Vol. 38 No. 6

Regular Paper

Transactions of Information Processing Society of Japan

June 1997

A Comprehensive System for Texture
Synthesis Developed from L-Systems

MIN-LU DAIt and KAZUMASA OZAWA!

This paper presents a comprehensive system for texture synthesis, developed from the L-
systems, which is composed of three independent procedures generator, gene and operator.
The proposed system separates description of primitives from distribution of them. This makes
it possible to direct a dominant local orientation of primitives and delimit the region contain-
ing primitives. In addition, we extend PPBFFG (the planar parallel binary fission/fusion
grammars) into multi-fission/fusion and stochastic systems. Basic structures of some textures
have been analyzed. We also show several synthesized textures using the proposed system.

1. Introduction

Texture is summarized as surface characteris-
tics of objects. It is widely used in engineering,
natural science, art, animation and design. Es-
pecially, besides geometry, texture plays a crit-
ical role in simulating real objects in computer
graphics. A picture, which is textureless, tends
to appear barren, unrealistic and boring.

Textures are classified into three types;
strongly ordered, weakly ordered and disor-
dered textures). In strongly ordered textures,
spatial interactions between primitives are so
considerablely regular that the textures can be
described by structural approaches. Weakly
ordered textures have weak spatial interac-
tions between primitives, and can be adequately
characterized by frequencies of primitive types
appearing in a small range. Textures in which
spatial distribution of primitives appears at
random are regarded as disordered textures.

There exist two main types of texture descrip-
tions; statistical and syntactic methods?2)3).
The statistical method induces the different
primitive-sized properties of a texture which is
useful for simulating textures with small sized
primitives. The syntatic methods (including
hybrid methods given by combination of statis-
tical and syntatic ones) describe textures using
a grammar which represents a set of produc-
tions to fit primitives with a larger variety of
properties corresponding to tonal properties.

We now have a lot of techiques for synthe-
sizing natural textures ¥~'3). However, most of
them could only be used to construct a partic-

t Department of Engineering Informatics, Osaka
Electro-Communication University

1139

ular kind of textures and few experiments have
been done to attempt other different textures.

Texture is composed of various kinds of prim-
itives. Basically, a texture synthesizing system
should be able to describe many kinds of prim-
itives. However, it appears existing methods
seldom meet such demand. In addtion, those
methods focus mainly on parameters involved
in the synthesizing process: Once the parame-
ters are determined, there would be no chance
to change their assignment at later stages.

By relying on our TSL-systems (Texture
Synthesis L-systems)!%), we have taken sev-
eral small steps toward comprehensively solving
this problem. TSL-systems belong to parallel
rewriting systems, of which productions are ap-
plied in parallel and simultanneously replace all
letters in a given word. Since texture consists
of mutually related primitives, a parallel rewrit-
ing system will be an effective model for gener-
ating the spatial distribution of primitives. A
TSL-system is specified by the primitive and
region L-systems. The primitive L-systems de-
fines primitives described by functions, proce-
dures or coordinate transformations, etc. The
region L-system starts from simply geometric
models and then generates more and more com-
plexly geometric models for delimiting the re-
gion of developing primitives.

TSL-systems are, however, not sufficient for
synthesizing texture. In texture syntheses,
sometimes, dominant orientation of primitives
should be considered. TSL-systems still do not
show how to direct a dominant local orienta-
tion of primitives. To remedy this shortcoming,
a newly modified approach CSTS (a Compre-
hensive System for Texture Synthesis), different
from our previous paper %), is proposed. CSTS

1140 Transactions of Information Processing Society of Japan

June 1997

e T

Parameter;

1 | t I
1

|Primitive,] |[Conductor ;T‘e{tu_rei}
1 [
|
|

Operator Texture

|
| ! 1
; Gene : | I : i !
Parameter; |Primirjve,\“1 Divider { Texturen!
L ___T I__I___J
Fig.1 The basic structure of CTSS.

employs a conductor to guide the direction of
primitive generation. Furthermore, CSTS sep-
arates description of primitives from building
process of spatial relationship between primi-
tives so that a complicated model can be de-
fined by several sub-models. In order to ob-
tain a more general appliction to texture syn-
thesis, our new approach allows modifing some
parameters to control a final texture. Our ap-
proach is developed from L-systems'®) which
is an effective method to simulate natural phe-
nomena. The grammar of CSTS is context-
sensitive, parametric and stochastic.

