Vol. 38 No. 10
Technical Note

Transactions of Information Processing Society of Japan

Oct. 1997

An Empirical Study of Generalization of Backpropagation

Using Speed-up Techniques

JoseE Luls PEREZ,! YUKINORI SUZUKI' and ICHIRO SUGIOKA'

Flat spots are known to be one cause for slow training in backpropagation (BP). One
proposed technique to eliminate flat spots is the sigmoid prime offset. However, we have
found that the sigmoid prime offset can greatly deteriorate generalization of the resulting
network. Therefore, we propose techniques not only to eliminate flat spots, but also to retain
the generalization ability to be as high as standard BP. Simulations show that the proposed
techniques are effective for both speed-up and generalization.

1.

The backpropagation (BP) algorithm is very
popular for training neural networks. Despite
its popularity, one of the problems with BP
is that it may be slow to train the network,
e.g. many presentations of the training patterns
(epochs) may be needed to complete training.
One cause of slow training is the magnitude
of the components of the gradient vectorl).
The derivative of the weight is small in mag-
nitude in the area where the error surface is
fairly flat along a weight dimension. In this
area, the value of the weight is adjusted by
a small amount and many steps may be re-
quired to achieve a significant reduction in er-
ror. This is a “flat spot.” To reduce the effect
of flat spots, many speed-up techniques have
been proposed?). These include the well-known
momentum technique, variable learning rates,
determining the optimal descent direction, cal-
culating initial weight values, and selecting a
proper training set. However, since most of
these techniques are complicated and/or in-
crease the need for memory as the network be-
comes larger, utilization of these techniques is
not simple nor practical for use in many real-
world applications. Fahlman has proposed the
sigmoid prime offset to eliminate flat spots®).
Fahlman’s technique to eliminate flat spots is
easy to implement and very effective. However,
as we will illustrate later, Fahlman’s technique
can decrease the generalization ability of the re-
sulting network when his technique is used for
weights connected to hidden nodes. Generaliza-
tion ability is one of the most important abil-
ities of neural networks. Networks with a low
generalization ability cannot reliably recognize
patterns which were not used during training,

Introduction

1 Department of Computer Science and Systems En-
gineering, Muroran Institute of Technology

2083

even if the patterns are very similar. There-
fore, we will propose two techniques which not
only eliminate flat spots, but also keep the gen-
eralization ability as high as standard BP. The
simulation shows that the proposed techniques
are effective for both speed-up and generaliza-
tion.

2. Flat Spot Problem

A feed-forward neural network has a layered
structure where each layer consists of nodes. A
node will receive inputs from previous layers’
nodes through connections or from an external
source and use this information to compute its
output. BP is an algorithm that can be used to
train this type of neural network by modifying
the weights to minimize an error function. In
BP, for every weight a gradient is calculated for
every input pattern, and this gradient dictates
how each weight should be changed to minimize
the error function.

Rumelhart, et al.*) show that the weight up-
date is carried out as

Awji(n) = —n Z
P

where E, is the error for a particular pattern,
wj; is the weight between node j and node ¢, n
is the nth epoch, and 7 is the learning rate.
Rumelhart, et al. also show that the weight
update according to Eq. (1) is carried out as
Awj; = —10;0; 2
where o; is the actual output for node j, and §;
is the error term which is backpropagated. If we
use a sigmoid function, d; is simply calculated
for weights to output nodes as
d; = 05(1 = 0;)(t; — 05) (3)
where t; is the target output for node j.
In BP, the error term §; contains the term
0j(1 — 0;) which is called the sigmoid prime
function. The sigmoid prime function has a

OE,
8wjz'

(1)

2084 Transactions of Information Processing Society of Japan

value of zero where o; is zero or one. It can be
easily seen that for outputs which give a value
of nearly 1.0 or 0.0, only a tiny fraction of the
error will be passed back. This is regardless
of whether the actual output should be zero or
one. When outputs which represent a nearly
maximum possible error are multiplied by the
sigmoid prime function, §; becomes very small,
leading to very small weight updates. This is
the cause of flat spots.

