Vol. 39 No. 3

Regular Paper

Transactions of Information Processing Society of Japan

Mar. 1998

Deterministic and Non-deterministic Lazy Conditional Narrowing

and their Implementations

MoHAMED HAMADA! and TETSUO IDAtf

In this paper we introduce a (deterministic) Lazy Conditional Narrowing Calculus (LCNCy
for short). We describe a full implementation of LCNCy using Mathematica 3.0. We demon-
strate that our implementation results in a functional logic language interpreter as well as
an equational theorem prover. We also show that determinism in LCNC provides an efficient

implementation.

1. Introduction

Narrowing is discussed in the recent litera-
ture on programming as an operation for giv-
ing a promising operational semantics of func-
tional logic languages, see Ref. 5) for a recent
survey. Implementation of narrowing in its orig-
inal definition is difficult and inefficient. Difh-
culty comes from the complexity of a single nar-
rowing step. In each narrowing step we have
to do the following: select a subexpression to
be narrowed (narex), select a rewrite rule r in
such a way that its left-hand side can be unified
with the selected narex via a most general uni-
fier 4, and replace the narex with the instance
of the right-hand side of r under 6. Inefficiency
comes from the non-determinism in each nar-
rowing step (due to narex selection and rewrite
rule selection).

To overcome this problem, several attempts
are made 9:11)12) One that we investigated is
to decompose narrowing into more basic op-
erations. These basic operations are repre-
sented as inference rules and the set of infer-
ence rules is formalized as a calculus. For such
calculi, soundness and completeness are impor-
tant properties. Soundness means that every
successful derivation, starting from a given goal
G, yields a solution of G. While completeness
means that for every solution of a given goal a
more general solution can be found by the cal-
culus. In Ref. 11) a calculus called lazy narrow-
ing calculus LNC is introduced and shown com-
plete for various classes of term rewriting sys-
tems (TRSs for short). In our previous work 4)
we extend LNC to the conditional case resulting

+ Doctoral Program in Engineering, University of
Tsukuba

1 Institute of Information Sciences and Electronics,
University of Tsukuba

656

in a lazy conditional narrowing calculus (LCNC
for short). We also showed its completeness
for various classes of conditional term rewrit-
ing systems (CTRSs for short).

LNC (as well as LCNC) contains three
sources of non-determinism: the selection of the
inference rule, the selection of the equation in
the goal to be solved, and the selection of the
rewrite rule.

While LNC (and LCNC) solve the difficulty
problem and ease the implementation of (condi-
tional) narrowing, the inefliciency problem re-
mains unsolved due to the existence of non-
determinism. To deal with the inefficiency
problem a deterministic version of LNC (called
LNC,) was given in Ref. 10) and shown com-
plete for various classes of TRSs.

In this paper we extend LNC, to conditional
term rewriting systems, resulting in the deter-
ministic Lazy Conditional Narrowing Calculus
LCNCy. Although LCNCy is a straightforward
extension of LNCy, its completeness is rather
difficult to show. However soundness of LCNCy
is easy to show which is sufficient in some appli-
cations where we are interested in one or several
solutions.

We give a full implementation of LCNCy us-
ing Mathematica 3.0. Existentially quantified
equations can be solved by our calculus with
respect to given rewrite rules. Thus our imple-
mentation extends the symbolic computation
language Mathematica. Our implementation
results in a calculus that is usable in a variety
of applications such as a first-hand functional
logic language interpreter as well as an equa-
tional theorem prover. In addition, our imple-
mented calculus can be used as a research tool
usable within Mathematica for studying equa-
tion solving with respect to various classes of
(conditional) term rewriting systems.

Vol. 39 No. 3

We also implement LCNC (the non-determi-
nistic calculus) to show the significant efficiency
of LCNCy (the deterministic calculus) com-
pared with LCNC.

The paper is organized as follows. In Sec-
tion 2 we recall some basic definitions of rewrit-
ing and narrowing. LNC and its deterministic
version LNC; will be given in Section 3. In
Section 4 the extensions LCNC and LCNCy of
LNC and LNC, respectively, will be introduced.
Our implementation of LONC and LCNC, will
be discussed in Section 5.