2. Texture Synthesis Using CSTS

The central concept of CSTS is that a com-
plicated model can be represented by some sim-
pler sub-models. In CSTS, a texture can be
described by three sub-procedures. Namely,

o (enerator, through which spatial relation-

ships between primitives can be created,

e (ene, which defines a primitive,

e Operator, which combines some textures

into a new one.

Figure 1 shows the overall system architec-
ture. Three sub-procedures are independent
with each other. Simple textures can directly be
generated by them. On the other hand, these
sub-procedures are also embeded (nested). A
more complicated texture can be constructed
by combination of the sub-procedures.

2.1 Generator

Generator is subdivided into conductor and
divider. Conductor is used to direct a dominant
local orientation of primitives. Divider acts to
delimit regions for development of primitives.

Conductor is an extension of L-systems. It
uses context-sensitive, stochastic and paramet-
ric grammars to guide the developing direction
of a primitive. We use special symbols, given
later, to represent primitives and productions
to control movement of primitives. Conductor
is different from L-systems in the following two
points:

e Parameters in a productions are not only a

set of real numbers, but also vectors, func-
tions and procedures.

o Rewriting models not only are limited to
“teaching the turtle” 15 but also are linked
with some information on orientation in se-
quentially rewriting models.

Symbolically, conductor is defined as an ordered
quintuplet G = (V,w,P,F, u).
Where

e V is an alphabet, V* is a set of all words,
VT is a set of all nonempty words.
w€eVT is an initiator,
PCV*xV~ is a set of productions,
F is a set of formal parameters,
{4 is a probability distribution of produc-
tions.

According to the above definition, a produc-
tion is given as follows:

Prob: LC < Pre (Para,) > RC : Cond
— Succ (Paras).

Where Prob is a probability of applying the pro-
duction, LC and RC are the left and right con-
text, Cond is condition, Pre (Para,) and Succ
(Para,) are the predecessor and successor with
their parameters.

CSTS-1 illustrates an application of conduc-
tor.

CSTS-1

w: A(Xo,Yh).

P0O: A(X,Y): Y > TERMINAL —STOP.

P1: 0.5: A(X,Y) —B(P(W=3)).

P2: 0.5: A(X,Y) —B(P(W=4)).

P3: 0.33: B(P(W)) — D(P(W),X+A,Y),
A(X+AY+1).

P4: 0.33: B(P(W)) — D(P(W),X,Y),
AX,)YH+1).

P5: 0.33: B(P(W)) — D(P(W),X-A,Y),
AX-AY+1).

Where, P(W), which is a vector, is width of
a vein, D(P(W),X,Y) denotes the vein started
from position(X,Y) with width=P(W). Produc-

Vol. 38 No. 6

Fig.2 A line generated by CTSS-1.

tions in CSTS-1 are classified into two groups.
P1, P2 and P(W) can be regarded as descrip-
tion of primitives (gene) discussed later. Var-
ious primitives are given by selecting P1 and
P2. P3, P4 and P5 are conductor productions
which control movement of primitives. They
are stochastic productions with the same proba-
bility. We start with an apex A. P(W) is a prim-
itive generated by production A. Then we draw
the first primitive by selecting P2, P3 and P4 at
random. Note, in L-systems, strings produced
at different rewriting levels must be reserved,
i.e. the higher the rewriting level is, the longer
the string is. In order to overcome this prob-
lem, CSTS-1 reserves only the current rewriting
string. Figure 2 presents a result produced by
CSTS-1.

