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Limiting Formulas of Nine-stage Explicit
Runge-Kutta Methods of Order Eight

HaruMl ONOt-*

The attainable order of a nine-stage explicit Runge-Kutta formula is at most seven. How-
ever, by taking the limit as the distance between the first two and the last two abscissas
approaches zero, the formula can achieve eighth order. In this paper, a family of nine-stage
eighth-order limiting formulas with four free parameters is derived. Every other parameter
is represented as a fractional expression using one or more of these free parameters. Two
examples of the method are presented. One of them has a considerably large stability region,
but its parameters require a large number of digits. The other has parameters requiring a
comparatively small number of digits, but its stability region is not so large.

1. Introduction

The attainable order p of s-stage explicit
Runge-Kutta methods is s — 1 for s = 5, s = 6,
and s = 7,and is s—2 for s = 8 and s = 9. How-
ever, they can achieve order p+1 in the limiting
case where the distance between some pairs of
abscissas approaches zero. Such formulas are
called limiting formulas. They require evalu-
ation of the derivatives in addition to evalua-
tion of the function. Five-stage fifth-order '),
six-stage sixth-order 7 and eight-stage seventh-
order® limiting formulas have been derived.

In this paper, a family of nine-stage eighth-
order limiting formulas is presented. It is de-
rived in a similar way to the six-stage case.
The nine-stage eighth-order limiting formula
has four free parameters. Every other parame-
ter is represented as a fractional expression us-
ing one or more of them. The polynomial that
determines the stability region is a function of
one of the free parameters. Thus, we can obtain
various formulas by choosing the values of these
free parameters to take account of the proper-
ties of the formula. The values of the product
of the Jacobian matrix and the vector involved
in this formula can be easily calculated by using
automatic differentiation 5)-10),

Here, two recommendable sets of free param-
eters and the methods corresponding to these
sets are given. One of them has a fairly large
stability region, but its parameters require a
large number of digits. The other method’s
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stability region is not so large, but the numer-
ators and denominators of the coefficients of
this method are numbers with a comparatively
small number of digits. The latter method is
one of the most efficient methods for non-stiff
systems, because high-order explicit Runge-
Kutta methods are not used for stiff systems.

2. Limiting Formulas

We will consider the system of the initial
value problem

% =fty), y(to) = yo,

where f and y are vectors and f is assumed to
be differentiable sufficiently often for the defi-
nition to be meaningful. The parameters of an
s-stage explicit Runge-Kutta method are rep-
resented in the following Butcher array ®:

c2 az1

c3 a3i a32

Cs Qsl A2 Qg,5—1

| by bo bs.

The method is written in the form
=1

fi=Ffnyn)s i =yn+ hzaijfj,
=1

fi=fltn+chy) (=2,3,---,5)

S
Ynt1l = Yn + thifi.
1=1

The properties of nine-stage seventh-order
formulas are precisely reported and some ef-
fective formulas are proposed by Tanaka, et
al.12)13) " A minute observation of his formulas
shows that the truncation error of the formula
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Table 1 Limiting formulas.
Limiting .
Stage | formula Abscissa

5 5th-order | co — 0

5th-order | ¢4 —¢5 =1
6 6th-order | c2 — 0 and ¢5 > cg =1
7 7th-order | c2,¢3 =0, and ce = c7 =1
8 Tth-order | ¢ —» 0

become small as the abscissa cs approaches zero
and cg approaches ¢y (= 1) simultaneously.
Thus, it is expected that a nine-stage formula
can achieve eighth-order in the limiting case
where ¢y tends to 0 and cg tends to cg (= 1).
Limiting formulas that use the values of deriva-
tives were derived for five stages by Toda'¥),
for six stages and for eight stages by Ono 7:8),
and for seven stages by Ono and Toda®. They

are listed in Table 1.
A nine-stage limiting formula will have a form
similar to the six-stage limiting formula:
f1=f(tn,yn), F2= D(f(tn,yn)) - v(f1),
ya=yn + h(as1 f1 + hasF2), fa=f(tn + csh,ys),

i-1

Yi=Yn +h ( Z ai; f; + hain),
j=1,#2

fi = f(ta +cih, i)

