\hat{C}_k - factorization algorithm of symmetric complete multipartite digraphs

Kazuhiko Ushio Kinki University

1. Introduction

Let $K_{n_1,n_2,...,n_m}^*$ denote the symmetric complete multipartite digraph with partite sets $V_1,V_2,...,V_m$ of $n_1,n_2,...,n_m$ vertices each, and let \hat{C}_k denote the directed cycle of length k on two partite sets. A spanning subgraph F of $K_{n_1,n_2,...,n_m}^*$ is called a \hat{C}_k - factor if each component of F is \hat{C}_k . If $K_{n_1,n_2,...,n_m}^*$ is expressed as an arc-disjoint sum of \hat{C}_k - factors, then this sum is called a \hat{C}_k - factorization of $K_{n_1,n_2,...,n_m}^*$. In this paper, it is shown that a necessary and sufficient condition for the existence of such a factorization is (i) $k \equiv 0 \pmod 2$, $k \ge 4$, (ii) $n_1 = n_2 = ... = n_m \equiv 0 \pmod k$ for even m and $n_1 = n_2 = ... = n_m \equiv 0 \pmod k$ for odd m.

2. \hat{C}_k - factorization of K_{n_1,n_2,\dots,n_m}^*

Notation. Given a \hat{C}_k - factorization of $K_{n_1,n_2,...,n_m}^*$, let

r be the number of factors

b be the total number of components

t be the number of components of each factor

 $t_{i,j}$ (i < j) be the numbers of components whose vertices are in V_i and V_j among t components of each factor.

For a vertex x in V_i , let $r_{i,j}(x)$ be the numbers of components whose vertices are in V_i and V_j among r components having vertex x.

Theorem 1. If $K_{n_1,n_2,...,n_m}^*$ has a \hat{C}_k - factorization, then (i) $k \equiv 0 \pmod{2}$, $k \geq 4$, (ii) $n_1 = n_2 = ... = n_m \equiv 0 \pmod{k}$ for even m and $n_1 = n_2 = ... = n_m \equiv 0 \pmod{k}$ for odd m.

Proof. Suppose that $K_{n_1,n_2,...,n_m}^*$ has a \hat{C}_k - factorization. Then $b=2(n_1n_2+n_1n_3+...+n_{m-1}n_m)/k$, $t=(n_1+n_2+...+n_m)/k$, $r=b/t=2(n_1n_2+n_1n_3+...+n_{m-1}n_m)/(n_1+n_2+...+n_m)$. \hat{C}_k is a directed cycle of length k on two partite sets. Therefore, we have $k\equiv 0 \pmod 2$ and $k\geq 4$. For a vertex x in V_i , we have $r_{i,1}=n_1, r_{i,2}=n_2,...,r_{i,i-1}=n_{i-1},r_{i,i+1}=n_{i+1},...,r_{i,m}=n_m$ and $r_{i,1}+r_{i,2}+...+r_{i,i-1}+r_{i,i+1}+...+r_{i,m}=r$ (i=1,2,...,m). Put $n_1+n_2+...+n_m=N$. Then $N-n_1=N-n_2=...=N-n_m=r$. Therefore, we have $n_1=n_2=...=n_m$. Put $n_1=n_2=...=n_m=n$. Then $n_1=n_2=...=n_m=n$. Then $n_2=n_1=n_1=n$ and $n_1=n_2=...=n_m=n$. Then $n_1=n_1=n$ and $n_1=n_2=...=n_m=n$. Then $n_1=n_1=n$ and $n_1=n_1=$

Case m is even: Put m = 2m', k = 2k'. Then $b = m'(2m'-1)n^2/k'$, t = m'T, T = n/k', r = (2m'-1)n. Therefore, we have $n \equiv 0 \pmod{k/2}$.

Case *m* is odd: Put m = 2m' + 1, k = 2k'. Then $b = (2m' + 1)m'n^2/k', t = m(T/2), T/2 = <math>n/2k', T = n/k', r = 2m'n$. Therefore, we have $n \equiv 0 \pmod{k}$.

Notation. For a $\hat{C}_k: v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{k-1} \rightarrow v_k \rightarrow v_1$, we denote $\hat{C}_k(v_1, v_3, ..., v_{k-1}; v_2, v_4, ..., v_k)$.

