Vol. 39 No. 2

Technical Note

Transactions of Information Processing Society of Japan

Feb. 1998

Fast On-line String Searching

ZHIBIN L1u,t X1A0YONG DUt and NAOHIRO ISHIT!

The on-line string searching algorithm searches the text while the pattern is being read,
and is widely used in text editor software. In this paper, we give an implementation of the
on-line BM algorithm which is much better than other on-line algorithms both in the number
of character comparisons and in running time.

1.

The string searching problem is to find all
occurrences of a pattern in a text. Two famous
algorithms are the KMP algorithm and the BM
algorithm, both are “off-line” algorithms in the
sense that they do not begin to search before
the last character of the pattern is read. In
text editor software, the “on-line” versions of
string searching algorithms are used, which can
search the text while the pattern is being read.
The advantages of an on-line algorithm are not
only its quick response time, but also helping
the user to find what he wants easily.

The on-line version of the naive string
searching algorithm can be implemented easily.
Barth) and Takaoka®) both present the on-
line KMP algorithm by computing the auxiliary
array next incrementally. Recently, Takaoka®)
points out that it is possible to implement an
on-line BM algorithm by computing the auxil-
iary arrays from left to right. However he does
not implement an efficient on-line algorithm.

In this paper, we give an implementation of
the on-line BM algorithm which is much bet-
ter than other on-line algorithms both in the
number of the character comparisons and in the
running time. We also improve the algorithm
to meet the requirements of on-line searching.
Our algorithm can be easily embedded in a text
editor software.

2. On-line BM Algorithm

Implementing an on-line BM algorithm re-
quires two modifications to the original one: the
right-to-left comparison and the computation of
the skip function arrays d and dd.

The right-to-left comparison in the BM al-
gorithm requires to compare the last charac-

Introduction

1 Department of Intelligence and Computer Science,
Nagoya Institute of Technology

506

ter first in the pattern. It does obviously not
suit on-line searching. Although some peo-
ple believe those algorithms with right-to-left
comparison have better performance, that is a
misunderstanding. The right-to-left compari-
son order will result in more comparisons than
the normal left-to-right order, in fact it has no
contribution to the performance of the algo-
rithms 2)3),

The right-to-left comparison can be easily re-
placed by the left-to-right one. Furthermore,
this replacement does not lose efficiency.

The other modification is the computation of
the skip function d and dd. In this paper, we
only use the d as the skip function since the
dd has little contribution when the algorithm is
used to search normal texts. The on-line BM
algorithm using the dd can be found in Ref. 5).

The BM algorithm uses the pattern length to
compute the d before the search starts. In the
on-line searching case, the algorithm does not
know the pattern length until the terminating
symbol is read. In this paper, we first initiate
all elements of the d by zero before the search
starts, then update the d as a search proceeds.
When a character of the pattern is read, the
element corresponding to that character in the
d is updated by the position of that character
in the pattern.

After a mismatch, the character next to the
rightmost character of the current substring in
the text is chosen to determine the skip. The
skip distance is equal to one plus the difference
between the current length of the pattern and
the value of corresponding element in the d, i.e.
pattern_length - dftext[i0+1]]+1.

In principle, our algorithm can be viewed as
the loop by the following three steps: (1) read-
ing a character from input, and appending it
to the pattern; (2) updating the d, and increas-
ing the pattern length by one; (3) searching the
read part of pattern in the text in the same



Vol. 39 No. 2

way as the off-line algorithm does since the d is
ready and the pattern length is known.
Our on-line BM algorithm written in C lan-
guage is presented in following:
int on_line_-BM(text,n)
char text[}; /*begins from text[0]*/
int n; /*length of text*/
{
char pat]MAX_PAT_LEN]; /*begins from pat[0]*/
int d[ALPHABET _SIZE]; /*skip function*/
int patlen; /*current length of pattern*/
int jO, i0, i, j, k;
/*initiates skip function*/
for(k=0;k<ALPHABET_SIZE;k++)d[k]=0;
patlen=0; j0=-1; i0=-1;/*assigns initial values*/
while(i0<n){ /*main searching loop*/
/*reads character from input*/
if(!get_next_char(&pat[patlen]))break;
/*updates corresponding element in d*/
d[pat[patlen]}=patlen-+1;
patlen+-+; /*pattern’s length increases 1*/
/*j0 points to new read character in pattern*/
/*i0 points to corresponding one in text*/
J0++; 0-++;
/*following loop searches pattern, of length*/
/*patlen, in text as off-line algorithms do,*/
/*begins from i0-patlen +1, ends at n*/
while(i0<n){
/*if two characters equal, compares the others;*/
/*otherwise, i0 skips to next substring in text*/
if(pat[j0]==text[i0])}{
/*j points to first character in pattern*/
/*i points to corresponding one in text*/
j=0; i=i0-patlen+1;
/Xif all pairs equal, current pattern matches*/
/*this substring; otherwise a mismatch occurs.*/
while(i<i0){
if(pat[j-++]!=text[i++]) goto mismatch;
¥
/*current pattern matched*/
goto read_next_char;
}
mismatch: /*skips to next substring*/
i0 += patlen + 1 - d[text[i0-+1]};
b
read_next_char: ;
h
if(i0<n)return(i0-patlen+1);/*find complete match*/
else return(-1);/*not found*/
}/* end of algorithm*/