8
fo= Z Agj f; + hagFa,
J=1,#2
Fy = D(f(tn + h’a ys)) . 'U(fg),

8
Yn+1 =yn+h< Z bifi + hBo2F> + hﬂng)) ,
i=1,#2
(1)

where D(f(t,,yp)) denotes the Jacobian matrix
of f at the point (t,,9p) , v(f1) denotes the vec-
tor (1, fi, f2, -+, f1)T, and v(fe) denotes the
vector (1, fL, f2, ---, f)T (the superscripts
denote the component numbers). The parame-
ters of this limiting formula can be written in
the following array analogous to the Butcher
array:

(i=4a53"'78):

c3 | as1 as
c4 | @aq1 043 ay
¢5 | as1  az3 @54 as
cg | ag1 as3 ags - agy ag
Agr Agz Agsg -+ Agr Agg o9
b1 b3 by o bg
B2 Bo

The relations between the parameters of lim-
iting formulas and those of usual nine-stage for-
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mulas are as follows:

Limiting .
formula Usual nine-stage formula
a;1  lim (a;1 +a52) (1=3,--,8)
cg—0
a; lim a;9¢c9 (¢ =3,---,7)
cg—0

Agr  lim ( 1iméa91+ ag2—(ag1+as2))/(1—cs))

cg—1lco—

Ag; lim (ag;—ag;)/(L—cg) (=8,--,7)
cg—+1

Agg  lim agg/(1—cs)
cg—+1

ag  lim ( lim (ag2ca — ag2c2)/(1 — cg))
cg—1 cpg—0

b1 limo(bl + bg)

cop—

bg  lim (bg + bg)
cg—1

ﬂg lim b262
cg—0

Bo  lim (—bg(l — cg))
cg—1

2.1 Order Conditions
We shall restrict ourselves to the case in
which bs = 0 and the following simplifying as-
sumptions hold:
i-1

e c
cg=1, az= DX Zaijcj ta; = o
j=3
i—1 3
C; .
Zau%z:—?)— (i=4,5---,8). (2)

=3
Cojmparing the Taylor series expansion of
Eq. (1) with that of the true value y(¢, + h)
and matching the coefficients of each elemen-
tary differential, after tedious computation, we
obtain the following equations of the order con-
ditions:

i-1 .
asy =cs, +Zaij =¢ (1=4,5,---,8),
i=3
8 8
Ao + Z Agj=1, g + Z Agjci=1, (3)
i=3 i=3

8
Z biaij + PoAe; =b;(1 —¢;) (=4,5,6,7),

i=j+1
BoAgg = —Po, (4)
8
Z biai3 + Bo Aoz = 0, (5)
=4
8 -1 8
Z b; Z aijazs + Po Z Agjajz =0, (6)
i= j=4 j=4

i1

g i-1
E b; E aij E a;k0k3
i=6 =5 k=4

-1

8
+ Bo Z Ag; Z ajrars =0, (7
=5

k=4



. )
+ Bo Z Agj Zajk araiz =0, (8)

8 i—1 j-1

E biE aijE Ak Ck O3

=6 =5
8

+ B Z Agj ZajkckakS =0, (9)

h—d
1

b1+zb—1 Zbcz+ﬂ2+ﬂ9—§ (10)
[ 1=4
2 1

Zbici + 28y = 3 (11)

8 i1 8
1
Z b; Zaijc? + Bo ZAQJ‘CJ? =13 (12)
=5 j=4 j=4
8 i-1 8 .
Zbi Zaijcf- +ﬁ92A9jC? =50 (13)
=5 j=4

j=d

8 i—1 8 1
Zbizaijc?+ﬂng9jC§ = %, (14)
=5 jea =t

Zb 25% Za]kck
i=6  j
%ZAQJ S uch = I%ﬁ (15)
k=4
Zb,Za”c] +ﬂgZA9]cJ =1 (16)
=5
thzazy Za]kck
=6 j=5