3. Techniques to Improve Training
Speed with High Generalization

Fahlman’s technique to eliminate flat spots is
called the sigmoid prime offset and it is done
by simply adding a constant 0.1 to the sig-
moid prime function. This technique is simple,
but effective. Using this technique, the sigmoid
prime function never falls below 0.1, and it is
quite effective for speed-up training. Perekh,
et al. reported that the sigmoid prime offset is
the most successful among flat spot elimination
techniques®). However, as we shall show in Sec-
tion 5, we have found that the sigmoid prime
offset greatly deteriorates generalization when
the sigmoid prime offset is used to train weights
which lead to hidden nodes.

We propose two techniques which improve
training speed but do not have a detrimental
effect on generalization. One technique is for
weights which connect to the output nodes, and
the other is for weights which connect to hidden
nodes.

The first technique is a modification of the
sigmoid prime function and is used only for
weights which connect to output nodes. The
sigmoid prime function is clamped at its max-
imum for output nodes with an error greater
than 0.5. This technique is used in conjunc-
tion with the sigmoid prime offset as shown in
Fig.1 and is calculated as

sigmoid prime function=0;(1-0;)+0.1
when |tj—0j| < 0.5,

sigmoid prime function=0.35
when [t;—o;| > 0.5.

(4)

Figure 1(a) shows the modified sigmoid
prime function for target values of zero, while
Fig.1(b) shows the modified sigmoid prime
function for target values of one. Using this
modification, the sigmoid prime function stays
at its maximum of 0.35 whenever an error be-
comes larger than 0.5. This is in contrast to the
original sigmoid prime function which returns
a relatively small value for large errors (much
greater than 0.5). This modification does not

035 / 033

Oct. 1997
0.1 0.1

0.0 0.0

00 0s 10 0.0 0.5 0
@) ®)

Fig.1 Modified sigmoid prime function using clamp-

ing and 0.1 offset. (a) is for target values of
zero, (b) is for target values of one.

approach zero for large errors, therefore it elim-
inates flat spots.

Since we have seen that a constant sigmoid
prime offset for weights to hidden nodes deteri-
orates generalization, we investigated a number
of techniques which dynamically change the off-
set. The second technique we propose is a dy-
namic sigmoid prime offset which showed the
best results and it is used only for weights which
connect to the hidden nodes. The dynamic off-
set was added to the sigmoid prime function
and was changed in proportion to the number
of patterns correctly identified during training.
The dynamic offset speeds up training of BP,
with no apparent deterioration of the resulting
generalization ability. The dynamic offset was
calculated as

offset = A (1 - e“B(M“m)) (5)

where A and B are constants, M is the to-
tal number of patterns, and m is the number of
correctly identified patterns. In the case of all
patterns being incorrectly classified, the maxi-
mum offset, which is limited by A, is added to
the sigmoid prime function. This offset remains
close to A until more than half patterns are cor-
rectly identified. When nearly all patterns are
correctly classified, the offset decreases rapidly.
Finally, the minimum offset, which is limited
by B, is reached when all patterns are correctly
classified. This type of dynamic offset showed
better results than a linearly or an exponen-
tially decreasing offset.

4. Simulations

We used the soybean problem in PROBEN1%)
which is a problem to recognize 19 different soy-
bean diseases. We used this problem because it
has been used often in machine learning liter-
ature, it is an example of real world data, and
it is available for other researchers to use for
easy comparison with their proposals. There is
a total of 683 patterns. We used three sets of
data for training and testing the network. The

Vol. 38 No. 10

50004,
LzamingRau:=0,01?j___4

~* Standard BP
~*=Sigmoid Prime Offset

"

-#-Sigmoid Prime
Offset

Speed-up Techniques

Leamine Rate = 0.0225
—-Standard BP

Hidden Nodes

Hidden Nodes
@ ®)

