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Neural Net Pattern Recognition Equation for Stereoscopic Vision

YASUNARI YOsHITOMI," TETU KANDA,"* TETURO KITAZOE!
and TOMOHIRO SHII!

An a.lgorithm for stereoscopic vision was developed on the basis of recent pattern recognition

equations describing a dvnamic self-oreanizinge process with competition and cooperation. The

g process

Compelivion anaG Cooperaion.

algorithm includes a potential model and a simulated annealing process, and can thus be used
to simulate stereoscopic depth perception from any initial situation of binocular neurons. It
has been shown that simulated annealing is very useful in allowing a disparity map to develop
by overcoming the local minimum in the potential.

1. Introduction

In stereoscopic vision, a three-dimensional
scene is imaged from two different points, and
the acquired two-dimensional images are then
reconstructed in order to measure the dispar-
ity and estimate the depth. Our brains seem
to be able to carry out this complicated proce-
dure by means of a kind of neural network. It
has been shown that it is possible for human to
extract a depth map by using the disparity of
corresponding image features!). Various algo-
rithms for solving the problem of stereoscopic
vision have been reported 2~7). Some of them
have also been mentioned in reviews of stereo-
scopic vision®+®). In recent investigations, a
mathematical model in which the potential of a
neuron is treated as a variable in the equation
for cooperation and competition has been pro-
posed as a theory of neural fields?). The main
stream of algorithms for solving the problem of
stereoscopic vision has been based on finding
the global minimum of the energy or of the po-
tential function *)~®).

On the other hand, an algorithm that is not
based on the energy or the potential function
has also recently been developed ?). In this al-
gorithm, a variable, called the activity of binoc-
ular neurons, is assigned to each possible dis-
parity, and some procedures such as competi-
tion, cooperation, and self-organizing processes
also seem to be used for simulating the neural
networks in our brains. However, our inves-
tigation of the algorithm has shown that spe-
cial selection of the initial conditions is indis-
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pensable for a disparity map to develop as a
self-organizing process. The initial condition of
binocular neurons in our brains does not seem
to be limited in such a way without some spe-
cial reason.

As a means of analyzing the problem, we pro-
pose a new algorithm for stereoscopic vision,
based on the modified pattern recognition equa-
tions. The algorithm includes a potential model
and a simulated annealing process, and can thus
be applied to any initial condition of binocular
neurons by finding the global minimum of the
energy or of the potential function.

2. Algorithm for Stereoscopic Vision

2.1 Coupled Pattern Recognition
Equations

Since the present study is based on the Cou-
pled Pattern Recognition (CPR) equations de-
veloped by Reimann and Haken”), the CPR
equations are briefly described below.

In the CPR equations, there are three con-
straints, namely, the search area, the continu-
ity, and the uniqueness. Starting from a feature
in the left image, the feature in the right image
which is the most similar to that of the left im-
age is found by means of the CPR equations.

The function S(u,v, a, b) for the similarity be-
tween the feature L of an image point (u,v) in
the left image and the feature R of an image
point {u + a,v + b) in the right image is given
as follows:

S(u,v,a,b) =
ff|L(w,y,u,v) ~ R(x+ a,y + b,u + a,v + b)|dzdy
[f f(z,y)dzdy ’
where (1)
L(m,y,u,v) = f(IL‘ —uy - ’U)gL(ﬂ'J, y) _gL(’u"U)'
(2)
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R(z,y,u,v) is defined correspondingly. F is a
positive constant defined in such a way that the
similarity measure has a positive maximum for
the highest similarity. g7 (z,y) and gg(z,y) are
the left and right stereo input data at the point
(z,y). The area that defines the features is
given by the window function f(z,y). g;(u,v)
and gg(u,v) are the local mean gray values of
the features corresponding to the image points
(u,v).

Since the disparity can vary only between cer-
tain limits, the search has to be performed in
between these limits. The disparity search area
{DSA) is defined as —a; < a < a;, —bs < b <
bs. In the definition of S(u,v,a,b), a and b are
limited in those ranges.