+ﬂ92A Z i=— (17)

' 1
+ 8o ZAgjcj Zajkcz = 168 (19)
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8 i—1 8

1
E b; E aijc? + Bo E Agjc? = 56 (20)
o5 4 =

1
+ Bo ZAQJ' Zaﬂwi = 336 (21)

' 1
+5gz Agjza]k aklc?:igéﬁ’ (22)

=7 k=6 I=5 m=4
8 i—1 Jj—-1
Z bi Zai,-cj a,kci
i=6 =5 k=4
8 i—1 1
. . . 4 = e—
-+ 189 Z; AQ] Cj kz: A5kCr = 280° (24)
i= =
8 i—1
> S ot
== i=
2 1
3
+IBQZA9]C] kz;(ljkck = -2%’ (25)

-1
Zb Za”c, Zagk Zaklcl

k=5
+/692A93012ajkzaklcl 1120,( 6)

j—l k-1
3050 e Yo
i=7  j=6 k=5 1=4
j—1 k—1 1
. . 3————_—
+692;A97kz;a]kckl 4%161—1344- (27)
= = =

2.2 Solutions

In this section, we assume that abscissas c;
(1 = 4,5,6,7) are distinct and are not equal to
0 and 1. We define, for later convenience, the
following auxiliary parameters:

Z biaij+PoAo; =bj(1—¢;) = p; (j=4,5,6,7),
i=j+1
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8
pPs— Z b; az4
BoAes = ps, Z PGk oy (k=4,5,6,7), Agy = ——==0— (33)
j=k+1 Finally, a3, Ag; (C)] =3, 1) al, and a;; are
d £ ° def 3 35t
d

> oran=n (1=4,5,6),) _rean= i (1=4,5). (28) ans= 3 4= ___J__ﬁ_.’f_i( =5,6,7,8),
k=l+1 k=l+1 3c3 3c3

The outline of the derivation is shown in
the appendix. Here we show only the results.
Rewriting the equations of the order conditions
by using Eq. (28), we obtain

_ 28¢ erci—14(crertejertejep H8(citerter) =5
¢ 840c2(cs — ¢j)(ei — cx)(ci —er)(ci — 1)
ps = (T0cicjeper — 423, . cicjcr + 283, cic)
— 202ic,+15)
/(840(1 — c4)(1 — e5)(1 — ce)(1 — 7)),

i:‘”(%?"—) (i,5,k,1=4,5,6,7),
14cjer — 6(c; +cx) +3
P = y v 47 76 )
T 5040c?(¢; — ¢;)(ci — cx) (5, k 5,6)
—80 +3 ..
¢i s (ZaJ = 4‘a 5)a (29)

20160c2(c; — ¢5)

and the relation between ¢4 and c¢s, which must
be satisfied:
(56¢5 — 42¢q + 9)cs — 3ca = 0. (30)

If we assume that the values of ¢; are in the
interval (0,1), then from (30) we get
% <en <l (31)

All parameters of the method can be obtained
successively in terms of ¢; using p;, 0y, 73, and
¢;, provided that all denominators do not van-
ish. The parameters b; and 3; are

0<C4<% or

Pi
b = 1= 4 5 6 7)1 ﬂg —pP8,
=) U
1
bs = 3 — (7 bic} +260), by =1-3;_,bi,
1
B2 = 3~ (Z?:4bici + Be), (32)
and a;; and Agj(j =8,7,6,5,4) are
b
Agg =1, asr =21, Agr = PTT 808 e=12,
P8 Bs o7
_ 06 — prars _ Ps— S5 biais
age = 28 P70 q o = PO Luimn TS
ps Bo
_ 95 _ T5 — 06065
aes = —, a5 = ———,
Te o7
05—2L6 piGis ps——z. btazs
ags = —2=0— | Ags =
P8 Bo
3(cx — —_
- 65(003 04)’ tos = o Tsse
Cy Te