In some circumstances, development of prim-
itives is limited to a region. Such a region is
often irregular, polygonal and non-overlapped
with other regions. This is a problem of di-
viding regions. By far, the most popular and
widely used approaches for this problem are
random processes 1617 Such methods are so
complicated that only a person who has scien-
tific and engineering knowledge can use them.
In addition, regions generated by these meth-
ods are restricted to rectangles which are not
enough to simulate realistic textures. Divider
in CSTS offers a method of dividing regions.

Divider is an extension of a map generat-
ing system #~20) by which a complex geomet-
ric structure can be generated from a simple
model. According to Tutte’s definition %), de-
scriptions and notations referred to in this pa-
per are first summarized as follows:

Map is more strict but better implementable
definition than planar graph. Difference of their
definitions are that a graph is represented by
vertices and edges, but a map, a connected

A Comprehensive System for Texture Synthesis Developed from L-Systems 1141

A

E

Fig.3 A map. A, B, C, D, E, F and G are vertices;
AB, BC, CD, DE, EF, FG and GA are edges;
ABFG and BCDEF are two neighbors and BF
is their common deges.

structure without islands or peninsulas, is com-
posed of vertices, edges and regions. Each ver-
tex is connected with one or more edges. Each
edge has one or two vertices at its termina-
tions. A region is bounded by finite sequences
of edges. All edges and vertices lie on bound-
aries of regions. A region can have common
edges with other regions. Figure 3 illustrates
definition of map.

Rewriting one map from another can be
region-controlled or edge-controlled®V). In
region-controlled map-rewriting systems, re-
gions are considered to be the basic units and
therefore they should be labeled and undergo
fission and fusion described later. This way
corresponds to node labeling in graph gram-
mars. In edge-controlled map-rewriting sys-
tems, labelled edges are considered as the main
control factors. This corresponds to edge label-
ing in graph generation.

Region manipulation, corresponding to gen-
eration of planar maps, has two types; i.e. split-
ting (fission) and merging (fusion). Splitting
is to divide a region into serveral regions and
merging is to combine serveral regions into a re-
gion. The first fission/fusion grammar PRDL-
systems (the parallel region dividing L-systems)
were proposed by Carlyle, et al.??). This is
based on planar parallel binary fission/fusion
grammars (PPBFFG). PPBFFG are “binary”
systems, i.e. each region can be just split into
two regions and the only two regions can be
merged into a new region in a rewriting step.

Since PPBFFG is a “binary” and “determin-
istic” system, textures with striking artificial
regularity have been generated. To overcome
this problem, we extend PPCFFG to multi-
fission /fusion and stochastic systems.

Multi-fission /fusion is that a region can be
split into several daughter regions, some of
which can be merged into a new region in a

1142 Transactions of Information Processing Society of Japan

B
Fig.4 Multi-fission and fusion productions. (A) A

region is split into four sub-regions. (B) Three
regions are merged into a new region.

rewriting step. Such an example is given by
Fig. 4. Stochastic means that selection of pro-
ductions is done stochastically. For simplic-
ity, we do not give the formal definition of di-
vider, but we present an example which ex-
plains its application. Wallboard is a simple
texture which can be synthesized by using di-
vider is given by the following CSTS-2.

CSTS-2

w: M

PO: M : SubMapBuf=EMPTY & NowLevel>
FinalLevel — Remove{(TmpSubMap,
SubMapBuf), M. END.

P1: M : SubMapBuf#EMPTY & NowLevel>
FinalLevel Pop(SubMapBuf, Map), De-
formed(Map), M.

P2: M : SubMapBuf=EMPTY & NowLevel
(FinalLevel— NowLevel+1, Remove
(TmpSubMap, SubMapBuf), M.

P3:M:—

Pop(SubMapBuf, Map), DivMap(Map),
M.

P4: 0.20: DivMap(Map)—

SubMap(LA1), SubMap(LA2), SubMap
(LA3).

P5: 0.20: DivMap(Map)—

SubMap(LB1), SubMap(LB2), SubMap
(LB3).

P6: 0.20: DivMap(Map)—

SubMap(LC1), SubMap(LC2), SubMap
(LC3).

P7: 0.20: DivMap(Map)—

SbMap(LD1), SubMap(LD2), SubMap
(LD3).