2. Preliminaries

We assume familiarity with the basics of (con-
ditional) term rewriting and narrowing as ex-
pounded in Refs. 2), 8), 9).

A conditional term rewriting system over a
signature F is a set R of (conditional) rewrite
rules of the form [— r < ¢ where the con-
ditional part ¢ is a (possibly empty) sequence
81 & ty,...,8, & t, of equations. All terms
1,781, .., 8n,t1,...,t, must belong to T(F, V)
and we require that [is not a variable. Where
T(F,V) is the set of first order terms defined
over F and a countable set V of variables. We
assume that every CTRS contains the rewrite
rule x &~ x — true. Here ~ and true are
function symbols that do not occur in the other
rewrite rules. These symbols may only occur at
the head position of terms.

An equation is a term of the form s ~ ¢t. The
constant true is also viewed as an equation. A
goal is a sequence of equations. A substitution
6 is a (R-)solution of a goal G if G§ —% T.
Here T stands for any sequence of true’s. For
confluent R this is equivalent to validity of
the equations in G in all models of the un-
derlying (conditional) equational system of R
(Kaplan 7).

Definitions of notions like terminating, de-
creasing, confluent, level-confluent, shallow-
confluent, R-normal form, right linear, orthog-
onal, normalized solution, and n-CTRS (where
n € {1,2,3}), which will be used in this paper,
can be found in Ref.9).

3. Lazy Narrowing Calculus

In this section we recall the lazy narrowing
calculus LNC of Middeldorp, et al.'V, and its
deterministic version LNC,; of Middeldorp and
Okui 10,

3.1 Non-deterministic LNC

The lazy narrowing calculus LNC as intro-

Deterministic and Non-deterministic Lazy Conditional Narrowing 657

duced in Ref. 11) consists of the following five
inference rules: let R be a TRS,
[0o] outermost narrowing

G, f(s1,...,80) = t,G"

Glsy =l ..., 8yl rmt,G"
if there exists a fresh variant f(I;,...,l,) =
r of a rewrite rule in R.

The equations s; ~ lq,...,s, ~ 1, is called
parameter passing equations and the equa-
tion r & t is called body equation.
[i] imitation
Gl7f(sla' ..,Sn) = '7"7G”

(G, 81 ™ T1,...,80 & Ty, G")E
if0={c~ flz1,...,2,)} withzy,..., 2,
fresh variables,

[d] decomposition
G’,f(Sl,...,Sn) ~ f(tly‘ . atn)aGH

G',S] %tl,...,snztn,G” ’

[v] wvariable elimination

G,s~uzG"
(G',G"e
if x ¢ Var(s) and 6 = {z — s},

[t] removal of trivial equations

Gz ~z,G"

In the rules [o], [i], and [v], s ~ ¢ stands for
s~ tortrs, and Var(s) stands for the set of
variables that occur in a term s.

If G and G' are the upper and lower goals
in the inference rule [a] (o € {o,i,d,v,t}),
we write G =[] G'. This is called an LNC-
step. The applied rewrite rule or substitution
may be supplied as subscript, that is, we write
G =[], I G" and G =14, 0 G'. A finite LNC-
derivation Gy =g, -+ =4, , G, may be ab-
breviated to Gy =} G, where 8 = 6, ---60,,_;.
An LNC-refutation is an LNC-derivation ending
in the empty goal. a

In Ref. 11) the following completeness results
for LNC were obtained.

Theorem 1Y), Let R be a confluent TRS, and
G a goal. For every normalized solution 6 of G,
LNC is complete provided one of the following
conditions is satisfied:
(1) R is terminating,
(2) R is orthogonal and G6 has an R-normal
form, or

(3) R is right linear.

The following result is more interesting since
it replaces the strong termination restriction on
TRSs with a much simpler one.

Theorem 2!V, Let R be a confluent TRS, and
G a goal. For every normalized solution 8 of G,

658 Transactions of Information Processing Society of Japan

LNC is complete with respect to the selection
function Syeys-

Here the selection function Sicy¢ means that
in every LNC-step we select the leftmost equa-
tion in the goal.