6 7
Ta— Y s Oilia 4= o pidis
a7y = ———————, Ag4 = )
ar P8

32 L biais > c3
Agy == A91=1—ZA93', Q3=

Be pre
y i-1 8
c; )
ar—“?’—— aijcj (1=4,5, - ',8),a9:1—ZA9jCj,
j=38 j=3
i-1
a31=c3, 41 ZCi—Z aij (i=4,5,---,8). (34)
=3

Now, we have obtained a set of parameters
of the nine-stage eighth-order limiting formula
with four free parameters, cs, ¢4, cg, and c7.

3. Determination of the Free Parame-
ters

In this section we will consider how to de-
termine the four free parameters. The stability
region depends on only one free parameter, c4.
It is desirable to determine ¢4 so as to maxi-
mize the stability region. At the same time, it
is preferable that every parameter be a number
that requires a small number of digits and has
a small magnitude. Here, we will present two
sets of free parameters. Substituting the val-
ues of these sets into the solutions obtained in
the previous section, we obtain two formulas.
One of them has a comparatively large stabil-
ity region, and the other has relatively simple
numbers as parameters.

3.1 Stability

The polynomial r that determines the stabil-
ity region of the nine-stage eighth-order limiting
formula (1) is given by

Z 27 28
()—l+z+ 3‘+---+~7T+§+7z9,
where z is a complex number and
ca(3 — 8ca)

¥ = ¢sassaqzaz = 40320(56¢2 — 42c4 +9)

Let the simply connected interval (—d, 0) be the
intersection of the stability region and the neg-
ative part of the real axis. The stability bound-
aries for several values of v are shown in Fig. 1.
The graph indicates that

1 1
7€ (620000’ 580000) (35)

gives the maximum stability region. The graph
of v(cq) for the interval (31) is given in Fig. 2.
The intervals for ¢4, for which + is in the interval
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Fig.1 Stability boundaries for several values of .
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Fig.2 Graph of y(c4) for 0 < ¢4 < 3/8 and
3/T<eca< .

(35), are approximately

.1446 <c4 <.1523 and .3455< ¢4 <.3477.  (36)

3.2 Two Sets of Free Parameters

To find a method that has a comparatively
large stability region, we will proceed as follows:
(1) Let the rational number be a value of ¢4 that
lies within the intervals given in Eq.(36) and
whoes numerator and denominator are numbers
with at most two digits. (ii) For all such values
of ¢4, we look for a value of ¢c5 whose numerator
and denominator are also numbers with at most
two digits (the value of ¢ is determined by re-
lation (30)). (iii) For every such pair of (c4, c5)
and the values of ¢s and ¢7 (0 < ¢cg,¢7 < 1), we
look for the minimum s, the sum of the magni-
tude of the parameters in Egs. (32) and (33),
because these parameters are independent of
the value of ¢3. (iv) As the values of cs and
c7, we choose the simplest pair of numbers near
the pair of ¢g and ¢; that gives the minimum
s. (v) Finally, we look for the value of ¢3 in a
similar way; that is, we look for the minimum
sum of the magnitude of the parameters (34).
We determine the simplest rational number as
the value of c3 that gives nearly the minimum
sum. Thus we obtain a set of free parameters:
19 3 1
'ga 04—5_6-’ CG—Z) c7_Z' ( )
For this set, the values of ¢s, v, and d are

C3 =
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41
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-7-6-5-4-3-2-10 1
Fig.3 Stability boundaries for ¢4 = 9/26 and 1/4.