P8: 0.20: DivMap(Map) < Pop(SubMapBuf,
NeighbourMap) : NeighbourMap U Map
— SubMap(LN1), SubMap(LN2),
SubMap(LN3), SubMap(L.N4).

P9: SubMap(Map)—
Push(TmpRegion,SubMap).

June 1997

P10:0.33: Deformed(Map)—
Affin(Map,Triangle),
Push(TmpRegion, Triangle).

P11:0.33: Deformed(Map)—>
Affin(Map,Rectangle),
Push(TmpRegion,Rectangle).

P12:0.33: Deformed(Map)—
Affin(Map,Triangle),
Push(TmpRegion, Triangle).

Productions in CSTS-2 are classified into
three levels: Productions PO, P1, P2 and P3
in the first level control the map rewriting pro-
cedure. Productions P4, P5, P6, P7, P8 and
P9 in the second level generate a random dis-
tribuction of regions with different sizes. Pro-
ductions P10, P11 and P12 in the third level
generate various polygons, which are difficult
to be represented in common mathematical and
procedurable ways. Map rewriting in CSTS-2
is divided into total map rewriting and sub-map
rewriting. Total map rewriting P2 is rewriting
a map with the original size. Sub-map rewrit-
ing P3 is rewriting a map obtained from the
original map. Both are different levels in map
rewriting,.

Rewriting a map starts from production w,
where an initial map is a rectangle. NowLevel
and FinalLevel are a counter of a rewriting level
and a final rewriting level, respectively. When
NowLevel is larger than FinalLevel, the map
rewriting is terminated by P0. And then, P1
starts P10, P11 and P12, which generate vari-
ous polygons, in the third level.

SubMapBuf is a sub-map buffer, all sub-maps
rewritten by sub-map rewriting, and Tmp-
SubMap is also a buffer for saving sub-maps
generated by merging and splitting. When
SubMapBuf is empty and NowLevel is less than
or equal to FinalLevel, total map rewriting of
the current level is terminated. P2 increases
NowLevel, removes sub-maps in TmpSubMap
into SubMapBuf and starts a new total map
rewriting. Consequently, P3 pops a sub-map
from SubMapBuf and starts a sub-map rewrit-
ing.

Productions in the second level are selected
at random. They have the same production
probability 0.20. P4, P5, P6 and P7 are fission
productions which split a map into three sub-
maps. P8 is a fission/ fusion production. In-
troduction of fission /fusion, similar to the feed-
back function in the control theory, can create
more natural distribution for dividing regions.

Vol. 38 No. 6

Deformed (Map)

Fig.5 Productions Deform.

Fig.6 The synthesized wallboard texture with
CTSS-2.

The symbol « in P8 represents DivMap and
Pop to be contex-sensitive. NeighbourBound-
ary U Boundary represents that two sub-maps
are neighbored. P7 first merges two sub-maps
into a new one and then splitting this new one
into six sub-maps aga. Sub-maps generated by
the second level are pushed into TmpSubMap.
P10, P11 and P12 in the third level are also
stochastic productions. Their production pro-
bility is 0.33. Productions in the third level are
shown by Fig.5. Figure 6 is a model gener-
ated by CSTS-2.

In CSTS-2, polygons are generated by two
kinds of productions DivMap and Defor-
mMap. If we combine DivMap and Defor-
mMap into one kind of productions, Voronos:
polygons?3)?4) which are also useful for texture
segmentation %) could be constructed. As seen
in the other examples described later, Voronoi
polygons provide a way of texture synthesis.

Figure 7 demonstrates execution of DivDe-
formMap, where map rewriting is carried out
at four levels and the line thickness is halved at
each level to emphasize the higher levels. We
make use of parameters to produce an effect of
fusible function (merging or fusion). A param-
eter is a position of a vertex. Since position of
the vertex is individual for each sub-map rewrit-
ing, natural distribution of sub-maps can also
be obtained.

A Comprehensive System for Texture Synthesis Developed from L-Systems 1143

(b)

Fig.7 A structure of Voronoi polygons generated by
CTSS, where FinalLevel=4 and the line thick-
ness is halved at each level.

