GO 2E550 (RO FRY) 2BXR

3 —393

Optimistic Concurrency Control for Replicated Objects *
Kyouji Hasegawa, Takayuki Tachikawa, Hiroaki Higaki, and Makoto Takizawa t

5AA—10

Tokyo Denki University *

Email {kyo, tachi, hig, taki}@takilab k.dendai.ac.jp

1 Introduction

The distributed applications are composed of mul-
tiple objects oy,...,0, which are cooperating by ex-
changing messages through the communication net-
work. Each object o; supports abstract operations
for manipulating the state of 0;. The objects have to
be mutually consistent in the presence of multiple ac-
cesses to the objects. In the famous two-phase locking
(2PL) protocol [1], the transactions lock the objects
before computing the operations on the objects. Most
systems adopt the strict 2PL protocol where the locks
obtained are released at the end of the transactions
in order to resclve the cascading abort. The opti-
mistic concurrency control is discussed to reduce the
overhead implied by the locking. Here, the transac-
tion manipulates objects without locking the objects.
When the transaction T' ends up, T' commits unless
the objects manipulated by 7" are accessed by other
transactions in the modes conflicting with T'. In or-
der to increase the reliability, availability, and perfor-
mance of the system, the objects in the system are
replicated. Here, it is critical to make the replicas
of the object mutually consistent. Jing [2] discusses
an optimistic two-phase locking (O2PL) method to
maintain the mutual consistency among the replicas.
In the O2PL, all the replicas are locked by a trans-
action T in a read (Rlock) mode to write the object.
When T commits, 7" tries to convert the Rlock mode
on the replicas to a write (Wlock) mode. If succeeded,
T commits. Otherwise, T aborts. The distributed
applications are modeled in an object-based concept.
The objects support abstract operations. In this pa-
per, each object is locked in an abstract mode corre-
sponding to the abstract operation. The conflicting
relation between the lock modes is defined based on
the conflicting operations. In this paper, we propose
a novel optimistic locking scheme for the replicated
objects. The number of replicas to be locked depend
on how strong the lock mode of the operation is and
how frequently the operation is invoked.

2 System Model

2.1 Objects

A distributed system is composed of multiple ob-
jects o0y,...,0, which are cooperating by exchanging
messages in the communication network. The com-
munication network supports every pair of objects o;
and o; with the reliable, bidirectional channel (o;, 0;).

A transaction T sends a request op; to an object
0;. On receipt of op;, o; computes op;. Here, op; may
invoke an operation op;; on another object o;;. o;
sends the response of op; back to T. T is an atomic
sequence of computation operations. T commits only
if all the operations invoked by T' successfully com-
plete. The operation op invoked by T' commits only if

* S HIRBEIC BT 5 IR FREATHE
TRAN I, I BAT, RIE MK, SR X
IREEMAY

all the operations invoked by op commit. op is also an
atomic unit of computation. Thus, the operations are
nested. Each object o; supports a set 7; of operations
opi1, - - . ,o0p;, for manipulating o;. o; is encapsulated
so that o; can be manipulated only through the opera-
tions supported by o;. An operation op;; is compatible
with op;y, iff op;j oopix (i) = opik © op;j (s;) for every
state s; of o;. op;j conflicts with opix (op;; — opir
) unless op;; is compatible with op;x. If op;; conflicts
with op;i, the state obtained by computing op;; and
op;x, is independent of the computation order. If some
operations conflicting with op; are being computed on
0;, op; has to wait until the operations complete.

A transaction T manipulates objects o1, ...,0, by
invoking operations op,, ... ,0p,, respectively. On re-
ceipt of the request op;, o; is locked in an lock mode
u(op;). Here, let M; be a set of lock modes of 0;. Two
modes m; and my in M; are compatible with one an-
other if the operations op, of mode m; and op; of m,
are compatible. Otherwise, m; and mg, conflict. If o;
is locked in a mode m with which p(op;) conflicts, op,
blocks. op; is computed after o; is locked in p(op;).
After computing op; the lock u{op;) of o, is released.
Problem is when o; is released. Here, suppose that
op; invokes op;; on 0;; (7 = 1,...,k;). There are the
following ways for releasing the locks:

[Releasing schemes]

(1) Open : o; is released when op; completes.