39 1
T4 7 7 591360

We will give another value of ¢4 for which all
the parameters have a relatively small number
of digits. First, we look for the pair of ¢4 and
¢s such that all numerators and denominators
are numbers with one digit. We determine 1/4
as the value of c4, because it gives the largest
stability region among such pairs. Then, we
proceed as for cs = 9/26, and get

cs=%, c:;:i, c6=£, C7=-Z-. (38)

For this set, the values of cs, v, and d are
- g, y= —_—3221560 ~ 3100 x 107%, d ~ 4.5.
This value of ¢4 is outside of the intervals in
Eq.(36). Thus, the stability region is not so
large, but the parameters of the formula require
a far smaller number of digits than that for ¢y =
9/26. The stability boundaries for these two
values of ¢4, 9/26 and 1/4, are shown in Fig. 3.

3.3 Nine-stage Eighth-order Limiting

Formulas

Substituting the set of ¢; (38) into Egs. (29),
(32), (33), and (34), we obtain Formula 1. The
stability region of this formula is not so large,
but its parameters are numbers that require a
comparatively small number of digits. The pa-
rameters of this formula are shown in Table 2.

For the set of ¢; (37), we obtain Formula 2.
This formula has a comparatively large stability
region, but its parameters are more complicated
than those of Formula 1. The parameters of
Formula 2 are shown in Table 3.

s ~ 1.691 x 107°, d ~6.5.

Cs

4. Numerical Example and Conclu-
sions

We will show that our derivations are cor-
rect. First, our formula is definitely eight-order.
Though this can be verified by substituting the
values from Table 2 and Table 3 into the er-
ror coefficients up to O(h®) terms, here we will
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Table 2 Formula 1.
C; (273 (i:374a"'v8;j:173,"'18) Q;
I I pe
4 4 32
1 1 1 1
4 6 12 96
3 3 _e 27 0
8 32 64 64
7 12607 2303 _ 2695 490 539
8 2592 576 192 81 864
3 2297 3 207 38 54 199
4 2058 4 70 21 1715 1568
1 32183 832 __ 600 320 _ 1728 280 1345
8967 183 183 2989 183 2562
Ao 16106722 150016 470864 1243520 _ 7922304 770224 ~1 65822
9j 1640961 3721 18605 33489 911645 33489 26047
b 12289 0 704 2048 _ 2048 64 10537
J 9246710 4725 7875 8575 135 47250
61
B2, Bo 8820 6300
Table 3 Formula 2.
c a;; (j=1,83,---,8) a;
1 1 gl
3 3 18
9 3897 2187 81
26 17576 17576 4394
39 _ 8292271 14414517 38243179 _ 342563
44 16866432 1874048 4216608 1874048
3 _ 340085 ~ 3159 1184183 27951 1597
4 3699072 2432 563616 661466 31616
1 63001339 351 7986095 _ 1164625 5 38219
4 299624832 2432 45652896 53578746 162 2560896
1 3578500 _ 702 328398772 _ 363416240 48640 012 21163
8993673 73 38369457 720493137 41391 511 153738
Ag: |— 16288620394 _ 7275528 3275107674488 _ 2097338476640 281776384 114146528 —11]- 19731878
9j 3720382731 90593 79360826895 298043994339 17122077 3170755 31798143
bs 1202603 0 501988136 _ 2494357888 9728 2432 212561
J 8624070 1563686775 8636047875 19845 33075 803250
ﬂ ﬂ 857 _._73
2, P9 147420 6300
give a simpler demonstration using a numerical 0
. . . I I I Formuld-1 -be—
example. We give the errors in the numerical
. . 2) -4 Formula-2 -—=
solution of a system of equations/: g
Example 1: Integrate
logyg | error| -12
dy1 _ -0
— = Y23, y1(0) =0, -16
di
dys -20
== = —1Y3 2(0) =1
i yiys,  32(0) =1, o4
dys 2 2 1 2 3 4 5 6 7 8
e —k*y1ye, y3(0)=1, k°=0.51

over the range [0,60] by using Formula 1 and
Formula 2. The largest errors in the last step
for various values of h are shown in Fig.4
and Table 4. The computations were per-
formed in quadruple-precision arithmetic. For
comparison, the results obtained by the eleven-
stage eighth-order method given by Cooper and
Verner? are also shown. Figure 4 and Table 4
indicate that all formulas used here are exactly
of order eight, because the accumulated trun-
cation errors are proportional to h®.

