Vol. 38 No. 12

Regular Paper

Transactions of Information Processing Society of Japan

Dec. 1997

Identifying the Coding System and Language of On-line
Documents Using Statistical Language Models

GENICHIRO KIKUI!

This paper proposes a new algorithm that simultaneously identifies the coding system and
language of a code string retrieved from the Internet, especially the World-Wide Web. The
algorithm uses statistical language models to select the correctly decoded string as well as to
determine the language. The proposed algorithm covers 43 combinations of 15 languages and
11 coding systems used in Eastern Asia and Western Europe. Experimental results show that
the level of accuracy of our algorithm is over 95% for 929 on-line documents.

1. Introduction

There is a great demand for intelligent docu-
ment processing systems (e.g., text search and
machine translation) to deal with the enormous
number of documents accessible through the In-
ternet.

Identifying the coding system and the lan-
guage of on-line documents is fundamental for
processing documents on the Internet. In fact,
these documents are written in a variety of lan-
guages and encoded with various character cod-
ing systems. Therefore, systems should identify
the coding system of individual documents for
correct decoding. In addition systems should
identify the language so that appropriate lan-
guage dependent resources such as dictionaries
and the grammar can be selected*.

Although character coding systems and lan-
guages are closely related, identification of these
two have been separate research areas.

It is generally considered impossible to iden-
tify the coding system of an arbitrary code
string among unrestricted candidates of a cod-
ing system. This is because some coding sys-
tems have almost the same code ranges (i.e.,
different coding systems map their own charac-
ters into the same character codes). Therefore,
existing algorithms have several restrictions.
Some algorithms limit the set of coding sys-
tems they can handle. For example, programs
for Japanese coding systems (e.g., by Lunde 5))
choose one coding system among three cod-
ing systems widely used in Japan**. Other
algorithms (e.g., the identifier for Mule)
sacrifice selecting a unique coding system but

+ NTT Information and Communication Systems
Laboratories

2440

output several candidates. These limitations
make it difficult to include identification mod-
ules in document processing systems.

Automatic language identification has been
discussed in the field of document process-
ing. Previous approaches are classified into
two types: statistic-based and heuristics-based.
The former uses the n-gram of characters®, di-
acritics and special characters”), and using the
word unigram with heuristics 8). Among these
methods, the n-gram model® shows the best
accuracy over 95%. The latter employs gram-
matical words peculiar to each language® and
achieved comparable accuracy.

They, however, presuppose that the input
text is correctly decoded, which does not hold
true for documents on the Internet as described
above.

This paper presents a novel algorithm that si-
multaneously identifies the coding system and
the language. The underlying assumption’ is
that a correctly decoded string must be a doc-
ument in natural language. Based on this as-
sumption, choosing the correctly decoded string
is regarded as selecting the string that belongs
to a specific language with the highest likeli-
hood. In our algorithm, statistic-based lan-
guage models calculate the likelihood that a
string is from a particular language.

The next section describes the problem. Sec-
tion 3 presents our algorithm which handles lan-

A fundamental solution is to develop international
standards for an internationalized coding system
and language representation. In fact, there is ac-
tive discussion on the international coding stan-
dards V~%, and the language representation on the
WWW 3. However, it will require several years
before most of the documents are encoded into a
unique well-defined coding system.

*% JJIS, SJIS, JIS.

Vol. 38 No. 12

guages and the coding system used in West-
European and East-Asian countries. Sections 4
and 5 describe an example and the experimen-
tal results, respectively.

2. Problem

2.1 Identifying Character Coding Sys-

tems on the Internet

For historical reasons, documents on the cur-
rent WWW are encoded with various coding
systems. This section briefly explains the cur-
rent coding systems on the Internet and clarifies
the problem.

2.1.1 Terminology

A character coding system defines how a text
is mapped to a sequence of numbers (called
character codes). A character coding system
presupposes one or multiple character sets.