LNC has three sources of non-determinism:
the choice of the equation, the choice of the
inference rule, and the choice of the rewrite
rule (in case of the outermost narrowing rule).
Theorem 2 improves this non-deterministic be-
havior by restricting the equation selection to
Siest- This means that the first source of non-
determinism is eliminated. However, the other
two sources make any implementation of LNC
inefficient. The following section will discuss a
(more) deterministic version of LNC.

3.2 LNCg4: A deterministic LNC

A deterministic version of LNC called LNCy
was given in!®. LNC, results in a significant
reduction of the search space and eases the im-
plementation.

In LNC, we distinguish between the descen-
dants of parameter passing equations and de-
scendants of initial equations, we hereafter use
= to denote a parameter passing equation. Let
R be a TRS, LNC, consists of the following
two groups of inference rules. The first group
of rules are designed for descendants of initial
equations:

[o] outermost narrowing
f(s1,-..,8n) & t,G

s1 U, ..,8, X lp, 7 =t,G

t~ f(Sl,...,Sn),G
S1 xll,...,sn = ln,T %t,G
if there exists a fresh variant f(ly,...,ln) =
r of a rewrite rule in R, where the head of
t is not a defined function symbol (i.e. not
a head of a left-hand side of a rewrite rule

and

inR) .
[i] #maitation
f(s1,.--,8.) = 2,G
(81 ™ T1y...,50 & T, G)O
and
m%f(sl’*“as’n)aG
(51 R Tyy..., 80 R Tp, G)O

where f is a constructor symbol (symbols
in F other than defined functions are called

constructors), = € Var(f(s1,...,8n)) or
f(s1,...,8y) is not a constructor term and
0 ={z v flz1,...,Tp)} with z1,...,2y

fresh variables,

Mar. 1998

[d] decomposition
f(81,--y8n) = f(t1,..,tn), G

:91 ztl,...,sn %tn,G
where f is a constructor symbol,
[v] wvariable elimination
sx~z,G

Go

and
r~s,G

Go

where s 1s a non-variable constructor term,
x ¢ Var(s) and 0 = {z — s},
[t] removal of trivial equations
r=~z,G

The second Cg;roup of inference rules of LNCy
deals with descendants of parameter passing
equations:
[o-p] outermost narrowing for parameter pass-
ing equations
f(s1y...,80) X t,G
81 Xll,...,sn xln,rxt,G
if there exists a fresh variant f(I1,...,l,) =
r of a rewrite rule in R, where ¢ is not vari-
able,
[d-p] decomposition for parameter passing equa-
tions
f(81y.-y8n) X ft1,...,tn), G
81 X t1,...,8, X tn,G
where f is a constructor symbol,
[v-p] variable elimination for parameter passing
equations
sxz,G
Go

)

and
r=s,G
Go .
where s is a non-variable term, and § =
{z — s}.

LNCy4 eliminates the second source of non-
determinism in LNC (i.e. the choice of the
inference rule). Although LNCgy still has one
source of non-determinism (i.e. the choice of
the rewrite rule in case of outermost narrow-
ing) it is much simpler and, in practice, more
efficient than LNC.

In functional logic programming two expres-
sions are said to be strictly equal if and only
if they reduce to the same ground constructor
normal form. A substitution # is said to be
strict solution of a goal G if for every equation
e in G, there exists a ground constructor term
t such that both sides of e instantiated by 6
reduce to t.

Vol. 39 No. 3

The following completeness result was ob-
tained in Ref.10) for LNC,; with respect to
strict solutions.

Theorem 3!%. LNCj is complete for orthog-
onal constructor based TRSs with respect to
strict normalized solutions.

4. Lazy Conditional Narrowing Calcu-
lus

In this section we extend LNC and LNC, to
the conditional case, resulting in the conditional
calculus LCNC and the deterministic condi-
tional calculus LCNCy respectively. The only
difference between the extended calculi and the
original ones is the addition of the conditional
part of the applied rewrite rule in case of the
outermost narrowing rule. In LCNC the outer-
most narrowing rule is defined as follows: let R
be a CTRS,

[o] outermost narrowing

f(s1,...,8,) 2 t,G
sy, .. syl Tt e, G
if there exists a fresh variant f(I1,...,1l;) —

r < c of a rewrite rule in R.