3. Some practical considerations

When we implement an on-line string search-

Fast On-line String Searching 507

ing algorithm, we should also consider other
“on-line” requirements: (1) the algorithm
should immediately report the searching result
as soon as a new character of the pattern is
read; (2) the algorithm should permit the user
to update the pattern by erasing the last char-
acter as the search proceeds; (3) the algorithm
should be able to find the previous matching of
the pattern in the text.

The first requirement means that it is neces-
sary to call our algorithm many times to find
out a match of the “whole” pattern. So our
algorithm must remember the information of
the current search until the next search begins.
This problem is solved by defining the follow-
ing as global variables: the current pattern; the
current length of the pattern; the skip function
array and the return value of the last call.

When the last character is erased from the
pattern, the d must be restored to the state
before that character is input. In our imple-
mentation, we use a stack to resolve the prob-
lem. When a character is input, we push the
element corresponding to that character in the
d into the stack before updating it. So, after
that character is deleted from the pattern, the
d can be easily restored by popping out the cor-
responding element from the stack.

Finding the previous matching of the pattern
needs to search backwardly in the text. Al-
though the pattern is the same, the d cannot
be used in backward search because the com-
putation of the d has direction. In other words,
the d records the rightmost occurrences in the
pattern for each character in the alphabet. The
backward search requires the d recording the
first (leftmost) occurrence in the pattern. In
our implementation, we use two arrays to re-
place the d: fwdd for normal search, and bwdd
for the backward search, respectively.

The computation of the bwdd is similar to
that of the d: initiating to zero before the search
starts, then updating as the (normal) search
proceeds. After a mismatch in the backward
search the bwdd is used as the skip function.
When the last character in the pattern is erased,
the bwdd can be easily restored without using
a stack.

The improved algorithm has been imple-
mented in C language. Full program can be
fetched through WWW:

http:/ /eyes.ics.nitech.ac.jp/ “duyong/publication/

onlineBM.c



508 Transactions of Information Processing Society of Japan

Table 1 The percentage improvement of number of

comparisons.

Pat Ours Ours Ours Ours
Len /Naive /Barth /Taka86 /Taka96
1 50.3 50.3 50.3 50.3

2 36.4 36.6 36.6 36.7

3 30.6 30.6 30.6 30.9

4 27.6 27.4 27.4 28.1

5 25.7 25.4 25.4 26.4

6 24.3 24.1 24.1 25.3

7 23.4 23.2 23.2 24.5

8 22.7 22.5 22.5 23.9

9 22.1 21.9 21.9 23.4
10 21.8 21.5 21.5 23.1

Table 2 The percentage improvement of running

time.

Pat Ours Ours Ours Ours
Len /Naive /Barth /Taka86 /Taka96
1 200.0 40.0 66.7 28.6

2 81.2 20.3 22.4 21.0

3 68.1 16.5 194 17.7

4 58.1 14.9 17.5 16.3

5 54.8 13.9 16.3 15.4

6 53.3 13.2 15.5 14.8

7 54.5 13.6 15.9 15.1

8 50.5 124 14.6 14.0

9 47.1 12.0 14.0 13.7
10 44.0 11.0 12.9 12.6

4. Experiment

We test our on-line BM algorithm with
other on-line algorithms (the on-line naive al-
gorithm, Barth’s on-line KMP 1), Takaoka’s on-
line KMP% and Takaoka’s on-line BM algo-
rithm®). The number of character compar-
isons and the running time are two measures
to evaluate the algorithms. All algorithms read
the pattern from a procedure simulating the
user’s input. The running time is counted from
reading the first character of a pattern to find-
ing out the first complete match in the text.