(2) Semi-open : 0;1,...,0:, are released when op,
completes. However, o; is not released.

(3) Close : Every object locked in op; is not released.
Ouly if T completes, all the objects locked in T’
are released. O

2.2 Replicas
An object o; is replicated in a collection {

0},...,0f } of replicas, where o] is a replica of o;.

Each o supports the same data and operations as the
other replicas. Let r(0;) be { o},...,0% } (ki > 1).
Here, suppose that an operation op; on an object
o; is invoked. Suppose that op; invokes an operation
op;; on an object 0;; and op;; further invokes op;;; on
0;jx. Here, suppose that o;; is replicated in mu‘ftiple

replicas o}j, - ,afj‘f". If op; sends a request op;; to the

. Eij . .
replicas o, .. ;05" Opi; is computed on the replicas.

Give -
On receipt of op;;, ofj computes op;; and then in-
vokes op; ;. Since multiple replicas invoke op;;, opi;k
is computed multiple times in o;;x. If op;;; changes
0ijk, the state of o;j. gets inconsistent since op; ;i is
computed multiple times on o; ;.

In order to resolve the multiple invocations of the
replicas, the following invocation rule is adopted;

(1) opi; does not invoke any operation; If op;;
changes the state of 0;;, op;; is computed on ev-

ery replica oﬁ‘j. Otherwise, op;; is computed in

3 —394

k

l]'

(2) opi; invokes op,jr on o;jk; op;; is invoked on one
replica ofj or every replica if op;; changes o;; or
not like (1). In either case, only one replica ofj
invokes op;;x. On receipt of the response of op;x

from o0;;x, of, forwards it to all the other replicas
J kY] P

if op;; changes of,. On receipt of the state for
J g 1]

of;, of; (h # k) changes the state so as to be the

(Y
same as o:‘J by using the state.

one replica o

3 Optimistic Object-Based Locking
3.1 Lock modes

First, we discuss the lock modes supported by the
object o;. Before computing op;, o; is locked in a
mode p(op;) in M,. Suppose that o; is locked in a
mode m and op; would be computed orn o;. I u(op;) is
compatible with m, op; can be started to be computed
on o;. Otherwise, op; has to be waited until the lock
of the mode m is released. Here, let C;(m) be a set
of modes with which m conflicts.

E\?eﬁnition] For every pair of modes m; and m; in

;, my is more restricted than my (m; > mg) iff
C,—(ml) Q Ci(mg)"[]

S‘I;eﬁnition] For every pair of modes m; and m, in

,, My is stronger than my iff (1) my; > m; or (2)
Ci(my) N Ci(my) # ¢ and |Ci(m,y)| > |Ci(my)].0

Some mode m; may be more frequently used than
mg. Here, let ¢(m) be the usage frequency of a
mode m, i.e. how many operations whose modes
are m are issued to o; for a unit time. The fre-

uencies of the modes in o; are normalized to be
%:mEM.' w(m) == 1. The weighted strength ||C;(m)]]|
is defined to be 3 /o () w(M').

[Definition] For every pair of modes m; and m; in
M;, m; is stronger than m, on the weight (m; >
= my) iff (1) 7q > my or 52) Ci(m1) NCi(m2) # ¢
and [|Ci(m,)]| 2 [|Ci(m2)]|. O

3.2 Equivalent class

We partition the set m; of opertions of o; into
roups which are composed of operations interreleted.
Definition] For every pair of operations op; and op;

in 7;, op; and op; are interrelated (op; ~ op;) iff

(1) op; and op, conflict or

(2) for some operation ops in 7;, op; ~ op3 ~ ops.0
Here, “~” is reflexive and symmetric. Hence, “~”
is equivalent. =; is partitioned into the equivalent
classes be using “~”. Here, let R;{(op;) denote an
equivalent class {op; | op; ~ opz in n;} of opy, i.e. for
every opy in Ri(op), Ri(op1) = Ri(ops). If Ri(op1)
R.(ops), op; and op, are not inter related, i.e. op;
and opy are compatible in o;.

