EHRAEERFS5E (PO F8H) 2EXS

3 —841

A Packet Scheduling Mechanism for Supporting Real-Time

4V—6

Applications on High Speed Networks

Onur ALTINTAS and Yukio ATSUMI

UNCL
Ultra-high Speed Network and Computer Technology Laboratories

Abstract Packet scheduling is one of the key
mechanisms that will be employed in the network nodes
for supporting real-time applications. In this paper we
propose a new frame-based packet scheduling algorithm
which calculates and keeps an index for each flow in order
to keep track of instantaneous bursts. With this approach,
flows which might be in need of momentary service can be
detected. After a brief introduction of packet scheduling
issues, we describe the operation of our algorithm. We
then give some simulation results showing the delay
performance of the proposed algorithm.

1 Background

Guaranteeing performance by employing packet scheduling
at the intermediate nodes has been recently drawing
attention. Conveationally, networks have used FIFO
discipline at the network nodes which can not be effective
for QoS provision. In a packet switching network
supporting various classes of applications, since packets
from different flows interact with each other at each
queueing point, the network should schedule its resources.
However, the choice of such a packet service discipline is
a major design challenge. Recently, a number of
scheduling disciplines have been proposed (a
comprehensive overview of most of these algorithms is
given in [S]). These are categorized into timestamping-
based algorithms and frame-based algorithms according
to their methods of handling packets/flows.

WFQ (Weighted Fair Queueing) [3] has been the most
well-known timestamping algorithm. It is a packet-by-
packet emulation of a hypothetical system called the
Generalized Processor Sharing (GPS). WFQ timestamps
each packet with an index indicating their virtual finish
times. Despite its analytically interesting characteristics
about delay and faimess, the main opposition to WFQ is
its complexity which makes it impractical to implement
on high-speed networks. On the other hand, algorithms in
the frame-based category divide the time axis into frames
of service allotments. WRR (Weighted Round Robin) [2]
is one of the most well-known algorithms of this category.
Compared to the timestamping schedulers, frame-based
ones have much smaller computation times. However,
algorithms in this category usually have loose delay
bounds especially under bursty traffic. In this paper, we
propose a new frame-based scheduling discipline which we
call Urgency-based Round Robin (URR).

2 Urgency-based Round Robin Scheduling

In this section we describe the operation of the algorithm
we propose. The basic contribution of this work is to
employ an index table which is an adaptive approach
taking into consideration the instantaneous needs of flows
incoming to a queueing point. Incoming flows are isolated
and put into different buffers which operate as FIFO

queues. Fixed size packets (or cells) from various flows
arrive into the system and get served according to their
reserved bandwidth shares (weights). Normally, in a
frame-based scheduling discipline such as WRR, the time
axis is divided into equal size frames. During each time
frame, the server allocates w; time quanta (slots) to flow i
in order to satisfy a guaranteed rate, where w; is the weight
reserved for flow i, The server then serves the non-empty
queues in an orderly fashion sending one packet at a time
from each flow until satisfying the assigned weights,
Actually, WRR is an efficient and easy to implement
scheme for utilizing network resources, however its delay
performance becomes poor under bursty traffic conditions.
Next, we introduce the urgency index: At time ¢, for a flow
with queue size of g;(2) and service share (weight) of w,,
ui(t) = qi(t)/w, is called the urgency index of that flow
indicating the total duration it should get service to empty
its queue.

URR algorithm calculates and updates a table of
urgency indexes, right after a round completes. The
calculated index is kept only for each queue (flow or
session) rather than timestamping each packet. Basically,
the scheduling engine starts each new round from the flow
with the largest urgency index. In other words, the next
packet to be forwarded out first in the next round is
selected based on the instantaneous needs of flows (Figure
1). Note that the system is not static as in a simple
priority-based scheme nor its cycle order is fixed as in
WRR. Also, note that our scheme is work-conserving.
The underlying argument of our approach is the following:
The assignment of service rates to sessions is static,
however, it is possible that within a small amount of
time, a particular queue temporarily exhibit a higher
arrival rate than its assigned weight. In other words, even
if the source in question is shaped and well-behaving at
the edge of the network, it is known that it is still
possible that the packets belonging to that flow gets
bursty inside the network due to the interaction with

packets from other flows.
T w_ time quanta

- ! -
e 1 r el
1 '

E Yy ves j’ﬂj see i“*‘I“i

0*N-1)mod (N) (1+N-1) mod (N)

Figure 1.0utput stream of the URR scheduler for N flows.
3 Simulation Results

In the model used in the following simulations, all
sources produce traffic for the same destination node. All
traffic flows through a single scheduler which is connected
to the destination. Our primary goal is first to investigate
how the proposed scheduler performs under several