Next, to check the stability interval of our for-
mulas, we present the results of an equation 11):

Example 2: Integrate
% =100 (sinz —y), y(0)=0

up to 100 steps with various step sizes h. The

- lOgQ h

Fig.4 Largest errors in the numerical solution
of Example 1 at the last step.

results are shown in Table 5. Quadruple-
precision arithmetic was also used. From Ta-
ble 5, we see that Formula 1 works well for
h < 0.04, but that for b > 0.05 the computa-
tion fails. The computation by Formula 2 can
be continued for larger values of h than 0.04,
but it breaks down for h > 0.07.

In this study, we have shown the existence
of nine-stage eighth-order limiting formulas, as
¢ — 0 and cg — ¢g = 1. The derivatives in-
volved in our formulas are not individual partial
derivatives, but the products of the Jacobian
matrix and some vector. These products can
be calculated very easily by automatic differen-
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Table 4 Errors in the numerical solution of
Example 1 at the last step.

Step Cooper and
size Formula 1 Formula, 2 Verner
yi| .109%x107% | —.238x10~4 | —.139x10~¢
271 lyol —759%x 1076 | 923x 1075 | .428x10™%
y3| —.281x107%| .403x10~% | .206x1075
y1| .183x1078 | —311x10~7 | —.357x 107
272 lyo| —.139x 1078 | .127x10~7 | .115x10~7
y3| —.497x10™° | .543x 1078 | .560x10~8
y1| .332x10711 | -.346x107 10— 948 x 1010
273 |ya|—.260x 10711 | 148x10~10 | 326 x 1010
y3|—.893x10712| 634x 1011 | .159%x10~10
y1| .600x10~1% | .118x10~13 [[— 278x 1012
274 lyp|—.479%x 107141 - 231x 10714} .102x 1012
y3|—.151x10714|—.477x10 15| 496x10~13
y1| .100x 10716 | .312x10~1% |[-.902x 1015
275 |yo|—.831x10717|—.119x 10~ 15| .345x10~15
y3|—.206x 10717 —.476 x 10~ 16| .169x 10~15
Table 5 Relative errors in numerical solution of
Example 2 (Ej: first step, Figo: last step).
Step| Cooper and
size Formula 1 Formula 2 Verner
0.02| By | —.365%x1073| 2701073 | .134x10"2
Fioo| -391x1079 | —.190x10~2 | —.339x 10~
0.03| By |—.952x1072| .401x10-2 | .271x10~?!
Ejoo| .239x1076 | —768x10~7 | —.155x 104
0.04| By |—-.997x10~1| .227x10"! .238
E100 | —-383x107%] .991x10~7 | —.557x 103
0.05| By —.626 .613x1071 1.331
E100 | —-644x10%8 | —.110x 1076 | —.578 x 1071
0.06| Eq —2.826 141x 101 5.589
FE100 — .367x107° —
0.07| Ey — —.658 —
F100 — 632 x 1058 —

tiation, using the intermediate values obtained
during the function evaluation. Thus the to-
tal cost is about twice the number of interme-
diate variables and in general is far less than
the function evaluation. Moreover, since auto-
matic methods for simultaneous computation of
functions and partial derivatives are now avail-
able 615 our methods can be easily calcu-
lated.