2.2 Describing Primitives

Primitives of a natural texture are generally
irregular; structural errors, distortions, defor-
mations or even structural variations are of-
ten seen. This means no strict production can
be used to simulate a real texture. For syn-
tactic description of textures, non-deterministic
or stochastic grammars should be incorporated
into the description grammars. Furthermore,
introduction of special parameters can reduce
the number of productions and computational
complexity. Gene, which describes properties of
a primitive, is given based on context-sensitive,
stochastic and parametric L-systems. Accord-
ing to the concept of L-systems, we can use a
group of productions to produce different kinds
of primitives. Gene can represent color, size,
shape, direction or their combination each of
which is regarded as a primitive. This provides
a powerful tool for texture synthesis.

Here, an example of gene is given by the fol-
lowing CSTS-3, omitting the formal definition
(for a more detailed discussion, see Ref. 15)):

1144 Transactions of Information Processing Society of Japan

CSTS-3

#define P(X,,Y;) the start point

#define P(X,,Y,) the terminal point

#define P(X,.,Y.) the current point

#define P(X, = X,,Y, =Y,) the initial
point

w: A

PO: A (X, = X.) | |¥=%|>1—B

Pl: A:

P2: B:Y, >Y, — END.

P3: B : 0.33: — Draw(P(X. + AX, Y,
Width,Color), Y, = Y, + 1.

P4: B:0.33: —
Draw(P(X,, Y., Width,Color), Y, = Y,
+ 1.

P5: B : 0.33: — Draw(P(X, - AX, Y.,
Width,Color), Y, =Y, + 1.

P6: C: X, > X, — END.

P7: C : 0.33: — Draw(P(X,, Y, + AY,
Width,Color), X, = X, + 1.

P8 C:0.33: —
Draw(P(X,, Y., Width,Color), X, = X,
+ 1.

P9: C : 0.33: — Draw(P(X,, Y. - AY,
Width,Color), X, = X, + 1.

CSTS-3 is to draw a line: its length is | Y
- Y, |or| Xy — X, | and its direction is rep-
resented by Eq. (1) or Eq.(2). Productions B
and C represent two kinds of Draw (primitive),
respectively. When

Ye - Ys

—_>1 1

e EX M
the shift of a line is AX. When

Ye - Ys

){e—_z <1, (2)

the shift of a line is AY".

Productions in B or C have the same pro-
duction probability. If we change this param-
eter, direction and shape of the line could be
changed.

We can combine CSTS-2 and CSTS-3 into a
complete model of texture synthesis. An inter-
esting category of textures that resemble leaf
veins, roadmaps, blood vessel and nervous sys-
tems and so on, can be established. Figure 8
shows a synthesized texture. We can also ad-
just the value of Width and Color so that more
colorful results may be generated.

According to CSTS-2, we use gene to rep-

June 1997

(b)
The wing of an insect synthesized by combi-
nation of CTSS-2 and CTSS-3, where Final-

Level=3 and the line thichness is equal at each
level.

Fig. 8

Fig.9 A synthesized marble texture where Terminal-
Num=6 and colors of polygons are of three
types.

resent development of color in a sub-map, i.e.
color is considered as a primitive. And then the
final level of map rewriting is increased to 5.
We obtain a synthesized marble texture shown
in Fig. 9.

In CSTS, hierachical textures can be gen-
erated by embeded structures. Some specific
pattern (a texture) obtained from lower primi-
tives may be considered as a new primitive at

Vol. 38 No. 6

a higher describing level. And then the new
pattern (a texture) constructed by a new prim-
itive can be also regarded as a primitive at a
succeeding higher describing level.

In addition, other ways of texture synthesis
can be combined with CSTS by means of gene.
Figure 10 is a synthesized texture with two
levels given by the above mentioned method.
A basic primitive (gene) at the first level is a
20 x 8 matrix F constructed as follows:

fij = Constij +d. (3)
Where i € [1,20],5€[1,8], Const;; is a con-
stant and d is a random value reducing arti-
ficial effect. Starting from Eq. (3), we construct
the first level texture by conductor, which is a
curved strip, according to the concept of CSTS-
1. Following the first level, the curved strip is
considered as a primitive (gene) at the second
level and then a complete texture can be estab-
lished by CSTS.