(. } E’ Dy D i
Ry | b | R
S |

Figure 1: Interrelated operations.

Suppose that an object o, supports six operations
op1,...,0pe in m;[Fifure 1]. Suppose that there is a
following conflicting relation, i.e. op; « op4 (op; con-
flicts with ops), op; + ops, op, ++ ops, ops +> ops and
ops « ops. Hi = Ri(op1) = Ri(op4) = {op1,0ps}.

Riy = Ri(op2) = Ri(ops) = Ri(ops) = Ri(ops) =
{op2, ops, ops, ops}. ; is partitioned into two equiva-
lent classes R;; and R;,.

We can consider the locking scheme for each class

independently of the other classes in o;. Here, sup-
pose that there is an equivalent class R;; in o; (j =
1,...,k).
[Deﬁn't)ion] For every pair of operations op; and op,
in each equivalent class R;j, op; and op; are at the
same level (op, = op,) iff op; and op, are compatible
and C,'(Opl) = C,' (Ong 0

Here, let o(op;;) denote a frequency that op;; is
invoked in o;. Here, the frequencies are normalized to
be Z;":x ¢(op,;) = 1. Each equivalent class R;; can
be reduced as follows :

(1) Let S;;(op) be a set of operations which are at
the same level op in R,;, i.e. {op’ | op = op'}.

(2) All the operations in S;;(op) are replaced with a
virtual operation op.

(3) ‘p(op) is given as Eop'és.,'(op) ‘P(Op/)-

3.3 Locking protocol

Suppose that a transaction T invokes an opera-
tion op;; on o;. First, some number of the repli-
cas in r(0;) are locked in a mode p;(op;;) which is
not stronger than the mode p(opi;). Let fi(opi;)
(< k;) be the number of the replicas locked by op;;
before op;; is computed. If all of f,(op;;) replicas
cannot be locked, op;; is aborted. If all of f;(op;;)
replicas are locked, op;; is computed on the replicas
as presented before. When T would commit, some
number f,(op;;) of the replicas are locked in a mode
plopi;). fi(opi;) < fa(opi;) and py(opi;) < w(opi;).
We discuss how to decide the numbers f;(op;;) and
f2(opi;) of the replicas to be locked and the lock mode
p1(op;i;). The more replicas are locked, the more com-
munication and computation are required. Hence, the
more frequently op;; is invoked, the fewer replicas are
locked. We decide fi(opi;) and fi(opi;) depending
on the probability that op;; conflicts with other op-
erations of o;. Here, suppose that op;; locks f(op;;)
replicas in 7(0;) = {0}, ...,0}. Here, p(op;;) is a
frequency that op;; is invoked in o;. Suppose that
two operations op;; and op;; are invoked and conflict
in 0;. The probability that both op;; and op;x can
lock the replicas is given 1 - [f(opi;) - ¢(opi;)/ki] [
fopix) - p(opix)/ki]. Ci(opi;) is a set of operations
conflicting with op;; in o;. Here, the probability that
op;; can lock of f(op;;) replicas is 1 - []
[£(op) - w(op) /K-

4 Concluding Remark

This paper discusses the optimistic locking proto-
col on the replicas of the objects. The objects support
more abstract operations them the traditional read
and write operations.

References

{1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[2] Jing, J., Buihres, 0., and Elmagarmid, A., “Dis-
tributed Lock Management for Mobile Transac-
tions,” Proc of the 15th IEEFE ICDCS, 1995,
pp. 118-125.

op€C;(opi;)