The sample text comes from a technical re-
port written in English. The length of text is
50000 characters. 1000 patterns of each length
from 1 to 10 characters are chosen at random
from the same report. For the number of char-
acter comparisons, we first count the number
of characters actually compared for a pattern,
then compute the average value over all 1000
patterns of each length. Table 1 shows the
percentage improvement of our algorithm over
the others in the number of character compar-
isons. Table 2 is that of the running time.

Feb. 1998

5. Summary

The on-line string searching algorithm can
help the user to find what he wants efficiently
and easily. Although the naive on-line algo-
rithm is widely used in text editor software, the
research on the on-line searching algorithms has
not presented an efficient algorithm until now.
For example, the on-line KMP algorithms 1)%)
run slower than the naive on-line algorithm. In
this paper we implement an on-line BM algo-
rithm which runs much faster than other on-line
algorithms. Furthermore our algorithm meets
the requirement of on-line searching, for exam-
ple, doing backward search and erasing the last
character of the pattern while the pattern is
being searched. Our algorithm can be easily
embedded in a text editor software.

Acknowledgments We wish to acknowl-
edge the helpful suggestions of the anonymous
referees. The work is supported in part by The
Hori Information Science Promotion Founda-
tion.

References

1) Barth, G.: An alternative for the implemen-
tation of the Knuth-Morris-Pratt algorithm,
Inf. Process. Lett., Vol.13, No.4, 5, pp.134-137
(1981).

2) Liu, Z., Du, X. and Ishii, N.: Right-to-left or
left-to-right: Which is better comparison order
in string searching?, ‘i 9 EEEXEMRESR
AR R RHEER U, WIEES 579, p.290
(1997).

3) Sunday, D.: A very fast substring search algo-
rithm, Comm. ACM, Vol.33, No.8, pp.132-142
(1990).

4) Takaoka, T.: An on-line pattern matching
algorithm, Inf. Process. Lett., Vol.22, No.6,
pp.329-330 (1986).

5) Takaoka, T.: Left-to-right preprocessing com-
putation for the Boyer-Moore string matching
algorithm, Comput. J., Vol.39, No.5, pp.413-
416 (1996).

(Received August 25, 1997)
(Accepted November 5, 1997)



Vol. 39 No. 2

Zhibin Liu received the B.E.
degree in computer science and
technology from Tianjin Univer-
sity, Tianjin, China in 1985,
and the M.E. degree in informa-
tion and computer science from
the People’s University of China,
Beijing, China in 1988. From 1990 to 1992 he
was a lecturer of the Department of Computer
Science and Technology at Tianjin University.
From 1992 to 1995, he was a lecturer in the
Department of Computer Science and Technol-
ogy at Beijing Polytechnic University. He is
now pursuing the Doctor of Engineering degree
at the Nagoya Institute of Technology, Nagoya,
Japan. His current research interests include
algorithm design and analysis, databases and
artificial intelligence.

i Xiaoyong Du received the
B.S. degree in computational
mathematics from Hangzhou
University, Zhejiang, China in
1983, and the M.E. degree in in-
formation and computer science
from the People’s University of
China, Beijing, in 1988, and the Doctor of Engi-
neering degree at the Nagoya Institute of Tech-
nology, Japan, in 1997. From 1989 to 1992,
he was a lecturer in the Institute of Data and
Knowledge Engineering at the People’s Univer-
sity of China. He is now a research associate in
the Department of Intelligence and Computer
Science at the Nagoya Institute of Technology,
Nagoya, Japan. His current research interests
include databases and artificial intelligence. He
is a member of the IPSJ and IEICE.

Fast On-line String Searching 509

Naohiro Ishii received the
B.E. and M.E., and Doctor of
Engineering degrees in electrical
and communication engineering
from Tohoku University, Sendai,
in 1963, 1965, and 1968, respec-

i tively. From 1968 to 1974 he was
at the School of Medicine in Tohoku University,
where he worked on information processing in
the central nervous system. Since 1975 he has
been with the Nagoya Institute of Technology,

=

where he is a professor in the Department of

Electrical and Computer Engineering. His cur-
rent research interests include databases, soft-
ware engineering, algorithm design and anal-
ysis, nonlinear analysis of neural network and
artificial intelligence. He is a member of the
IPSJ, IEICE, ACM, and IEEE.