A character set is a standardized collection of
characters in a particular language (or a set of
languages). The most fundamental character
set is the ASCII character set*. Some coun-
tries, or local communities, define their own
character sets that cover characters in their lan-
guages. For example, GB 2312 and JIS X 0201
is for Chinese and for Japanese respectively.
ISO 88591 covers all West-European languages
(e.g., French, German, Dutch, etc.).

Each element in a character set is assigned an
identification code (hereafter character idents-
fication code or CI code) unique in the charac-
ter set. Therefore, if only one character set is
presupposed, CI codes have enough information
to represent individual characters. In fact, on
a closed network, a text is encoded simply by
substituting individual characters with their CI
codes.

If multiple character sets are presupposed,
the same CI code from different character sets
should be discriminated. ISO 2022 is an inter-
national standard that defines a flexible frame-
work for handling multiple character sets. It
assigns a unique escape sequence to every regis-
tered character set. The escape sequence marks
the corresponding character set in an encoded
string. For example, the escape sequence for
JIS X 0201 is inserted at the point where a
Japanese character begins, as shown in Fig. 1.

ISO 2022 defines another way to handle mul-
tiple character sets which is particularly useful
when (a part of) the text consists of characters
from two character sets. Since every CI code

* Technically, ISO 646 IRV.

Identifying the Coding System and Language 2441

JIS X 0208 ASCII
escape sequence escape sequence

1b 24 42|24 4f[1b 28 42)42 31

! f

Cl code in Ci code in
JIS X 0208 ASCIll

Fig.1 An example of code string with escape
sequences.

"declaration” of
character sets

........... a4 cf 42 31

bt

Clcode + 0x80 Cl code in
in JIS X 0208 ASCII

An example of a code string using the eighth
bit.

Fig. 2

of a registered character set consists of one or

two bytes whose eighth bit is 0, the eighth bit

can be used to encode information whether if
the code is from one of the two character sets.

According to the ISO 2022 standard, the two

character sets are ‘declared’ at the beginning

of the code string by using escape sequences,
then the eighth bit is employed to discriminate
these two character sets. This is exemplified in

Fig. 2.

2.1.2 Coding Systems on the Internet

The scope of this paper is restricted to coding
systems used in North American, West Euro-
pean, and East Asian countries, although this
algorithm is applicable to other coding systems.

Most coding systems on the Internet are lo-
cal coding systems in the sense that they are
designed to efficiently handle limited charac-
ter sets sufficient for local communication. All
these local coding systems include the ASCII
character set for codes smaller than 0x80 as
their default. In other words, if an entire text
is written with ASCII characters, all the local
coding systems encode it into the same byte
string. Therefore the difference lies in how to
encode non-ASCII characters, as classified into
the following two types.

Type 1: Coding systems that employ escape
sequences defined in ISO 2022 (e.g., ISO-
2022-kr, ISO-2022-jp).

Type 2: The remaining coding systems (e.g.,
EUC-GB (Chinese), ISO-8859-1, SJIS,
BIGS).

Type 1 coding systems are simplified versions

2442 Transactions of Information Processing Society of Japan

of ISO 2022. As compared with the full ISO
2022 specifications, they handle a limited num-
ber of character sets and/or omit control codes
such as SI/SO. Since these coding systems ex-
plicitly indicate non-ASCII characters by in-
serting escape sequences, it is easy to decode
the encoded string.

Type 2 coding systems mark non-ASCII char-
acters by setting the eighth bits. These are
further classified into simplified versions of
ISO 2022 and the rest of the coding systems.
The former coding systems (e.g., EUC-JIS and
EUC-GB) use eighth bits in the same way as
1SO 2022, as exemplified in Fig.2, but they
lack escape sequences®. The rest of the cod-
ing systems do not follow ISO 2022 nor do they
employ registered character sets (e.g., BIG5 for
traditional Chinese). Since the code ranges of
these coding systems overlap with each other,
it is hard to identify an arbitrary code string
as one of these coding systems. It should be
noted that ISO 2022 escape sequences do not
appear in any Type 2 coding systems, even if
they define their own character sets and coding
scheme.

