veloping Center (JIPDEC) supported by the
MITI. He is currently a Professor of the De-
partment of Computers and Systems Engineer-
ing, Tokyo Denki University since 1986. From
1989 to 1990, he was a visiting professor of the
GMD-IPSI, Germany. He is also a regular visit-
ing professor of Keele university, Fngland since
1990. He was a vice-chair of IEEE ICDCS, 1994
and serves on the program committees of many
international conferences. His research inter-
est includes communication protocols, group
communication, distributed database systems,
transaction management, and groupware. He
is a member of IEEE, ACM, IPSJ, and IEICE.