A time-dependent activity of binocular neu-
rons £ (t) is introduced. The activity will obey
a dynamic process and have the value of the
similarity measure as initial value. If the conti-
nuity constraint is ignored for a moment, in the
course of the process the activity of the binocu-
lar neuron with the highest similarity measure
in the DSA should exceed the activity of the
others, while the others should vanish. Such a
winner-takes-all system is given by the follow-
ing equations for CPR processes 7:

o (1) = N € (¢)

—(B+C))_eum ()28 (1)

a'b’
!
—CERW® + DY n (DER(1)
(3)

The first term represents an exponential growth
of the amplitude £*Y(t), the second term de-
notes the effect of competition among all am-
plitudes, the third term restricts the growth of
an amplitude, and the fourth term denotes the
cooperative coupling with the different pattern
recognition processes. B, C, and D are positive
constants that have to be chosen appropriately.
Here, one possibility is to choose AY} as a -de-
viation of the similarity measure from its mean
value in the DSA. In }/,,, the summation in-
dices a'b’ run over the DSA with the restrictions
a #aand b #£b. In Z;,v, the summation in-
dices ¥/, v’ run over the cooperation area (CA)
defined asu — I <v' <u+lLv-1<v <v+l
with the restrictions v’ # u and v’ # v.

To solve the correspondence problem of
stereoscopic vision, the CPR equations are
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used. The CPR equations have the specific fea-
ture that they cannot be derived from a poten-
tial or energy function, because of the fourth
term. The values of the positive semi-definite
similarity function, which are adjusted by E,
are chosen as the initial values of the corre-
sponding binocular neurons % (t).

In the algorithm, a variable, called the activ-
ity of binocular neurons, is assigned to each pos-
sible disparity. Moreover, procedures such as
competition, cooperation, and self-organizing
processes also seem to be used for simulating
neural networks in our brains. However, our
simulation with the CPR equations showed that
special selection of a positive constant E in the
initial conditions of the activity of binocular
neurons £ (t) is indispensable for a disparity
map to develop as a self-organizing process, and
that the activity of binocular neurons that will
win changes to a negative value at equilibrium
in the CPR process if a negative constant E is
chosen. That is to say, in the similarity func-
tion, the constant E should be positive and de-
fined in such a way that the similarity measure
will have a positive maximum for the highest
similarity. Since there is no special reason for
the initial condition of binocular neurons in our
brains to be constrained in such a way as de-
scribed above, the selection of the initial condi-
tion of £ (t) does not seem to be reasonable.
For this reason, the CPR equations are modi-
fied with a potential model in order to analyze
more clearly the structure of the equations, es-
pecially, the role of the constant E in the simi-
larity function.

2.2 Potential Model and Simulated

Annealing

The CPR equations cannot be derived from
a potential or energy function, because of the
fourth term +D Y., wv' ()X (t). In gen-
eral, however, in order to analyze the kinetics of

uv(t), it is very helpful to introduce a potential
as in the following equations:

: ou
uv t — 4
The potential is introduced by modifying the
CPR equations (3) as follows:

UG () = —52a 68 ()°

+5(B+O)Y € (0768 0

a'b’
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where U(§¥Y(t)) is the non-vanishing part of U
under the denvative in Eq. (4).

It should be noticed that the potential func-

tion introduced above consists of terms of

w(t)% and €4 (), and that the potential func-
tion can thus have two minimum points with
the same potential value in both positive and
negative regions of £27(¢t). Accordingly, the po-
tential function can produce iwo equilibrium
points, in both positive and negative regions
of £47(t), as in the previous study without a
potentlal model V)

Since the ethbnum value of £ (t) for the
winning binocular neuron should be unique and
positive, we add a fifth term, —(E/3)£%(t)3,
in the potential function to break the left-right
symmetry, where E is positive. Consequently,
the final potential function, given below, can
have a global minimum in the positive region of
£€22(t) and a local minimum in its negative re-
gion, as shown by the example in Fig. 1, where

uo(t) is denoted by £.