2.1.3 Ambiguities in Identifying Cod-

ing System

The above observations are summarized into
the following statements.

(1) If every byte in a code string is smaller
than 0x80, i.e., the eighth bit is zero, and
the code string does not contain any es-
cape sequences nor SI/SO, then it is an
ASCII text.

(2) If a code string contains ISO 2022 es-
cape sequences, then it is encoded with (a
simplified version of) ISO 2022 (Type 1).
Therefore, it is uniquely decodable.

(3) If a code string contains bytes greater
than 0x7F and does not contain escape
sequences, then it is encoded with one of
the coding systems belonging to Type 2.

In the last case, we should choose a unique
coding system from the Type 2 coding systems.
This problem is partly solved by eliminating
some of coding system candidates whose code
ranges do not cover the given code string. How-
ever, the number of candidates cannot always
be decreased to one.

The remaining ambiguity is resolved by our
algorithm described in Section 3.

* In other words, the two character sets are
presupposed.

Dec. 1997

2.2 Identifying the Language on the
Internet

Documents on the Internet are written in
many languages. The problem is that currently
there are no widely accepted protocols for com-
municating the language of each document.

If we restrict ourselves to HTML documents,
then explicit language tagging, which represents
the language of each portion of a text, will be
introduced in a future version of HTML speci-
fications. This, however, is not currently used.
Moreover, there are many non-HTML docu-
ments on the WWW.

If the character set employed by the text is
known, it may provide a good clue for identi-
fying the language because some character sets
strongly suggest which language(s) was used.
For example, if a document consists of charac-
ters in the JIS character set, it must be written
in Japanese. However, this is not always the
case for the following two reasons. First, the
character set of a text is sometimes ambiguous
due to the decoding problem described above.
Second, some character sets are designed to
cover multiple languages (e.g., ISO-8859-1 for
several Western-European languages). Some-
times a character set is used in a language that
is not the primary candidate suggested by the
character set. For example, a document con-
taining only US-ASCII characters, which sug-
gests the document is in English, may be a
German document in ASCII-format where um-
laut letters are converted into ASCII characters
(e.g., “0” is written as “oe”).

The remaining possibility is to identify the
language by analyzing its content. As compared
with similar problems tackled in previous re-
search (e.g., by Cavnar, et al.®), our problem
is even more difficult because the text is en-
coded with an unknown coding system.

Sibun and Spitz 9 proposed a method of de-
termining the language of a text image. The
problem tackled by them is similar to ours, in
the sense that the input is not a unique char-
acter string but a string that potentially cor-
responds to several different character strings.
Their method, however, can not directly ap-
plied to our problem.

3. Algorithm

Our algorithm receives a byte (=code) string
and outputs the decoded character string as
well as its language(s).

The underlying assumption is that the given

Vol. 38 No. 12

Table 1 The scope of coding systems.

Identifying the Coding System and Language 2443

Table 2 The scope of languages.

Category | Coding Systems Category |Language Coding Systems

7 bit ISO 646 USA (ASCII), European |Danish, German, ISO 646,

Coding | ISO-2022-jp (JIS Code), English, Spanish, ISO 8859-1,
1SO-2022-kr (ISO-2022-int) Finnish, French, Entity-

8bit ISO-8859-1, EUC-KS, Italian, Dutch, Reference

Coding | EUC-JIS (UJIS), Norwegian, Portuguese,

(Type 2) | BIG5 (Traditional Chinese), Swedish
EUC-GB (Simplified Chinese), East Asian|Chinese Bigh
Shift JIS (MS Kanji code) (traditional)

Special Entity Reference for the ISO-8859 Chinese EUC-GB
characters defined in HTML (or SGML) (simplified) 1S0O-2022-jp
specifications. EUC-JIS,
(e.g., 6 is represented as “Ö”) Shift-JIS

Korean EUC-KS
. 1S0O-2022-kr
code sequence is encoded from a document con- Tapanese EUCITS,
taining natural language texts (or text frag- 1SO-2022-jp,
ments). This means that the correctly decoded Shift-J1S

string is more likely to be from some languages
than incorrectly decoded strings.