2085

Leaming Rate = 0.0125

caming Rate = 0.0225

~+Standard BP
-#-Sigmoid Prime
Offset

7 3 13 10 5 13 7 3 13 10
Hidden Nodes Hidden Nodes

© @

Fig.2 Comparison of standard BP and BP using the sigmoid prime offset.
(a) and (b) show training speed, (c) and (d) show the generalization ability.

first set of data is called the training set and
consists of 342 patterns. It was used to change
the weights of the network. The second set of
data is called the validation set and it consists
of 171 patterns. It was used to determine when
to stop training. The third set of data is called
the test set and it consists of 170 patterns. It
was used once after training to give the actual
generalization results. Training speed was eval-
uated by the number of epochs needed to train
the network. Generalization was evaluated by
the rate of correct recognition of the test set.

For the dynamic offset shown in Eq.(5), A
was chosen to be 0.1, which was the maximum
offset. B was chosen to be 0.000029239, this
value was calculated so that when all patterns
are correctly identified, the offset was very small
(here, the minimum offset is less than 0.001).

We employed two layered neural networks.
This means one layer of variable weights be-
tween the input layer and hidden layer, and
one layer of variable weights between the hid-
den layer and output layer. There were 82 in-
put nodes and 19 Boolean output nodes. The
number of hidden nodes were varied from five to
ten. We used the “threshold and margin” crite-
rion in which any output which is 0.4 or below
is considered a zero, and any output which is
0.6 or above is considered a one. Before train-
ing, all weights were set to be random numbers
between —0.5 and 0.5, and each trial used dif-
ferent random weights. To avoid overtraining,
training was stopped when there was no reduc-
tion in the validation set error for one hundred
epochs. Weights which produced the lowest er-
ror for the validation set were used for testing
the generalization ability of the test set.

5. Results and Discussion

We made simulations according to the tech-
niques described in Section 4. The learning
rate was changed from 0.0125 to 0.04 and the
results in which the learning rate was 0.0125
and 0.0225 are shown here since the results of
other simulations were similar (the value 0.04
was close to the largest practical learning rate

for this problem).

The top two panels (a and b) in Fig.2
show simulation results in which training speed
of standard BP is compared with the train-
ing speed of BP with the sigmoid prime off-
set. Training with the sigmoid prime offset was
much faster than standard BP. These panels
show that the sigmoid prime offset is effective
for speed-up training.

The lower two panels (¢ and d) in Fig. 2 show
simulation results in which the generalization
ability of standard BP is compared with the
generalization ability of BP with the sigmoid
prime offset. These panels show that general-
ization was greatly deteriorated by the sigmoid
prime offset. This deterioration is especially no-
table in smaller network size. Where the num-
ber of hidden nodes is five and the learning rate
is 0.0125, the generalization ability of the net-
work trained with the sigmoid prime offset is
deteriorated to about 55% recognition, while
standard BP attains about 75% recognition.
The deterioration of networks trained with the
sigmoid prime offset becomes smaller as the net-
work becomes larger. This is expected as gener-
alization (usually) increases as the network be-
comes larger, and there are redundant nodes in
the hidden layer. Since generalization is one of
the most important abilities for practical appli-
cations, the sigmoid prime offset is not effective
for those applications which require high gen-
eralization.

Our speculation is that speed-up techniques
that are used for weights to the output nodes
do not deteriorate generalization. The teacher
signal is given to the output nodes and the
weights from the hidden nodes to the output
nodes are updated in proportion to the error.
The weight updates for one output node do not
affect the output of other output nodes. Be-
cause of this, large weight updates by speed-up
techniques for weights to the output nodes do
not deteriorate generalization. Conversely, the
input signal from the input to hidden nodes will
go through weights, then the signal will go to

2086 Transactions of Information Processing Society of Japan Oct. 1997

Leaming Rate =0.0125 Leaming Rate =0.0225 Learning Rate = 0.0125 Leaming Rate 3 0.0225

~¥-Sigmoid Prime
Offset ~#-Sigmoid Prime %3 g
- Siormaid P - Siomoid Pri
+-p, Offset 4 Sigmoid Prime olfgl-:::‘d Prime