U(&a (1) = /\Zz?é ; (8)?

1
+5(B+C) Z,,:,g‘”"

C
— & (b)*
D<~ .,
- 5263&;” (t)2Em (t)?

u'v’
- —Eff“(t)?’ (6)
Therefore, the 1n1t1al value of {2 (t) can have
a strong mﬁuence on the CPR processes. The
structure of the potential function is discussed
here. It is rewritten in the following form:

V(R ) = SE50)° - TE )
+ Zew! 7
==X + (B + C)Zsaw
=D} &y (1) (8)

u'v!
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Fig.1 Example of a potential function.

Since AY} is a deviation of the similarity mea-
sure from its mean value in the DSA, « depends
not only on the initial value of £ (t) itself, but
also on those of binocular neurons in the DSA.
Moreover, « is time-dependent through the val-
ues of {1, (¢) and £," (¢) of binocular neurons
in the DSA and CA, respectively.

First, we discuss the equilibrium of £}, based
on the assumption that the global minimum
point of the potential function can give the
unique equilibrium point of . When £/ (t) =
0, we can obtain the following equations from
Egs. (4), (7), and (8):

0ol — BEY + CE° = (9)

where

ap=-Ap +(B+C) Zggf;ﬁ
!bl

’ /2
-D Z env”, (10)
We then get three solutions for the above equa-
tions (9)
ab - O (11)

=6 = E:t\/E2 4Cay), (12)

where the order of sign = is the same in the two
places. For binocular neurons, there are several
cases relating to the equilibrium, depending on
the values of E? —4Cayq, E? —4.5Cag, and aq,
as shown below (Fig. 2).
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Fig.2 Schematic diagram of potential functions.

A. E? — 4Cay is negative.

The potential function has a global minimum
at £ = 0. In this case, the binocular neuron
becomes inactivated at the point of equilibrium.

B. E? — 4Cay is zero.

The potential function has a global minimum
at £ = 0 and a saddle point at £y = £, =
(L =& (posmve) Therefore, in this case,
the binocular neuron becomes inactivated at
the point of equilibrium.

C. E? — 4Cqy is positive.
(1) ap is positive. E? — 4.5Cay is negative.
The potential function has a global minimum
at £ = 0, where U(0) = 0, a local maximum
at £ = &_ (positive), and a local minimum
at &4 = & (positive), where U({;) is posi-
tive. Therefore, in this case, at the point of
equilibrium, the binocular neuron becomes in-
activated.
(2) ayp is positive. E? —4.5Caqy is zero.
The potential function has a global minimum
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at €% = 0, where U(0) = 0, a local maxi-
mum at 5}1‘;’ = {_ (positive), and a global mini-
mum at £ = = £, (positive), where U(£;) = 0.
Therefore, in this case, at the point of equilib-
rium, the binocular neuron becomes inactivated
or becomes excited at £ = (. The solution
of equilibrium is not unique.
(3) ap is positive. E? — 4.5Cqy is positive.

The potential function has a local minimum
at £ = 0, where U(0) = 0, a local maximum
at £ = & (positive) and a global minimum
at £ = &4 (positive), where U(&,.) is negative.
Therefore, in this case, at the point of equilib-
rium, the binocular neuron becomes excited at
ab =&y
(4) ag is zero.

The potential function has a saddle point at

= ¢_ = 0 and a global minimum at £} =

§+ = E (positive). Therefore, in this case, at
the point of equilibrium the binocular neuron
becomes excited at €% = £ = £
(5) g is negative.

The potential function has a local minimum

at €% = £_ (negative), a local maximum at
Luv — ) nd a n'lr\lr\ol minimum at £W — £
€% = 0, and a global minimum at £ = &,

(positive). Therefore in thls case, at the point
of equilibrium the binocular neuron becomes
excited at £y = &4.