In our algorithm, a statistic-based language
identifier calculates how likely a decoded string
is from a particular language. The result indi-
cates the level of “correctness” of decoding as
well as the language of the string.

The following subsections first present the
scope of the algorithm then explain in detail
the algorithm.

3.1 The Scope of our Algorithm

The current version of our algorithm can han-
dle 11 coding systems and 15 languages*, as
shown in Table 1 and Table 2 respectively.
Table 2 also gives the coding system(s) that
can be used to encode each language. For ex-
ample, Korean text is encoded with EUC-KS
or ISO-2022-kr. We allow Chinese document to
be encoded with Japanese coding systems be-
cause there are several such documents on the
Internet™=.

3.2 OQutline of the Algorithm

The algorithm is made up of the two major
steps.

It first extracts East-Asian language parts
(i.e., sub-strings consisting of East-Asian char-
acters) in the input document, if they exist,
and identifies the language. The algorithm then
identifies the remaining part as one of the West-
European languages.

In both steps, a process responsible for iden-
tifying the language is employed. This process
called the “language identifier” is described in
Section 3.4.

* We regard traditional and simplified Chinese as two
different languages.
*% For example, “fj.soc.chinese”.

3.3 Extracting East-Asian Parts

If the given code string contains escape se-
quences defined in ISO-2022, East-Asian char-
acter strings are easily extracted. This is
because East-Asian characters are explicitly
marked by escape sequences in the string. In
this case, the language identifier for East-Asian
languages is applied to the extracted character
strings.

If the given code string does not contain such
escape sequences (i.e., it must be encoded with
Type 2 coding systems), the Eastern- Asian part
is identified by the procedure, based on lan-
guage identification, exemplified in Fig. 3.

The procedure first decodes the given code
string with every possible decoder for East-
Asian character sets (e.g., BIG5, EUC-KS).
Then, the East-Asian character parts are sent
to the language identifier (for East-Asian lan-
guages). The language identifier outputs the
language and the likelihood score of the given
character string. Finally, the East-Asian part
with the highest likelihood score is taken.

Note that if the language identifier fails for
every East-Asian part, then the input code
string is judged to have no East-Asian language
parts (i.e., the code is judged to be ISO-8859-1
by default).

3.4 Language Identifier

Our algorithm employs two language identi-
fiers: one is for East-Asian languages, and the
other is for West-European languages. Both
identifiers consist of the following three steps.
(1) Selecting possible languages for the given

coding system
The coding system (or the character
set(s)) of a text is loosely related to the

2444 Transactions of Information Processing Society of Japan

O T

East Asian Parts

Language
Identifier

Language: Korean
Likelihood: 0.8

Language: Chinese
Likelihood: 0.3

Result

Likelihood: 0.8

Fig.3 An example of extracting East-Asian part.

language of the text. For example, a
document encoded with US-ASCII is not
written in Korean. We made rules to
map a coding system to possible lan-
guages according to Table 2.

(2) Calculating the ‘likelihood’ of the de-
coded string for each language.
For each language, this step calculates
how likely the decoded string is to be
from that language by comparing the
string with the statistic model of the lan-
guage.

(3) Selecting the language with the highest
likelihood
This step compares likelihood scores. If
the highest score exceeds predetermined
threshold, then the system returns the
corresponding language as well as the
score. Otherwise, it returns ‘ELSE’ (i.e.,
fail).

The second step is the most important. Our
system uses a unigram model for both Western-
European languages and East-Asian languages,
but the models for Western-European lan-
guages and the models for the East-Asian lan-
guages have different unigram units.

3.4.1 Likelihood Score for Western-

European Languages

In order to distinguish Western-European
languages, we applied a method proposed by
Cavnar, et al. 6), We assign a class name for
each word. The class name of a word longer

Dec. 1997

than n characters is the concatenation of “X-”
and the last n characters of the word. If the
word is not longer than n characters, the class
name is the word itself. For example, if n = 4,
then class names of “beautiful” and “the” are
X-iful and the respectively.