Figure 11 is another example of hierachical
textures. Here, a basic primitives is a line. The
length, width, direction and color of the line is
variable. First, we construct 500 lines in differ-
ent positions and obtain the first level texture.
This texture is regarded as a primitive in the
second level. Consequently, we rewrite the new
primitive (total map rewriting, FinalLevel=4).
Finally, another marble texture is generated.

Figure 12 (a) is an embeded model of multi-
primitive levels. Figure 12(b) shows the
CSTS’s structure. GENEHI1 defines a curve
in which curvature may be changed. GeneH2
describes the second level primitive which
is composed by four curves generated from
GENEH1. CONDUCTORH]1 guides the move-
ment of GENEH2 in the horizontal direction
which forms the third level primitive. CON-
DUCTORH2 constructs the spatial distribution
of CONDUCTORH1. GENEV1, GENEV2,
CONDUCTORV1 and CONDUCTORV2 es-
tablish the model in the vertical direction sim-
ilar to that in the horizontal direction.

2.3 Combining Different Textures

Operator provides an additional operation of
CSTS which includes logical operation, arith-
metic operation, matrix transformation, filter-
ing, opaque overlapping and their combination.
Note, when generating simple textures, this
function will not be needed.

Let Ay and Bj be synthesized textures, re-
spectively. Let C; be a newly combined tex-
ture. Here, we define operator as follows:

Cr = Ak Q By, (4)

A Comprehensive System for Texture Synthesis Developed from L-Systems 1145

where (0 is the symbolical notation of operator.

Figure 13 is a synthesized textile texture
which is composed by two different textures.
We construct a basic textile texture and its
worn marked texture with CSTS, respectively.
And then two different textures are combined
into a new one.

Operator can also be given by a polymomial
expression. Symbolically, we have

N
Ok:ZAkOBka (5)

where N is tlhe number of textures. The com-
plete listing of CSTS for operator is not to be
included in this paper, but two examples pro-
vide a good illustration.

Figure 14 (a) shows a texture of a leather
handbag synthesized by CSTS. First, we de-
compose the texture into three independent
textures (Figs. 14 (b), (c), and (d)), which can
be established in such ways as mentioned, re-
spectively. Then, we compose these three in-
dependent textures into a new one with the
opaque overlapping operation. The idea given
here provides a simple solution for constructing
complicated texture models. Figure 15 gives
another example composed by the logical oper-
ation OR.

3. Conclusion

CSTS provides useful models for the simu-
lation of natural textures. In CSTS, primi-
tives of a texture and of spatial relationship be-
tween primitives are handled by different pro-
cedures, respectively. The final texture is con-
trolled by the parameters at every rewriting
level. Extented L-systems (generator and gene)
provide simple and intuitive description of tex-
tures. CSTS is a parametric and stochastic sys-
tem. Larger change of models can be achieved
by selecting productions at random. On the
other hand, smaller change can be implemented
by adjusting parameters of productions.

Our approach is available for general pur-
poses: It can be used for various textures; hi-
erachical and embedded structures can be used
for more complex textures. As discussed, this
has been verified by some examples. Note, there
can be different primitives at different rewriting
levels. Furthermore, different primitives can be
concurrently developed at the same rewriting
level. These can be achieved by selecting differ-
ent productions at a rewriting level and at dif-
ferent levels, respectively. Such flexibility could

1146 Transactions of Information Processing Society of Japan

June 1957

A model of wax printing cloth constructed
by the hierachial textures.

Fig. 10

Another model of marble. This is also an
example for hierachial textures.

GENEH {GENEHACONDUCTORH I —CONDUCTORKE,

S Y NTHESLIS— Texure

GENEY |fEnEvd-forpucTor v i-onnucTorve
L]

Fig.12 A texture contructed by an embeded model.
fa) A synthesized texture. (b} Explanation of
the embeded model.

successfully be used to build models of many
natural textures.