All the other rules are exactly the same as in
LNC. ’

In LCNC, the outermost narrowing rule for
descendants of initial equations is defined as fol-
lows: let R be a CTRS,

[o] outermost narrowing
f(sh'"ysn) ~ taG

s1xXly,...,sp <1y, rxtc,G

and
t~ f(s1,...,8,),G
81 X ll,...,sn = ln,’l‘ ~ t,C,G
if there exists a fresh variant f(l4,...,1l,) —
r < ¢ of a rewrite rule in R, where the
head of t is not a defined function symbol.
Similarly, the outermost narrowing for pa-
rameter passing equations is defined as follows:
[0-p] outermost narrowing for parameter pass-
ing equations
F(s1,.-y8,) <X t,G
s1 <Xy, 8p X1, r<t,c,G
if there exists a fresh variant f(l;,...,1,) =
r < c of a rewrite rule in R, where ¢ is not
variable.
All the other rules are exactly the same as in
LNC,.

The following completeness result for LCNC
was given in Ref.4).

Theorem. LCNC is strong complete for the

Deterministic and Non-deterministic Lazy Conditional Narrowing 659

following classes of CTRSs:
(1) decreasing and confluent CTRS,
(2) level-confluent and terminating 2-CTRS,

and
(3) shallow-confluent and terminating 3-
CTRSs. O

Strong completeness means that the selection
of the equation in the given goal is don’t-care
non-determinism. This results in a significant
reduction of the search space.

Soundness of LCNCy is easy to see while com-
pleteness for large classes of CTRSs of interest
is difficult to prove. In our future work we will
investigate the completeness of LCNC,.

5. Implementation of LCNCy

In this section we give a full implementation
of LCNC, using Mathematica 3.0. We assume
that the reader is familiar with Mathematica
system, see Ref. 13) for a complete reference.

Although Mathematica is a suitable frame-
work for working with rewrite systems (since
its kernel is based on higher order rewriting ')
design of basic data structures for our system is
necessary. Mathematica has some idiosyncrasy
(seen from a rewriting point of view) and this
makes our implemented system slightly more
lengthy than is desired, although the extra code
seems small compared with the power Mathe-
matica provides for the implementation of the
calculus.

In the rest of this section, we will first de-
scribe the data structures used in our imple-
mentation. Followed by a description of the
program. We also will show how our imple-
mentation extends the Mathematica built-in
solvers. Finally, an illustrative example will be
given followed by an experimental comparison
between LCNC and LCNC, via various exam-
ples.

5.1 Signature

A signature consists of the following three
classes of symbols.

(1) a class of defined-function symbols,
(2) a class of constructor symbols, and
(3) a class of variables.

A class of symbols that are defined-function
symbols or constructors are called function
symbols. Pragmatically, these classes are dis-
tinguished by the ways they are introduced.

5.2 Variable

A variable is used to denote an arbitrary term
in the usual way. We distinguish variables by
the following rule. Within goals only the sym-

660 Transactions of Information Processing Society of Japan

bols for which solutions are to be bound, i.e. the
second argument of TSolvel[_, 1, (TSolvel] is
the term domain solver that we introduce as an
interface between the user and our system), is
considered as a variable. All other symbols are
considered as function symbols. Logically, the
variables are existentially quantified variables
in the goals.

Within rewrite rules, any symbol that is not a
function symbol is considered as a variable. To
distinguish variables from other symbols dur-
ing the solving process, we use Mathematica’s
attributes attached to symbols. We can set
attribute Temporary (and only Temporary at-
tribute) onto variables (of our system).

5.3 Counstructor

A constructor symbol (abbreviated as con-
structor by convention) is used to construct a
data structure. A constructor symbol is also
declared as FunctionSymbol at the same time
of declaration.

We pre-assign meaning to existing symbols as
follows. Mathematica atoms other than those
whose type is Symbol are automatically de-
clared as a constructor symbol. Mathematica
symbols List and Sequence are defined as a
constructor, too.