Let TEXT be the set of words in a text,
then the likelihood of TEXT with regard to
language [is given as the following S(TEXT,)

S(TEXT,I)
1

= m-l Z lOgP(Cw,l)

weTEXT

where P(Cy, 1) is the unigram probability of C,,

in the language [, and C,, is the class name of

the word w. | TEXT | is the total number of
words in TEXT.

P(Cy,1) is estimated from text corpora in
language 1. ~

3.4.2 Likelihood Score for East-Asian

Languages

As compared to Western-European lan-
guages, Bast-Asian languages have the follow-
ing properties:

(1) A large number of characters
East-Asian languages use over 3,000
ideographs or combined characters. A
character is normally encoded with two
(or more) bytes.

(2) No Explicit Word Boundaries
In East-Asian languages, there are no ex-
plicit word delimiters (corresponding to
spaces in English) in a sentence. Word-
based language models cannot be used.

For East-Asian languages, we use a character
unigram, instead of a word unigram, to model

a language. Formally,

S(TEXT,I)
P(char,l)

1
" |TEXT| 2
char€eTEXT

where P(char,l) is the unigram probability of
char in language . In this case, | TEXT | cor-
responds to the number of characters in TEXT.

3.4.3 Threshold Values

We determined threshold values to be slightly
lower* than the minimum of likelihood scores of
all the training documents belonging to the lan-
guage. These values reject extremely low scores
while still accepting all the training data.

* e.g., the largest integer.

Vol. 38 No. 12

GB WYl (o B
kS -5r 4 i BB
JIS SEBAEBIOITE
BIGH: $RREIN B

Fig.4 Decoded strings.

4. Example

Suppose the following code sequence is given
to the algorithm.
b8cO b8ec becbl cacc adce cafd cbal 0a49
6465 6e74 6966 7969 6e67 2074 6865 204c
616e 6775 6167 650a

The string is first divided into Asian and Eu-
ropean parts. Since there is no escape sequence,
which begins with “1b”, the procedure in Sec-
tion 3.3 is applied.

The division procedure first tries to extract
Eastern-Asian characters from the given string.
Since it has no escape sequences, the procedure
exemplified in Fig. 3 is applied.

Decoders for four coding systems, namely
EUC-GB, EUC-KS, EUC-JIS, BIG5, are suc-
cessfully applied. The resulting character string
of each decoder has East-Asian characters in
the first 14 bytes of the input string. This
means that these four coding systems are poten-
tial candidates and the corresponding decoders
extract the same Fast-Asian character part.

Resulting East-Asian strings are shown in
Fig. 4.

Next, the statistic-based language identifica-
tion is applied to each decoded string,

Table 3 shows the score (= log probability)
of each character with regard to the language
that produced the highest likelihood (i.e., av-
erage score). For example, the second column
shows the score of each character with regard to
Chinese (zho) when the input code string is de-
coded with EUC-GB. This implies that Chinese
(zho) is the most likely language if we presup-
pose the original string is encoded with EUC-
GB.

The bottom row shows that the highest aver-
age score is obtained when the input is decoded
with EUC-JIS and the language is Japanese
(jpn). Since this score exceeds the threshold
(—10), the Eastern-Asian part is confirmed to
be a Japanese string encoded with EUC-JIS.

The remaining part is decoded into “Identi-
fying the Language” and sent to the European

Identifying the Coding System and Language 2445

Table 3 Character likelihood scores of Asian part.

Char. SCORES (log prob.) [lang]

(JIS) | GB[zho] KSJkor] JIS[jpn] BIGS5 [zho]
1(&) | —11.05 —-15.51 —-T7.25 —12.62
2(3E) | —11.15 —15.51 —7.86 —10.86
3(#) | —8.47 —7.69 —868 —12.42
4(%) | —11.45 —15.51 —7.71 —15.51
5(m) | 1551 —15.51 —3.40 —7.50
Ave. —11.06 —-14.39 -6.9 —-12.64

zho=Chinese, kor=Korean, jpn=Japanese

Table 4 Character likelihood scores of European

part.
class of SCORES (log prob.)
token eng deu ita
X-ying | —7.45 -10.80 —10.80
the —-3.11 -9.40 —7.21
X-uage | —7.20 —10.80 —10.80
Ave. —-5.9 —10.3 —9.60

eng=FEnglish, deu=German, ita=Italian

language identifier. Table 4 gives scores of to-
kens with regard to three languages.