Though our method presented in this paper
works well, there is room for futher improve-
ment. Main points that we have to pay more

(c)

Fig. 13 A textile texture composed by two different
textures, (a) A synthesized texture. (b} A
worn sign. (¢} A new cloth.

attentions include:
. 1. The proposed method is not suitable for
representation of disordered textures. As men-
tioned above, development of a primitive is lim-
ited in a fixed region so that common calcula-
tion of primitives in several regions is impos-
sible. Although context-sensitive grammar can
partially avoid this effect, this still remains a
principal deficiency.

2. Combining a structural analysis. Real
textures being complicated and various, it is
impossible to synthesize all types of textures

Vol. 38 MNo. 68 A Comprehensive System for Texture Synthesis Developed from L-Systems 1147

{d)

Fig.14 The synthesis leather handbag surface composed of three sub-
textures. (a) A synthesized texture. (b) Creation of apacial re-
lationship; horizontal and vertical planar dividing. (c) The worn
signs wear for each region. (d) The local worn effect for a group of

Tegions.

Fig. 15 A woolen cloth texture generated by
operafor.

by a general method. Scanned real world im-
ages stand on a principal source of real tex-
tures. An interesting way of texture synthe-
sis may take place using primitives extracted
from real textures. Tomita et al have given such
an approach as is to be called the analysis-by-
synthesis method *%!. It is a possible future task
to combine our method with such a structural
analysis.

References

1} Reed, T.: A Beview of Recent Texture Seg-
mentation and Feature Extraction Technigues,
CVGIP: nage Understanding, Vol.37, No.3,
Pp-359-372 (1993).

2) Lipkin, B.C. and Rosenfeld, A. (Eds.): Picture
Processing and Psychopiclorics, Academin,
New York (1970).

3) Haralick, R.M.: Statistical and Structural Ap-
proaches to Texture, Proc. IEEE, Vol.6T, No.3,
Pp.TH6-804 (1979).

4) Reed, T.: A Review of Recent Texture Seg-
mentation and Feature Extraction Techniques,
CVGIP: Image Understanding, Vol.57, No.3,
pp-359-372 (1993).

5) Mandelbrot, B.: Fractal: Form, Chance, and
fhmension, W.H. Freeman, San Fransisco
(1977).

6) Peachy, DDE.: Solid Texturing of Complex
Surfaces, Computer Graphics (SIGGRAPH85),
Vol.19, No.3, pp.2T9-286 (1985).

T) Perln, K.: An Image Synthesizer, Com-
puter Graphics (SIGGRAPH'SS), Vol.19, No.3,

1148 Transactions of Information Processing Society of Japan

Pp.287-296 (1985).

8) van Wijk, J.J.: Spot Noise: Texture Synthe-
sis for Data Visualization, Computer Graph-
ics (SIGGRAPH’91), Vol.25, No.4, pp.299-307
(1991).

9) Witkin, A. and Kass, M.: Rection-Diffusion
Textures, Computer Graphics (SIGGRAPH’91),
Vol.25, No.4, pp.299-307 (1991).

10) Turk, G.. Generating Textures on Arbi-
trary Surfaces Using Reaction-Diffusion, Com-
puter Graphics (SIGGRAPH’91), Vol.25, No.4,
pp-289-298 (1991).

11) Chambers, P. and Rockwood, A.: Visualiza-
tion of Solid Rection-Diffusion Systems, IEEE
Computer Graphics and Applications, Vol.15,
No.5, pp.7-11 (1995).

12) Sakas, G.: Fractal Geometry and Computer
Graphics: Modeling Turbulent Gaseous Mo-
tion Using Time-Varying Fractal, pp.173-194,
Springer-Verlag, New York (1992).

13) Grduer, E., Rau, R.T. and Strafler, W.: Mod-
eling and Visualization of Knitwear, IEEE
Trans. Visualization and Computer Graphics,
Vol.1, No.4, pp.302-310 (1995).