In conclusion, we can state that Formula 1
is efficient for non-stiff problems. Simple pa-
rameters are preferred, because explicit Runge—
Kutta formulas are not suitable for stiff sys-
tems.
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Appendix: Outline of the Derivation of
EqS. (29), (30) and Qas4

Using the notation p;, we see that Eqgs.(12),
(13), (14), (16), and (20) can be written in the
form

8
k 1
pici = ————— (k=2,3,---,6).
; 12 _,(k+m)

From this system, we obtain the solutions p;.
By using the last equation of (2) and (6),
Eq.(13) can be rewritten in terms of o;. From
this resultant equation, together with Egs. (15),
(17), and (21), we obtain the system

7
& 1
oic; = ————— (k£ =12,3,4,5),
N e )
and the solutions o;.

If all the equations used above hold, then
four equations, (19), (24), (25), and (26), can
be omitted, as shown below. Replacing o; in
Eq. (15) with p; in accordance with definition
(28), subtracting Eq.(19) from this equation,
and substituting 2¢; for p;(1—¢;) following from
Eq. (29), we see that Eq. (19) becomes Eq. (18).
In a very similar way, using Eqgs. (17), (19), and
(18), we can see that Egs. (24), (25), and (26)
are identical to Eqgs. (22), (27), and (23), respec-
tively. v

Rewriting ¢? in Eq. (15) using the last equa-
tion of (2), and then using Eq.(7), together
with Eqgs. (18) and (22), we obtain

6

1

D mie T (k+m)

=4
and the solutions 7;.  Similarly, rewriting
Eq. (18) by using the last equation of (2) and
(8), together with Eq. (23), we obtain the sys-
tem

5
& 1
= (k=2,3),
2t =y 7Y

and the solutions ¢;.

The relation (30) is obtained from Eq. (27) as
follows:
(18) x ¢y — (27) yields

(05(cr — cs)asa + o6(cr — cs)aea)ch

(k=2,3,4),
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+o6(er — co)asses = '8?2176 T 1344

(15) x ¢z — (17) yields
0402(07 —c4) + crscg(w —c5)
3 o _ 1
+oacsler = ¢e) = 135 7 310°
In the latter equation, rewriting c? by using the

last equation of (2), and then using Eqgs. (7) and
(9), we obtain

(05(cr — cs)ass + ae(cr — ce)ass)cs
Cr 1

+05(C7 - cs)aescg = ﬁ - @ (40)

From the system of Eqgs. (39) and (40) we obtain
_ —86cacr + 32¢4 + 24cy — 15
"~ 2016006c2(c7 — cs)(cs — ca)’
while, from Egs. (28) and (29) we find
$s_ 5040cg(ce —ca)(ce—cs)(-8ca+3)
76 201603 (cs —ca)(14cacs —6(ca+cs)+3)”
Equating these two values of ags, we get
Eq. (30).

The parameter as4 in the form shown in the
solutions (33) is derived as follows:
From the system of Eqgs. (39) and (40), we ob-
tain

a5

ae5=—

(05(cr — cs)ass + o6(c7 — ce)ass)ca(cs — ca)
_ 56¢csc7 — 32¢5 — 24¢7 + 15

20160 ’ (41)
and from Eqgs. (28) and (29), we obtain
¢4 = T4a54 + T5064 = Bes — 3 (42)

20160c2(cs — ca)”
The solution as4 is obtained from the system of
Eqgs. (41) and (42) as

—c2(ca(56cE — 42¢c5 + 9) — 3¢s)

ass =

12¢2(14c2 — 1dcs + 3)
and can be written by using Eq. (30) in the form

—~54c¢4(28¢3 — 21ca + 3)
as4 =

3
_cgles —ca)
(56¢2 ~ 42¢cq +9)* g

{(Received March 17, 1997)
(Accepted July 1, 1997)

Harumi Ono was born in
1932. She received her B.S.
degree in mathematics from
Ochanomizu University in 1954,
and her D.E. degree from Uni-
versity of Tokyo in 1985. She
had been in Chiba University as
an associate professor until March 1997. Her
main research interest is numerical analysys.
She is a member of IPSJ, JSTAM, and JSAS.