As mentioned above, it is indispensable for
the binocular neuron to be excited at a point of
equilibrium where E? — 4Cap 2is positive, that
is, where aq is smaller than £=. From Eq (8),
it is clear that large A\¥?, small 3"/ ,,, £€%%,%, and

large S0, ., I3 "? can help the binocular neuron
to become excited at the point of equilibrium.
In other words, a high similarity function in the
DSA, little competition in the DSA, and strong
cooperative coupling in the CA help the binoc-
ular neuron to become excited at the point of
equilibrium.
Next, let us consider the nonequilibrium of
wo(t). In general, even if a is negative, £7(0)
with a negative value may not be able to re-
alize excited equilibrium, because of the local
minimum of the potential function at a nega-
tive value of £ (t) = —VE? —4Ca) and

its local maximum at f (t) = 0. Even if a
is smaller than % and « is positive, £ (0)
with a value smaller than 5= (E — v E? — 4Ca)
may not be able to realize excited equilibrium,
because of the local minimum of the potential
function at ' (t) = 0 and its local maximum
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at £92(t) = 55(E — VE? —4Ca). Moreover,
since a is time-dependent, it may happen that
the type of shape of the potential function. for
each binocular neuron changes drastically in the
course of the CPR process, as described in Sec-
tion 3, Numerical Results and Discussion.

As suggested in the discussion on equilibrium
and nonequilibrium, the potential function is
time-dependent and can have local minimum,
local maximum, and saddle points. In addi-
tion, a nonequilibrium phase transition '®) may
occur in the CPR processes. Therefore, equi-
librium may not be realized if the initial con-
dition or the kinetics of ¥ (t) is inappropriate.
However, the initial stage or the state kinetics
of the binocular neurons in our brains is consid-
ered to have some variety. Therefore, the model
for stereoscopic vision should have some degree
of robustness with respect to both the initial
condition and the kinetics. In this sense, noise
is introduced into the present model, using the
so-called simulated annealing method described
by the following equations:

ou

AL (t) = —At———= + n(T) (13)
N 0805 (1)
__~Z
D) )

t = Ats, and n(T") denotes random noise with
values from —T to T. s is a step in the iter-
ation scheme. The control parameter T corre-
sponds to the temperature of a physical system.
(3 is given appropriately, and is independent of
s. As T decreases, {27 (t) is forced to approach
the value that gives the global minimum of the
potential function.

Since a variable, £(t), in the present mod-
ified CPR equations is treated as the wide-
ranging activity of binocular neurons, it should
have negative, zero, and positive values. There-
fore, a kind of simulated annealing method . is
indispensable for simulating the CPR processes
of stereoscopic vision with the present model.

3. Numerical Results and Discussion

After describing a simulation of one-dimen-
sional stereoscopic vision, we will give the re-
sults of a two-dimensional case.

In the one-dimensional case, £27(t) was sim-
plified as £¥(¢); the DSA and the CA were also
one-dimensional.

The following random 50 dots were used in
the present study:
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Left (Oth to 49th)
10001011011000010010010011101010111001100000011101

Right (0th to 49th)
10001011011000010010010100111010111001100000011101

The displaced right dots were produced by
placing the 20th to 29th dots from the left se-
quence in the 22nd to 31st positions of the right
sequence.

In the present study, a was chosen to be from
—3 to 3, which corresponded to the DSA. The
window function was defined in the range of a
from —3 to 3. The value [ of the CA was chosen
to be 2. The values of the constants B, C, D,
and E used in the potential function (6) were
0.01, 0.01, 0.001, and 0.08, respectively. These
constant values were selected in such a way that
B and C were the same as the values that gave
successful simulation results with the previous
CPR equations (3), and D and F were selected
by trial and error in order to obtain successful
simulation results with the modified CPR equa-
tions (4) and (6). The first selected value of E

in Eq. (1) was 4, which gave successful simula-
tion results with the previous CPR equations
(3). Then, the second selected value of E in
Eq. (1) was —4, which gave poor simulation re-
sults with the previous CPR equations (3). The
poor simulation results indicated that there was
no winner among the binocular neurons in the
CPR processes. The first case presented an ini-
tial condition in which every activity of binoc-
ular neurons was positive. On the other hand,
the second case presented an initial condition in
which every activity of binocular neurons was
negative.