5.4 Defined-function Symbols

A head symbol of a left-hand side of a rewrite
rule is called a defined-function symbol. A
defined-function symbol is used to name a set of
rewrite rules. Whether a symbol is a defined-
function symbol or not is checked by a func-
tion IsDefinedFunctionSymbol[_]. The value
of IsDefinedFunctionSymbol[f] for symbol
f is set True whenever f is introduced by
RewriteRule[f[___],_,___1 (see Section 5.5 for
the definition of RewriteRule[___]).

A function term is a term whose head is a
function symbol. Besides the functions that dis-
criminate terms, IsFunctionTerm[] is used to
distinguish function terms.

Final small remark regarding the data struc-
tures that may confuse term rewriting re-
searchers: in Mathematica c[] and c are dif-
ferent. So is in our system.

5.5 Rewrite Rule

We adopt our own representation for con-
ditional rewrite rules. We cannot use Mathe-
matica rewrite rules directly. If we defined our
rewrite rules as Mathematica rewrite rules, we
would have a complex interaction between our
rewrite rules and Mathematica rewrite rules.
Therefore we newly design internal data struc-

Mar. 1998

tures for rewrite rules of our systems.

We define an optimized representation of con-
ditional rewrite rules. The idea is based on the
observation that the conditional rewrite rule
fls] = t < ¢ can be represented by flz] -t <
T & s,c¢, where x & s is a parameter passing
equation in the case of s being a non-variable
term. This representation makes it possible
(1) to eliminate runtime creation of parame-

ter passing equations, and
(2) to use parameter binding mechanism of
Mathematica rather than applying the
variable elimination rules of our system
by representing the conditional rewrite
rule as a function Function[{x}, t <«
T & s,c] or Function[{s}, t « c] if
s is a variable.
RewriteRule[lhs, rhs, condition] is used
to define a rewrite rule lhs — rhs <«
condition, where lhs and rhs are left and
right hand side of a defining rewrite rule and
condition is a (possibly empty) sequence of
equations.
5.6 Implementation of the Inference
Rules of LCNC,

This section describes the implementation
of the two groups of inference rules that de-
fine LOCNCy. Our Mathematica programs are
straightforward translation of the formal defi-
nition of LCNCy rules given in Section 4. For
example the outermost narrowing inference rule
can be implemented by the following Mathe-

matica rewrite rules:

Lcnc[{eq[s_/;IsFunctionTerm[s],t_],eqns_"}]:=
Scan[NewLcnc [#1,t,eqns]&,VariantsRule[s]]

Lene[{eqls-,t_/;IsFunctionTerm[t]],eqns___}]:=

Scan[NewLcnc[#1,s,eqns]&,VariantsRule [t]]
where VariantsRule[t] gives a fresh variant
of an applicable rewrite rule, and NewLcnc[_]
is defined as follows.

NewLcnc [RewritesTo[t.,c...],rhs_,eqns__]:=
Block[{Substitution=Substitution},
Lene[{c,eqlt,rhs],eqns}]]

Here RewritesTo[t_,c___] defines the right-
hand side t and conditions c of the applicable
rewrite rule. While Substitution is a global
variable used to hold the set of variables bind-
ing.

Although LCNC, is considered as a deter-
ministic calculus, the selection of the rewrite
rule (in case of outermost narrowing) remains a
source of non-determinism. In our program we
try to solve this non-deterministic behavior of
LCNC, by applying all applicable rewrite rules.

An operation of the program is as follows.

Vol. 39 No. 3

For each inference rule in LCNC, there is a
corresponding Mathematica program. Depend-
ing on the structure of the left-most equation
in the goal, the program will apply the suit-
able inference rule to get a new goal G. If G
is empty this means that a solution is found by
the program and this solution will be added to
the global variable AnswerList which holds all
possible solutions of the given goal. If the goal
is not empty and no inference rule is applica-
ble to the leftmost equation then no solution of
this goal. At this point the program will try
the next applicable rewrite rule. If no applica-
ble rewrite rules, the program terminates and
return the AnswerList as the set of all possible
solutions of the given goal.

