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Cy - factorization algorithm of
1TH-—1 symmetric complete multipartite digraphs

Kazuhiko Ushio
Kinki University

1. Introduction

Let K3, n,....n.. denote the symmetric complete multipartite digraph with partite sets V4, Vo, ..., Vip
of ny,mg, ..., Ny, vertices each, and let Ci, denote the directed cycle of length k on two partite sets.

*

A spanning subgraph F' of K; .. . is called a Cy - factor if each component of F is Ck. If

*

K\ ng,....nm 15 expressed as an arc-disjoint sum of Cy - factors, then this sum is called a C - fac-
torization of K . . . In this paper, it is shown that a necessary and sufficient condition for the
existence of such a factorization is (i) kK =0 (mod 2), k£ > 4, (ii) n1 =ng = ... = 14y, = 0 (mod k/2)
for even m and ny = ng = ... = ny = 0 (mod k) for odd m.

2. C,, - factorization of K*
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Notation. Given a C}, - factorization of K nanoms Je8

r be the number of factors

b be the total number of components

{ be the number of components of each factor

155 (¢ < j) be the numbers of components whose vertices are in V; and V; among t components of
each factor.

For a vertex z in Vj, let r; j(z) be the numbers of components whose vertices are in V; and V; among

r components having vertex z.

Theorem 1. If K}, . . hasa C - factorization, then (i) k = 0 (mod 2), k > 4, (ii) 71 = ny =
... =nm =0 (mod k/2) for even m and n1 =ng = ... =ny =0 (mod k) for odd m.

Proof. Suppose that K; .. . hasa Cy - factorization, Then b = 2(ning + nina + ... +
Mm—1Mm)/k, t = (N1 +na+... +np)/k, v = b/t = 2(ning + ning + ...d N 1ny) /(01 + 09 + ... + 1),
C is a directed cycle of length k on two partite sets. Therefore, we have k = 0 (mod 2) and k > 4.
For a vertex r in V;, we have ry1 = n1,mi2 = ng, ..., Tii-1 = Ni-1,Tiit1 = Nit1, ..., Tiym = Ny and
ri1trigt e i1 il e+ rim =7 (E=1,2,..,m). Put ni+ng+...4nym = N. Then N—ny =

N —ny=..=N—ny, =r. Therefore, we have ni =ng=...=n4,. Pun;=ny=..=n, =n.
Then b = m(m — V)n?/k,t = mn/k,r = (m — )n. Put tj; =¢;;(i < j) and t;; =0. Then, in a
factor, (t11+ti2+... +tim)k/2 = (21 +t22+... +tam)k/2 = ... = (tm,1 +Eim2+ ... +tmm)k/2 = n.
Put ¢; = Lin+tig + ... +tim (’i = 1,2,...,m). Then t1k/2 = t2k/2 = .. = tmk/z =n. Put
ti=tg=..=lyp=T. Then T =2n/k.

Case m is even: Put m = 2m/,k = 2k’. Then b = m'(2m’ — 1)n?/K,t = m'T,\T = n/k',r =
(2m’ — 1)n. Therefore, we have n =0 (mod k/2).

Case m is odd: Put m = 2m’ + 1,k = 2k’. Then b = (2m' + 1)m'n?/k',t = m(T/2),T/2
n/2k', T =n/k’,r = 2m/n. Therefore, we have n = 0 (mod k).

I

Notation. For a Cy : v — vy — ... = vg_1 — v — v1, we denote Ck(v1,v3, ..., Vg—1; V2, V4, ..., Vk )-
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Theorem 2. When k =0 (mod 2),k > 4 and n =0 (mod k/2), K3, has a Cy, - factorization.
Proof. Put n = ks/2 and h=k/2. Let Vi = {1,2,...,h} and Vo = {1',2/, .., W'}. Construct h Ci’s
as following : C(1,2,.., b 1,2, ., 1), Ci(1,2, ..., 12,3, .., K, 1), Ck(1,2, ..., h; 3, . K, 1, 2) ...,
Cro(1,2, ..., bR, 1,2 (h—1)"). Then they are Cj - factors of K}t/z,k/w and they comprise a Cj

- factorization of Kj 12,46/ As a well-known result, K, ; has a 1-factorization. Therefore, K, /2,k3/2

has a K, J2.k/2 " factorization. Kj /2,5/2 has a Cy - factorization as shown above. Thus Ky, hasa Cy
- factorization.

Theorem 3. When k = 0 (mod 2), k > 4, m is even and n = 0 (mod k/2), Knn,..nhasa C -
factorization.

Proof. Put n = ks/2. As a well-known result, K,, has a 1-factorization. So Ki,,.,1hasa K, -
factorization. Therefore, K}, /2,k3/2,..- k32 has a K}, /2,ks/2 " factorization. By Theorem 2, K7, 12,k3/2
has a Cj, - factorization. Thus Kin,..nhasa Cy - factorization.

Theorem 4. When k = 0 (mod 2), k > 4, m is odd and n = 0 (mod k), K, , hasa Cy -
factorization.

Proof. Put n = ks. As a well-known result, Ko, has a 1-factorization. Ko, = 1-factor UKs2,..2.
So K3, . o has a K7, - factorization. Therefore, Kioks,..ks 0as a Ki o, o - factorization. By

Theorem 2, K, o/2ks/2 has a C}, - factorization. Thus Kpn..nhasa Cy, - factorization.
We have the following main theorem.

Main Theorem. K , . hasa Cy - factorization if and only if (i) k =0 (mod 2), k > 4, (ii)
n1 =mng = ... =nmy = 0 (mod k/2) for even m and n1 =ng = ... = ny, = 0 (mod k) for odd m.
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