Figure 3 shows the potential function in the
first case of E. The arrow indicates the values
of £2°(t) and the potential function at the time.
As can be seen in the figure, the CPR process
to the point of equilibrium for the winner was
successfully simulated. Figures 4 and 5 show
competing processes in the cases where u = 10
and v = 20, respectively. In the case where u =
10, the binocular neuron with @ = 0 was the
winner. On the other hand, in the case where
w = 20, the binocular neuron with a = 2 was
the winner, with depth perception achieved.

Next, Figs.6 and 7 show competing pro-
cesses in the second case of E, in which no
successful results were given by the previous
CPR equations (3), at least in our simulation.
As shown in the figures, the CPR, processes to
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Fig.3 Potential in the case where F =4, u = 20,
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Fig.4 Competing processes in the case where E = 4,
u = 10.

the point of equilibrium were successfully sim-
ulated in our model. In the cases where v = 10
and u = 20, the binocular neurons with a = 0
and a = 2 were the winners, respectively. In
the case where u = 20, depth perception was
achieved. The modified CPR equations (4) and
(6) gave the successful CPR processes to the
point of equilibrium for both values of £, where
the final winner among the binocular neurons
did not depend on the value of E. However, the
kinetics of the CPR processes with the initially
negative activity were considerably slower than
those with the initially positive activity. Ex-
amples of the winner’s potential and the loser’s
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Fig.5 Competing processes in the case where E = 4,

u = 20.
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Fig.6 Competing processes in the case where
E = -4, u=10.

potential related to Fig. 7 are shown in Figs. 8
and 9, respectively. In Fig.8, the added num-
bers indicate the time and the arrows show the
value of £2°(t) at each time. In Fig.8, the po-
tential function is actually changing over time
from 0.3 to 9.1. However, since the change
is negligibly small, the potential at a time of
0.8 is given as a representative case. Figure 8
shows the process escaping from the local min-
imum of the potential. The potential function
changed drastically in a time-dependent man-
ner after the escape from the local minimum
of the potential, which is similar to the time-
dependency of the potential function shown in
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Fig.7 Competing processes in the case where
E=—-4,u=20.
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Fig.8 Potential in the case where £ = —4, v = 20,
a=2.

Fig.3. On the other hand, in the case of the
loser in the CPR process, there is always one
minimum of the potential function at £(¢) =0
in the CPR process, as shown in Fig. 9. The ar-
rows in Fig. 9 also indicate the values of ¢2°(t)
and the potential function at the time.

There can be some changes in the simula-
tion results even if the simulation is carried out
under the same conditions, because of random
noise in the simulated annealing method. In
some cases, the activity of the binocular neu-
ron £¥(t) may be trapped in the local minimum
of the potential, owing to inappropriate anneal-
ing.
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Fig.9 Potential in the case where E = —4, u = 20,
a=1.

Next, 50 x 50 two-dimensional random dots
were used. In the region of y = 10 to 39, the
displaced right dots were produced by placing
the dots of z = 10 to 39 from the left sequence
in the positions of z = 12 to 41 of the right
sequence. .

a and b were respectively chosen to be from
a=-31t%t03,b=—1to 1, which corresponded
to the DSA. The window function was defined
in the range of a from —3 to 3 and b from —1
to 1. The value [ of the CA was chosen to be
2. The values of the constants B, C, D, and E
used in the potential function (6) were —0.001,
0.01,.0.00025, and 0.08, respectively. These
constant values were selected by trial and error
in order to obtain successful simulation results
with the modified CPR equations (4) and (6).
The values of E in Eq. (1) were selected to be
the same as those in the case of 1-dimensional
simulation. The first selected value of E in
Eq. (1) was 4, which gave the successful simu-
lation results with the previous CPR, equations
(3). The second selected value of E in Eq. (1)
was —4, which was not permitted when the pre-
vious CPR equations (3) were used. The first
case presented an initial condition in which ev-
ery activity of binocular neurons was positive.
On the other hand, the second case presented
an initial condition in which every activity of
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Fig.10 (Top) Pair of random-dot stereograms pre-
sented to the left and right eyes.
(Bottom) 3-dimensional image of the random-
dot stereograms viewed by the present neural
network model.

binocular neurons was negative.