In our program we tried to use Mathemat-
ica built-in functions as much as we can. This
makes the absolute execution efficiency of our
program depends largely on the efficiency of
pattern matching and rewriting of the Math-
ematica system.

5.7 Extension of Mathematica Solvers

The following simple example shows how our
system extends the Mathematica equational
solvers.

Consider the one-rule term rewriting sys-
tem succl0)] — 1. To solve the simple
equation succ[z] ~ 1, which has the solution
{z +— 0}, by using the Mathematica solver
Solvel[succlx]==1, {x}] we get the answer
x = succ™![1] which is not the desirable an-
swer. Using our solver TSolve[succ[x]l~x 1,
{x}] we get the correct answer {{x — 0 }}.

This simple example shows that our solver
(based on narrowing) extends the Mathematica,
equational solvers (based on rewriting).

5.8 Example

Assume a car dealer wants to organize cars
into categories A, B, and C depending on the
car model (old) and color. Red cars of any
model and white cars of model two or less (i.e
two years old or less) are of category A. Blue
cars of any model, green cars of model less than
or equal one, and white cars of model greater
than two and less than or equal four are of cat-
egory B. Green cars of model greater than one,
and white cars of model greater than four are
of category C.

Let cc be a binary function (stands for car
category), the above problem can be repre-
sented by the following CTRS

Deterministic and Non-deterministic Lazy Conditional Narrowing 661

(cc(model, W hite) - A&
le(model, s(s(0))) = True,
ce(model, W hite) —+ B <«

le(model, s(s(0))) ~ False,
le(model, s(s(s(s(0)))) = True,
cc(model, W hite)

le(model, s(s(s(s(0)))) ~ False

- C «

cc(model, Red) - A

R =< cc{(model, Blue) — B
ce(model, Green) — B«
le(model, s(0)) =~ True,
cc(model, Green) - C &
le(model, s(0)) ~ False
le(s(z),0) — False,
le(0,z) — True,

[te(s(2), 5(1)) — le(z,y)

where W hite, Red, Blue, Green,0,True, and

False are constants, s is a unary function

stands for successor, and le is a binary func-

tion stands for “less than or equal”.

Questions like:

(1) what is the category of new (model 0)
white cars? :

(2) which cars are of category A?

(3) what is the model and category of green
cars?

can be represented by the goals cc(0, W hite) ~

category, cc(model, color) ~ A, and cc(model,

Green) = category respectively.

A more general question like what is the
model and category of all cars? can be repre-
sented by the goal cc(model, color) = category
Our system can work on such CTRSs and can
answer the above questions as follows.

TSolve[cc[0, white] =~ category, {category}]
delivers the answer:

{ {category — A } }.
of the first question.

TSolvel[cc[model, color]l~ A, {model, color}]
gives the answer:

{{color — Red }

{model — 0, color — White }

{model — s[0], color — White }

{model — s[s[0]], color — White } }
of the second question, and so on for the other

questions.
5.9 LCNC vs. LCNC;: A Practical
Comparison

As a practical comparison between LCNC
and LCNC,, using the same data structures de-
fined in the former sections, we implemented
LCNC (the nondeterministic calculus).

We experiment the two implementations for

662 Transactions of Information Processing Society of Japan

various examples. The following table shows an
experimental comparison between the two cal-
culi. In the following table the execution time
of LCNC and LCNC, is measured in seconds.

Example no. | LCNC | LCNCy | ratio
1 0.11 0.05 2.20
2 0.13 0.06 2.16
3 0.38 0.16 2.37
4 0.44 0.22 2.00
5 0.46 0.30 1.53
6 0.49 0.31 1.58
7 0.87 0.49 1.77
8 1.15 0.50 2.30
9 1.30 0.55 2.36
10 1.50 0.63 2.38

The ten examples in the above table are given
in increasing complexity. From the table we
can easily see that the LCNC,; implementa-
tion has a significant efficiency compared with
the LCNC implementation. More precisely,
LCNC, implementation, in the average, takes
less than half the time needed by LCNC imple-
mentation to solve the same goal.

This comparison reveals the importance of
the deterministic version of LCNC.