3 —B842

patterns of traffic lcad within a single node. Each source is
connected to the scheduler node via an infinitely fast link.
Two kinds of traffic source models are used in the
simulations: ON-OFF model, and the Poisson model. In
the following, we will be interested in the delay
characteristics of the packets produced by the ON-OFF
sources in the presence of other type of traffic sources
sharing the same link. ON-OFF source is, basically, a
two-state Markov modulated process. In the source we
use, the packet stream consists of arrivals with T ms
intervals when the model is in ON state. The ON and
OFF state durations are distributed exponentially with
means o and B, respectively. We choose T = 16 ms and
the packet length L = 512 bits. Also, we set & to 352 ms,
and B to 650 ms, Setting B to 650 ms gives a standard
packetized voice source model; and setting it to values
less than 352 ms corresponds to a model of continuous
packet rate source which is typical in real-time remote
sensor devices [4]. ON-OFF sources reserve 32 Kb/s.
Poisson sources have exponentially distributed interarrival
times with mean 1/A, A depending on the experiment.
Note that Poisson sources reserve a rate of 5124 Kb/s,

Next we present the results of two sets of simulations.
In the first set of simulations, there are 10 sources of
which 9 behave as Poisson sources, and one as an ON-
OFF source. All of the sources reserve equal amount of
shares. The average delays experienced by the Poisson
sources do not differ under two disciplines, therefore we
omit results related to these sources. Since our underlying
argument is that burstiness might occur inside the
network even if the sources are well-behaving and shaped
at the edges, in the first set of simulations, we assume that
the scheduler is one of the intermediate nodes on a several
hop path, and intentionally squeeze 7. We obtain packet
arrivals during the ON state ranging from values
corresponding to the reserved bandwidth of the source, to
values roughly corresponding to two times the reserved
bandwidth. Specifically, T is varied from 15 ms to 8 ms,
yielding what we call a degree of burstiness of 1.07 to 2.
Note that, the utilization for this source is still well below
the reserved rate (0.702 for the “busiest” setting).
Actually, this scenario is quite possible for a flow passing
through several nodes and getting more concentrated at
each node. Also, note that, it is not our aim to prioritize a
malicious user, but to detect and relieve a bursty duration
for any flow. In Figure 2 we show mean delays and 99th
percentile delays for the first set of simulations. The gap
between URR and WRR performances widens as the
burstiness of the ON-OFF source gets more intense. This
situation is explained as follows. In WRR, during any
frame, the ON-OFF source normally waits for its slot
corresponding to ils share for 9 slots of time. However
with URR, if it has the eligibility to enter from the first
slot (i.e. if its w; is larger than others), it takes service
immediately. However, this does not mean that other
flows are sacrificed. In a single round, none of the flows
are skipped, rather their orders of service are changed.

In the second set of simulations, all of the sources are
ON-OFF sources with varying mean OFF durations
corresponding to models ranging from standard voice to
real-time remote sensors. We show results of this set in
Table | where 8/« is the ratio of mean OFF duration to

mean ON duration. In all cases URR has better delay
performance compared to WRR. However, as expected,
URR performs much better for those flows with small
mean OFF durations.

4 Conclusions and Future Work

We have proposed and evaluated a new packet scheduling
discipline called URR which can be considered as a
version of WRR with improved delay characteristics. We
have shown through simulations that the delay
performance of the proposed algorithm under various traffic
loads is better compared to WRR. Future work will
include extending the urgency index table to a sorted one
which will constitute the basis of the output pattern (i.e.

in descending order).
mean and 99th percentile delays
(number of slots)

2000

wmmveeeee mnigan (WRR)

e madan (URR)

““““ 99th%ile (WRR) L,
e 99h%rle (URR)

e -
I’*
¢
o’,’
JTOITE e R SRR . /,'“. / SN
oI '
10 1.2 1.4 16 18 20

burstiness

Figure 2. Mean and 99th percentile delays of the ON-OFF
source in the first set of simulations.

node | Bea Mean Mean 99th %ile 99th%ile

(WRR) (URR) (WRR) (URR)
1 0.018 1.698 0.722 6.869 4.944
2 0.053 1.606 0.779 7.306 6.344
3 0.111 1.623 0.831 7.612 6.125
4 0.250 1.680 0.954 7.963 6.694
) 0.429 1.540 0.949 7.963 6.125
6 0.818 1.571 1.037 4,988 4.988
7 1.847 1.378 1.041 5.993 5.556

Table 1. Mean and 99th percentile delays for all flows in the
second set of simulation (values are in number of slots).

References

[1] O. Altintas, Y. Atsumi and T. Yoshida, “On a packet
scheduling mechanism for supporting delay sensitive
applications on high speed networks,” Proc. ICICS'97, Sept.
1997.

[2] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis,
“Weighted round-robin cell multiplexing in a general-
purpose ATM switch chip,” /EEE JSAC, pp. 1265-1279, Oct.
1991.

[3] AK. Parekh and R.G. Gallager, “A generalized processor
sharing approach to flow control in integrated services
networks: The singie node case,” [EEE/ACM Trans. on
Networking, pp. 344-357, June 1993.

[4] D. Yates, J. Kurose, D. Towsley, and M.G. Hluchyj, “On
per-session end-to-end delay and the call admission problem
for real-time applications with QoS requirements,” J. of High
Speed Networks, pp. 429-458, Dec. 1994.

[5] H. Zhang, “Service disciplines for guaranteed performance
service in packet-switching networks,” Proceedings of the
IEEE, pp. 1374-1396, Oct. 1995,