Department of Industrial Engineering, Faculty of Science and Technology E-mail:ushio@is.kindai.ac.jp

Theorem 2. When $k \equiv 0 \pmod{2}, k \geq 4$ and $n \equiv 0 \pmod{k/2}, K_{n,n}^*$ has a \hat{C}_k - factorization. Proof. Put n = ks/2 and h = k/2. Let $V_1 = \{1, 2, ..., h\}$ and $V_2 = \{1', 2', ..., h'\}$. Construct h \hat{C}_k 's as following: $\hat{C}_k(1, 2, ..., h; 1', 2', ..., h')$, $\hat{C}_k(1, 2, ..., h; 2', 3', ..., h', 1')$, $\hat{C}_k(1, 2, ..., h; 3', ..., h', 1', 2')$, ..., $\hat{C}_k(1, 2, ..., h; h', 1', 2', ..., (h-1)')$. Then they are \hat{C}_k - factors of $K_{k/2, k/2}^*$, and they comprise a \hat{C}_k - factorization of $K_{k/2, k/2}^*$. As a well-known result, $K_{s,s}$ has a 1-factorization. Therefore, $K_{ks/2, ks/2}^*$ has a \hat{C}_k - factorization as shown above. Thus $K_{n,n}^*$ has a \hat{C}_k - factorization.

Theorem 3. When $k \equiv 0 \pmod{2}$, $k \geq 4$, m is even and $n \equiv 0 \pmod{k/2}$, $K_{n,n,\dots,n}^*$ has a \hat{C}_k -factorization.

Proof. Put n = ks/2. As a well-known result, K_m has a 1-factorization. So $K_{1,1,\dots,1}^*$ has a $K_{1,1}^*$ factorization. Therefore, $K_{ks/2,ks/2,\dots,ks/2}^*$ has a $K_{ks/2,ks/2}^*$ - factorization. By Theorem 2, $K_{sk/2,ks/2}^*$ has a \hat{C}_k - factorization. Thus $K_{n,n,\dots,n}^*$ has a \hat{C}_k - factorization.

Theorem 4. When $k \equiv 0 \pmod{2}$, $k \geq 4$, m is odd and $n \equiv 0 \pmod{k}$, $K_{n,n,\dots,n}^*$ has a \hat{C}_k factorization.

Proof. Put n = ks. As a well-known result, K_{2m} has a 1-factorization. $K_{2m} = 1$ -factor $\bigcup K_{2,2,\ldots,2}$. So $K_{2,2,\ldots,2}^*$ has a $K_{1,1}^*$ - factorization. Therefore, $K_{ks,ks,\ldots,ks}^*$ has a $K_{ks/2,ks/2}^*$ - factorization. By Theorem 2, $K_{ks/2,ks/2}^*$ has a \hat{C}_k - factorization. Thus $K_{n,n,\ldots,n}^*$ has a \hat{C}_k - factorization.

We have the following main theorem.

Main Theorem. $K_{n_1,n_2,...,n_m}^*$ has a \hat{C}_k - factorization if and only if (i) $k \equiv 0 \pmod 2$, $k \geq 4$, (ii) $n_1 = n_2 = ... = n_m \equiv 0 \pmod k$ for odd m.

References

- [1] G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed. (Wadsworth, California, 1986).
- [2] H. Enomoto, T. Miyamoto and K. Ushio, C_k factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [3] F. Harary, Graph Theory (Addison Wesley, Massachusetts, 1972).
- [4] N. Martin, Complete bipartite factorisations by complete bipartite graphs, Discrete Math. 167/168 (1997), pp. 461-480.
- [5] K. Ushio, P₃ factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- [6] K. Ushio and R. Tsuruno, P_3 factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385–387.
- [7] K. Ushio and R. Tsuruno, Cyclic S_k factorization of complete bipartite graphs, Graph Theory, Combinatorics, Algorithms and Applications (SIAM, 1991), pp. 557-563.
- [8] K. Ushio, G designs and related designs, Discrete Math. 116 (1993), pp. 299-311.
- [9] K. Ushio, Star-factorization of symmetric complete bipartite digraphs, Discrete Math. 167/168 (1997), pp. 593-596.
- [10] K. Ushio, $K_{p,q}$ factorization of symmetric complete bipartite digraphs, To appear in the Proceedings of Eighth International Conference on Graph Theory, Combinatorics, Algorithms and Applications (1997).
- [11] K. Ushio, C_k factorization of symmetric complete bipartite and tripartite digraphs, To appear in J. Fac. Sci. Technol. Kinki Univ. 33 (1997).
- [12] H. Wang, On $K_{1,k}$ factorizations of a complete bipartite graph, Discrete Math. 126 (1994), pp. 359–364.