In this table, English (eng) is the most plau-
sible language for the European part with a suf-
ficient score.

The final result is easily obtained by combin-
ing the results of the Asian and the European
parts.

5. Evaluation and Discussion

5.1 Data

For evaluation purposes, we collected a set of
documents on the WWW. Each document was
manually assigned a correct language name. If
a document contained more than one Western-
European language, the language that covered
more than 80% of the document was chosen as
the correct language. Documents without a cor-
rect language (i.e., documents without a unique
main language) were discarded. The same pro-
cess was applied to East-Asian parts of docu-
ments.

The remaining documents were divided into
640 training documents and 876 test doc-
uments, where one web document is about
10Kbytes on average. In addition to the train-
ing documents obtained from the WWW, man-
uals and the Internet news articles in East-
Asian languages, about 4 Mbytes in total, were
included in the training corpus. For testing pur-
pose, we added 53 special documents written
with Latin characters. They were either in lan-
guages outside our scope (e.g., Catalan, Turk-
ish) or language independent documents (e.g.,

2446

Transactions of Information Processing Society of Japan

Dec. 1997

Table 6 Confusion matrix for Western-European languages.

dan | deu | eng | esl | fin | fra [ita | nld | nor | por | swe | ELSE
dan 8 1
deu 47 1
eng 1 96 1 1 4
esl 25 1
fin 29
fra 48 1
ita 29 1
nld 49 1
nor 1 1 1 29 1
por 8 1
swe 26
ELSE 1 1 42

dan=Danish, deu=German, eng—English, esl=Spanish, fin=Finnish, fra=French,
ita=Italian, nld=Dutch, nor=Norwegian, por= Portuguese, swe=Swedish

Table 5 Summary of decoding errors.

Correct System Count
EUC-JIS EUC-GB | 4
I1SO-8859-1 | EUC-GB | 1
1S0-8859-1 | EUC-KS | &
1S0O-8859-1 | BIGS 1

lists of person names or acronyms). These spe-
cial documents were labelled with “ELSE” as
their language name. Note that the total num-
ber of test documents was 929 (876 + 53).

It is important to note that 830 documents,
including 430 East-Asian documents, out of 929
test documents are in Type 2 coding systems,
which have been considered to be difficult (see
Sections 2.1 and 3.1).

5.2 Identifying Coding Systems

The proposed algorithm correctly identified
almost all the test documents. The error rate
was 0.8%. The errors are summarized in Ta-
ble 5. For example, the first row shows that
four documents encoded with EUC-JIS were
identified as EUC-GB by the system. These er-
rors were due to incorrect identification of East-
Asian languages, as explained in Section 5.4.

5.3 Identifying Western-European

Languages

Table 6 shows the confusion matrix for the
Western-European language results. The row
correspond to the output from the system, and
the columns correspond to the correct answers.
The value of n* was set to 4, which gave the
fewest number of errors for the training set.

The error rate was 4.8%. 90% (= 18 doc-
uments) of erroneous documents did not con-
tain sentences (i.e., verbs) but were filled with

* The number of suffix characters for determining the
word class. See Section 3.4.1.

Table 7 Confusion matrix for East-Asian languages.

jpn | kor | zhos | zhot | ELSE
jpn 145
kor 171 5
zho_s 4 56 1
zho_t 90 1
ELSE 1

jpn=Japanese, kor=Korean, zho_s=simplified
Chinese, zho_t=traditional Chinese

proper names, acronyms and/or network ad-
dresses. Since these words were independent
of languages, n-gram scores were not effec-
tive. The remaining documents contained natu-
ral language sentences but the system confused
with the similar language. This remaining error
corresponds to the limitation of the algorithm.