In both the first and second cases, the CPR
process to the point of equilibrium was sim-
ulated by using our equations, with the re-
sult that depth perception was successfully
achieved. Figure 10 shows that in the sec-
ond case depth perception was achieved with
the present model. Except in cases where the
prospective winner was trapped at the local
minimum of the potential, the CPR processes
to the point of equilibrium were successfully
simulated. The data corresponding to these ex-
ceptions (about 15% of all cases) are shown as
blanks in the lower part of Fig. 10. We obtained
the similar results in the first case.

Figures 11 and 12 show competing pro-
cesses in the second case, in which no successful
results would be given with the previous CPR
equations (3), at least in our investigation. As
can be seen in the figures, the CPR processes to
the point of equilibrium were successfully sim-
ulated in our model. In the cases where u = 5,
v = 5 and u = 25, v = 25, the binocular neu-
rons witha = 0,b =0and a = 2, b = 0 were the
winners, respectively. In the case where u = 25,
v = 25, depth perception was achieved against
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Fig.11 Competing processes in the case where
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Fig. 12 Competing processes in the case where
E = -4,y =25 v=25

the background landscape (u = 5, v = 5, in-
cluded), as shown in Fig. 10. The modified CPR
equations (4) and (6) presented the success-
ful CPR processes to the point of equilibrium
for both values of E, where the final winner
among the binocular neurons did not depend
on the value of E. However, the kinetics of the
CPR processes with the initially negative ac-
tivity were considerably slower than those with
the initially positive activity. Examples of the
winner’s potential and the loser’s potential re-
lated to Fig.12 are shown in Figs. 13 and 14,
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respectively. In Fig. 13, the added figures indi-
cate the time and the arrows show the value of

2525(1) at each time. In Fig. 13, the potential
functlon actually changes over time from 12.0
to 19.0. However, since the change is small,
the potential at a time of 14.0 is given as a
representative case. Figure 13 shows the pro-
cess escaping from the local minimum of the
potential, with the help of annealing. The po-
tential function changed dramatically in a time-
dependent manner after the escape from the lo-
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cal minimum of the potential, which is similar
to the time-dependency of the potential func-
tion shown in Fig.3. On the other hand, in the
case of the loser in the CPR process, there is
always one minimum of the potential function
at £47(t) = 0 in the CPR process, as shown
in F1g 14. The arrows in Fig. 14 also show the
value of 525 %5(t) at each time.

Accordmg to the present study, the special
selection of the constant F for the similarity
function in the previous study ) is considered
to have the role of avoiding poor competition
in which there is no winner. The special se-
lection of the initial condition of £Y(t) seems
to have essentially the same effect as escaping
from a local minimum in the potential func-
tion. However, in the present model, special
selection of the 1n1t1a1 condition of 4 (t) is un-
necessary because of the simulated annealmg
method. Therefore, in a sense, the existence of
the constant F in the similarity function is not
indispensable.

4. Conclusion

An aleo

An algo
veloped on the basis of recent pattern recog-
nition equations describing a dynamic self-
organizing process with competition and co-
operation. The effects of exponential growth,
competition, and cooperation in the CPR pro-
cesses are expressed by a single parameter. A
potential model is introduced, allowing the dy-
namic situation to be seen clearly in the po-
tential function. A simulated annealing pro-
cess is also introduced, as a result of which
the algorithm can be used to simulate stereo-
scopic depth perception for any initial situation
of binocular neurons. It has been shown that
the simulated annealing is very useful in allow-
ing a disparity map to develop by overcoming
the local minimum in the potential. This might
suggest that some kind of noise in our brains is
indispensable for stereoscopic depth perception.
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