1 —338

4E—9

An Evaluation of sDPCE language for on chip SIMD processors

Linda Lu¥*, Hirono Tsubota*, Stanislas de Crevoisier **,

Toshiyuki Tamura*, Ken-ichi Tanaka*, Kazuo Kyuma*
* Mitsubishi Electric Corporation, Advanced Technology R&D Center
**ENST Paris
E-mail: lindalu@qua.crl.melco.co.jp

1.Introduction

The demand for more powerful computers is
answered by the availability of on chip Single
Instruction stream Multiple Data stream (SIMD)
processors. However, because the software
development environment is lacking for these type
of processors, the application developers cannot
take full advantage of the hardware by
programming in a high level language. The
introduction of the small Data Parallel C Extension
(sDPCE) programming language provides an
advanced development environment targeting this
type of processors. This paper reports the result
obtained from evaluating the language with the
target Pentium Pro processor with MMX
technology.

2.Evaluation result

The specification of sDPCE is on paper “A
proposal of sDPCE language for on chip SIMD
processors.”[1] The most important issue is that the
preprocessor of the sDPCE language can recognize
parallel type data and replace operations on them
with MMX library functions. Four vector-matrix
arithmetic and two image processing testing
programs involve looping on large size data are
written in both C and sDPCE languages. The
vector-matrix arithmetic programs include vector
addition, vector inner product, matrix-vector
product and matrix-matrix product using 16 bits
data. The image processing algorithms include
chrome keying and image subtraction tested with
bitmap images composed of 8 bits per pixels.
Besides the exception that sDPCE programs are
preprocessed by sDPCE preprocessor, the rest of
the compilation and linkage are the same for all
programs. The numbers of cycles it takes to
execute loops in C programs or the MMX library
functions in sDPCE programs are recorded by
visual tuning environment Vtune'. The target in
test is a Pentium Pro processor with MMX
technology. Programming is done by Microsoft
Visual C++2 on Windows95. The result shows that
the vector-matrix arithmetic programs of sDPCE
that are executed with four data in parallel have 2.5
times fewer cycle than the corresponding C
programs. On the side of image processing
programs, sDPCE achieves a 3.2 times fewer
cycles in chrome keying and a 4.7 times fewer

! Product of Intel Corporation.
? Product of Microsoft Corporation.

cycle in image subtraction. Figure 1 and figure 2
illustrate the result obtained from vector inner
product and chrome keying. (Better performance
can be obtained from further optimization)

Bc
HWsDPCE

elt et et et

Figure 1. Cycles of vector inner product (16 bits)

Bc
HsDPCE

pix pix

Figure 2. Cycles of chrome keying (8 bits)

3.MMX Library Functions

Several approaches have been tried to
define MMX library functions to reduce overhead
of function calling. The approaches are defining
them as normal function, inline function and macro
definition. Defining function as an inline function
reduces the normal function execution cycles
significantly as shown in figure 3. However,
problems are found in inline functions when
addressing memory pointers that are passed as
arguments. By using macro definition, this problem
is solved and the number of cycles is furthered
reduced. Therefore, the evaluation is done on
macro defined MMX library functions.

Figure 3. Cycles of MMX library functions definitions

ERAEFEs6E CFRIOERE) 2EAS

4. Preprocessing

sDPCE avoids developers from
programming directly with loops and large size
arrays of data. The syntax of the language provides
abstraction of parallel data structure while on the
other hand, insulates users from the complexity of
parallel operations. Figure 4 shows part of the
source code from chrome keying program,
Variables Foreground and Background are defined
as parallel type data. Black area in the bitmap
Foreground is going to be replaced by the image of
Background. The procedure is to compare every
pixel in the Foreground with black pixel and set it
to Background if it 1s of the color black. After
preprocessing this program, the process is passed
to a library function called
MMX _ushort_cwrite_EQU shown in figure 5,
which uses MMX instructions including pcmpegw,
pand, pandn and por to process pixels in parallel.

#define size 4000
#define black O
main (){
shape [sizejbitmap,
unsigned short int:bitmap
Foreground, Background;

/* initialization omitted */

where (Foreground = = biack)
Foreground=Background;

Figure 4. sDPCE source code

main (){
unsigned short Foreground[4000];
unsigned short Background{4000];

/*initialization omitted*/

MM X _ushort_cwrite_ EQU{Foregrou
nd, Background, Foreground, 4000);
]

Figure 5. sDPCE preprocessed output

S. Simplicity

When compare the source code with a
corresponding standard C source program, the
simplicity of sDPCE becomes apparent. Figure 6 is
a part of C program to find the maximum among
elements of a vector. In sDPCE, it can be expressed
by a single operator ‘>?=’, which will then be
replaced with a MMX library function by the
preprocessor{figure 7). Similarly, the calculation of
the vector inline product in figure 8 can be
expressed by operator '**’ as in figure 9, which
will then be replaced with a MMX library function
either for the calculation of vector inner product,
vector-matrix product or matrix-matrix product
depending on the dimensions of the operands.

int vector{size];
int index, max;

/* initialization omitted */

max=vector{0];
for {index=1; index <size; index++){
if {(max < vector[index])
max=vector[index],

)

Figure 6. Finding maximum in a vector in C

shape {sizelv;

unsigned short intiv vector,

int max;

/* initialization of vector omitted ¥/

max >7= vector;

Figure 7. Finding maximum in a vector in sDPCE

int product; *
int vi[size], v2[size];

/*initialization omitted */
product = v1{0]*v2[0] +v1{1]}*v2[1]

+v1[21*v2[21+ vi{31*v2]3]...
Figure 8. Vector inline productin C

shape {size}v;
unsigned short int:v v1,v2;

/*initialization omitted */

product=v] ** v2;

Figure 9. Vector inline product in sDPCE

6.Conclusion

In view of execution cycles and ease of
usage, the performance of sSDPCE shows its
advantage on processing large size data that has the
potential to make use of SIMD target. The
preprocessor takes into account the parallel data
recognition and library functions replacement. As a
result, it serves as an efficient too! for the software
developers to take full advantage of the SIMD
processor.

References

[1] Tsubota Hirono: A proposal of sDPCE language for on chip
SIMD processors.

[2) Data Parallel C Extensions, DPCE Subcommitiee Technical
Report, Version 1.6.

{3] Rafael C. Gonzalez, Richard E. Woods: Digital bnage
Processing, Addison Wesley, 1992,

{41 MMX Technology Technical Overview, intel Corporation.
{5} MMX Technology programmers reference manual, Intel
Corporation.)

{6] Jeff Prosise: Programming Wondows95 with MFC, -

Microsoft Press, 1596.

1339