5.4 Identifying East-Asian Languages

Table 7 shows the confusion matrix for the
East-Asian language results. The matrix shows
that the system also performs fairly well for
Fast-Asian languages.

The error rate was 4.6%. Most errors oc-
curred when the document included only a
few East-Asian characters. For example, four
strings in Japanese were confused with those in
simplified Chinese. In fact, all the errors were
due to proper names consisting of four or five
characters embedded in English documents. As
far as the above experiment is concerned, the
algorithm correctly identifies East-Asian lan-
guages if a document contain more than seven
East-Asian characters (14 bytes).

Some documents were identified as East-
Asian languages although they were written
in Western-European languages. These errors
came from accented characters (codes greater
than 0x7F) arranged to form graphics such as
horizontal lines.

Vol. 38 No. 12

Identifying the Coding System and Language

2447

Table 8 Confusion matrix for West-European languages using the
extended Cavnar’s algorithm.

dan | deu | eng | esl | fin [fra [ita | nld | nor | por | swe | ELSE
dan 7
deu 45
eng 1 2 99 1 |2 2 1
esl 24 2
fin 28
fra 47
ita 28 3
nld 1 48 1
nor 1 28 1 2
por 1 8
swe 1 25 3
ELSE 1 1 1 1 40

5.5 Comparison with Other Methods profile.

Although previous language identification al- (3) Creates the profile for the input docu-
gorithms were limited to Western-European ment (i.e., a sorted list of n-grams of the
languages (i.e., languages that have explicit input document).
word delimiters) and assumed input string to (4) Calculate the out-of-place distance be-

be correctly decoded, it is worth while compar-
ing them with our algorithm.

5.5.1 Cavnar’s N-gram-based Identifi-

cation

Although both Cavnar’s method and ours are
based on n-grams, there are two differences.

One difference is in the n-gram unit. Cav-
nar uses 1 through 5 grams of characters of all
the words. Blanks are added to beginning and
ending of the word to make complete n-grams.
For example, tri-grams of “a boy” are shown as
follows:

“__an’ “_a_n, “a__”, cc__baa, “_bO”, “bOy”,
“Oy_”, “y_—”’

Since Cavnar’s n-gram unit relies on words
as he basic unit, it is not simple to apply it to
languages without explicit word separators such
as Japanese or Chinese. One solution might be
assuming a (two-byte) character as a word. In
this case, the n-gram unit is as same as ours.

If we restrict ourselves to Western-European
languages, our n-gram unit is a subset of Cav-
nar’s because ours uses only the rightmost
four characters (i.e., one 4-gram) of each word.
Therefore our n-grams are more efficiently com-
puted than Cavnar’s.

The other difference lies in classification al-
gorithms. Cavnar’s algorithm is summarized
as follows (see Cavnar, et al.® in detail):

(1) Classifying training data by language.

(2) For each classified data, generating all
the n-grams, counting the frequency of
every different n-gram and sorting them
by reverse order of frequency. The re-
sulting sorted list is called the category

tween the input’s profile and each cate-
gory. The out-of-place distance defines a
difference measure between two ordered
lists.

(5) Picks the language with the smallest dis-
tance.

First, the algorithm is computationally inef-
ficient as compared to ours because the former
involves sorting all the n-grams of the input
document, while the latter consists of only one
summing up operation for each word.

Second, the original algorithm does not have
the “ELSE” category. Therefore, we extended
the algorithm as follows:

(1) Applying the original algorithm.

(2) If the out-of-place value of the selected
language exceeds the predefined maxi-
mum distance for that language, then re-
turning “ELSE”, otherwise returning the
original result. The maximum distance
is determined to the smallest value that
does not reject any training documents.

We conducted language identification exper-
iment with the above extended Cavnar’s algo-
rithm by using the same training and test docu-
ments as shown above. The resulting confusion
matrix is shown in Table 8. The error rate is
6.4% which is slightly worse than ours.