Offset

~+Proposed
~#-Proposed

Sz
® ~*=Proposed

s 3 7 8 5 10 S 13 7 3 5 1 % % 7 3 3 03 13 7 3
Hidden Nodes Hidden Nodes Hidden Nodes Hidden Nodes
(2) ®) © @

Fig.3 Comparison of BP using the sigmoid prime offset and BP using the proposed techniques.
(a) and (b) show training speed, (c) and (d) show the generalization ability.

all output nodes. When one weight to a hidden
node changes, all output nodes are affected by
that change. One output node may decrease in
error, while another may increase. BP makes
adjustments for this to decrease total error.
Therefore, we speculate that large updates in
weights to hidden nodes affects generalization.
Since speed-up techniques make large (larger
than standard BP) weight updates, error is de-
creased quickly, but a point where good gener-
alization is attained may not be found. Because
of this, when using the constant sigmoid prime
offset for weights to the hidden nodes, the re-
sulting generalization is less than standard BP.

The top two panels (a and b) in Fig. 3 show
the training speed of the proposed techniques
compared with the sigmoid prime offset. The
training speed of the sigmoid prime offset was
faster than the training speed of the proposed
techniques when the number of hidden nodes
was five and six with a learning rate of 0.0125,
however the proposed techniques were faster
than standard BP with equivalent (or better)
generalization ability. Except for these, the
training speed of the proposed techniques is
practically the same as the training speed of the
sigmoid prime offset. These results show that
the proposed techniques are effective to improve
the training speed of BP.

The lower two panels (c and d) in Fig. 3 show
the generalization ability of the proposed tech-
niques compared with the generalization of the
sigmoid prime offset. The simulation results
show that the generalization of the networks
which utilized the proposed techniques is much
greater than the generalization of the networks
which utilized the sigmoid prime offset. For
example, when the number of hidden nodes is
five and the learning rate is 0.0125, the result-
ing generalization for the proposed techniques is
about 80% recognition while the resulting gen-
eralization of the sigmoid prime offset is around
55% recognition. This also shows that the gen-
eralization of the proposed techniques is slightly

better than the generalization of standard BP.
6. Conclusion

In conclusion, the proposed techniques are
simple but the simulations show that the tech-
niques are effective in reducing training time
and do not deteriorate generalization. In the
proposed techniques, the weights to the out-
put nodes are updated by large amounts by
the clamping technique, and its main contri-
bution is for speed-up training. The weights
to the hidden nodes are updated using the dy-
namic offset, and simulations show that these
speed-up techniques do not deteriorate gener-
alization. Therefore, these techniques are prac-
tical for real-world applications.

References

1) Jacobs, R.: Increased Rates of Convergence
Through Learning Rate Adaptation, Neural
Networks, Vol.1, pp.295-307 (1988).

2) Takagi, H.: Neural Networks, Part II: Intro-
duction for Beginners, Journal of Japan Soci-
ety for Fuzzy Theory and Systems, Vol.4, No.4,
pp.664-675 (1992).

3) Fahlman, S.E.: An Empirical Study of Learn-
ing Speed in Backpropagation Networks, Tech-
nical Report, CMU, CMU-CS-88-162 (1988).

4) Rumelhart, D.E., Hinton, G.E. and Williams,
R.J.: Learning Representation by Back-propa-
gating Errors, Nature, Vol.323, No.9, pp.553-
536 (1986).

5) Parekh, R., Balakrishnan, K. and Honavar,
V.: An Empirical Comparison of Flat-Spot
Elimination Techniques in Back-propagation
Networks, Proc. Simmtec/WWW’92, pp.463—
468 (1992).

6) Prechelt, L.. PROBEN1 - A Set of Neu-
ral Network Benchmark Problems and Bench-
marking Rules, Technical Report of University
of Karlsrule 21/92 (1994).

(Received April 9, 1997)
(Accepted July 1, 1997)