14) Dai, M.L. and Ozawa, K.: Texture Synthesis
by L-systems, Image and Vision Computing (in
press).

15) Lindenmayer, A.: Mathematical Models for
Cellular Interaction in Development, Parts I
and II, Journal of Theoretical Biology, Vol.18,
pp-280-315 (1968).

16) Derin, H. and Elliot, H.: Model and Segmen-
tation of Noise and Textured Imanges Using
Gibbs Random Fields, IEEE Trans. Patt. Anal
Machine Intell., Vol.PAMI-9, No.1, pp.39-55
(1987).

17) Onural, L.: Generating Connected Textured
Fractal Patterns Using Markov Random Fields,
IEEE Trans. Patt. Anal Machine Intell., Vol.13,
No.8 (1991).

18) Tutte, W.T.: Graph Theory, Addison-Wesley,
Reading, MA (1984).

19) Claus, V., Ehrig, H. and Rozenberg, G. (Eds.):
Graph-Grammars and their Application to
Computer Science and Biology, Lecture Notes
in Computer Sciences, pp.367-378, Spring-
Verlag (1979).

20) Ehrig, H., Nagl, M. and Rozenberg, G. (Eds.):
Graph Grammars and their Application to
Computer Sciences, Lecture Notes in Computer
Science, pp.288-296, Spring-Verlag (1983).

21) Nakamura, A., Lindenmayer, A. and Aizawa,
K.: Some Systems for Map Generation, The
Book of L, Rozenberg, G. and Salomaa, A.
(Eds.), pp-323-332, Springer-Verlag (1986).

22) Carlyle, J.W., Grelibach, S.A. and Paz, A.
Planar Map Generation by Parallel Binary

June 1997

Fission/Fussion Grammars, The Book of L,
Rozenberg, G. and Salomaa, A. (Eds.), pp.29-
44, Spring-Verlag, Berlin (1986).

23) Voronoi, G.:. Nouvelles applications des
paramétres continus 4 la théorie des forms
quadratiques. Deuxiéme mémoire: Recheches
sur les parallélloédres primitifs, J. Reine
Angew. Math., Vol.134, pp.198-287 (1908).

24) Shamos, M.I. and Hoey, D.: Closest-Point
Problems, Proc. 16th Annu. Symp. Fundations
of Computer Science, pp.131-162 (1975).

25) Tiiceryan, M. and Kjaw, A.: Texture Segmen-
tation Using Voronoi Polygons, IEEE Trans.
Patt. Anal Machine Intell., Vol.12, No.2 (1990).

26) Tomita, F., Shirai, Y. and Tsuji, S.: Descrip-
tion of Textures by a Structural Analysis, IEEE
Trans. Patt. Anal Machine Intell., Vol. PAMI4,
No.2 (1982).

(Received July 18, 1996)
(Accepted March 7, 1997)

Min-lu Dai received his B.S.
degree from Talien University
of Technology of China in 1982
and M.S. degree from Shenyang
Automation Research Institute,
Academy of Sciences of China in
1988. Since 1991, he has been
working for Shibasoku Co. Ltd, Japan. Dur-
ing 1993-1996, he was a student of the Grad-
uate School of Engineering, Osaka, Electro-
Communication University, Neyagawa, Osaka,
Japan. He is presently a Visiting Scientist at
the university. His research interests include
image processing and computer graphics.

Kazumasa Ozawa received
~ the B.E.,, M.E. and Ph.D. de-
 grees in electrical engineering
© from Osaka University, Japan,
in 1966, 1969 and 1972, re-
spectively. Since 1972, he
has been with Osaka Electro-
Communication University, Neyagawa, Osaka,
Japan. He is presently a Professor of the Fac-
ulty of Information Science and Technology.
His teaching and research interests include pat-
tern recognition, computer graphics and com-
puter applications in archaeology. He published
four books on information theory and on com-
puter applications in archaeology. He is a mem-
ber of IPSJ, IEICE, IEEE, Pattern Recogni-
tion Society and British Machine Vision Asso-
ciation.