In summary, Cavnar’s identification method
is applicable to Western-European part of our
task but it should be extended as proposed
above. The accuracy is slightly lower than, but
comparable to, ours but Cavnar’s method is less
efficient.

2448 Transactions of Information Processing Society of Japan

5.5.2 Rule-based Language Identifica-

tion

Language identification with manually se-
lected grammatical words® achieved over 95%
accuracy without training corpus if we can pre-
pare effective (i.e., discriminating) words.

The problem is that the method requires ex-
perts with multi-linguistic knowledge who can
choose effective grammatical words. Statistic-
based methods including Cavnar’s and ours
need only a set of texts with correct language
names, which can be prepared by normal people
familiar with one language.

6. Conclusion

This paper proposed an algorithm for simul-
taneously identifying the coding system and the
language of a given code-string. It handles four
East-Asian languages as well as eleven Western-
European languages with a high level of ac-
curacy. The algorithm uses statistic language
models to select the correctly decoded string as
well as to determine the language. Since the
algorithm uses statistic language models, it is
robust and can be easily extended to other lan-
guages.

The algorithm is implemented in a cross-
lingual search engine for WWW pages which
has a language index (i.e., WWW pages are in-
dexed by language).

We intend to elaborate on the algorithm so
that it can identify languages in multi-lingual
text because many documents on the WWW
are multi-lingual.

Acknowledgments The author wishes to
thank Yoshihiko Hayashi and Seiji Suzaki for
their comments on an early version of the paper.

References

1) Yergeau, F., Nicol, G., Adams, G. and
Duerst, M.: Internationalization of the Hyper-
text Markup Language, Internet Draft, draft-
ietf-html-i18n-02.txt (1995).

2) Nicol, G.T.: The Mutiliungual World Wide
Web, http://fuzine.mt.cs.cmu.edu/mlm/lycos-
home.html.

3) Unicode Inc.: The Unicode Standard, http://
www.stonehand.com/unicode/standard.html.

4) Nishikimi, M., Takahashi, N., Handa, K. and

Dec. 1997

Tomura, S.: Mule: Multilingual text processing
system (in Japanese), SIG-SLUD-9501-7, JSAI
(1995).

5) Lunde, K.: Understanding Japanese Infor-
mation Processing, O’Reilly and Associates
(1993). Japanese Translation: Nihongo-Joho-
Shori (1995).

6) Cavnar, W.B. and Trenkle, J.M.: N-gram
Based Text Categorization, Proc. Third Annual
Symposium on Document Analysis and Infor-
mation Retrieval, pp.161-169 (1994).

7) Beesley, K.R.: Language Identifier: A Com-
puter Program for Automatic Natural Lan-
guage Identification of On-line Text, Language
at Crossroads: Proc. 29th Annual Conference of
the American Translators Association, pp.47—
54 (1988).

8) Henrich, P.: Language Identification for the
Automatic Grapheme-to-Phoneme Conversion
of Foreign Words in a German Text-to-Speech
System, Proc. Eurospeech 1989, pp.220-223
(1989).

9) Giguet, E.: Multilingual Sentence Categoriza-
tion according to Language, Proc. EACLY5
SIGDAT Workshop (1995).

10) Sibun, P. and Spitz, A.L.: Language Deter-
mination: Natural Language Processing from
Scanned Document Images, Proc. ANLP 94,
pp.15-21, (1994).

(Received March 7, 1997)
(Accepted September 10, 1997)

Genichiro Kikui was born
in 1961. He received his M.E.
degree from Kyoto University in
1986. He has been working in
NTT Corp. since 1986 and now
is a senior research engineer of
the Information and Communi-
cation Systems Laboratories of NTT. From
1990 to 1994 he had been a visiting researcher
of ATR Interpreting Telephony Research Labs.
He had also been a visiting researcher of DFKI
(German Research Center for Artificial Intelli-
gence) in 1993. He has been engaging in the re-
search areas of natural language processing in-
cluding machine translation, text revision, and
recently, cross-language information retrieval
on the WWW. He is a member of IPSJ.

i