6. Conclusion

In this paper we have presented the deter-
ministic Lazy Conditional Narrowing Calculus
LCNC, and its implementation in Mathemat-
ica. Those who are interested in our Mathe-
matica program, a full version can be obtained
from

http://www.score.is.tsukuba.ac.jp/

~hamada/LCNCd-program.nb.

To run this file you should first save it with
the extension .nb (Mathematica files extension)
then you use Mathematica 3.0 to run the pro-
gram.

Our future work will be in two directions.
The theoretical one is to study the completeness
of LCNCy for various classes of CTRSs and to
extend this calculus to higher-order one. The
practical one is to extend the current implemen-
tation in various ways: to incorporate types in
the implemented system and incorporate Math-
ematica built-in rewriting such as arithmetic
simplification and numeric relations.

In our previous work) we described a full im-
plementation of three narrowing calculi devel-
oped by SCORE laboratory at the university of
Tsukuba. LCNC, was among these calculi. A
full version of that paper can be obtained from

Mar. 1998

ftp://ftp.risc.uni-linz.ac.at/pub/

techreports/1996/97-02.ps.gz.

Acknowledgments

We are grateful for various supports and sug-
gestions from Bruno Buchberger and Aart Mid-
deldorp. The first author is supported by the
Ministry of Education, Science, Sports and Cul-
ture of Japan. This work is partially sup-
ported by the Okawa Foundation for Informa-
tion and Telecommunications and Grants-in-
aid Basic Research B07558152 and B0858059,
Ministry of Education, Science, Sports and Cul-
ture of Japan.

References

1) Buchberger, B.: Mathematica as a Rewrite
Language, Proc. Fuji International Workshop
on Functional and Logic Programming, Shonan
Village Center, World Scientific, Singapore,
pp-1-13 (1997).

2) Dershowitz, N. and Jouannaud, J.-P.: Rewrite
Systems, van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science, Vol.B, pp.243~
320, North-Holland (1990).

3) Hamada, M. and Ida, T.. Implementation
of Lazy Narrowing Calculi in Mathematica,
RISC-Linz Report Series, No.97-02, Johannes
Kepler Univ., Austria (1997).

4) Hamada, M. and Middeldorp, A.: Strong
Completeness of a Lazy Conditional Narrow-
ing Calculus, Proc. Fuji International Work-
shop on Functional and Logic Programming,
Shonan Village Center, World Scientific, Sin-
gapore, pp.14-32 (1997).

5) Hanus, M.: The Integration of Functions into
Logic Programming: From Theory to Practice,
Journal of Logic Programming, Vols.19 & 20,
pp.583-628 (1994).

6) Ida, T. and Nakahara, K.: Leftmost outside-in
narrowing calculi, Journal of Functional Pro-
gramming, Vol.7, No.2 (1997).

7) Kaplan, S.: Conditional rewrite rules. Theo-
retical Computer Science, Vol.33, pp.175-193
(1984).

8) Klop, J.W.: Term Rewriting Systems,
Abramsky, S., Gabbay, D. and Maibaum, T.
(Eds.), Handbook of Logic in Computer Sci-
ence, Vol.II, pp.1-116, Oxford University Press
(1992).

9) Middeldorp, A. and Hamoen, E.: Complete-
ness Results for Basic Narrowing, Applicable
Algebra in Engineering, Communication and
Computing, Vol.5, pp.213-253 (1994).

10) Middeldorp, A. and Okui, S.: A Deterministic
Lazy Narrowing Calculus, Journal of Symbolic
Computation (to appear).

Vol. 39 No. 3

11) Middeldorp, A., Okui, S. and Ida, T.: Lazy
Narrowing: Strong Completeness and Eager
Variable Elimination, Theoretical Computer
Science, Vol.167, Nos.1, 2, pp.95-130 (1996).

12) Prehofer, C.: Solving Higher-Order Equations:
From Logic to Programming. PhD Thesis,
Technische Universitat Miinchen (1995). Ap-
peared as Technical Report 19508.

13) Wolfram, S.: The Mathematica Book, Wol-
framMedia, Champaing, IL (1996).

(Received August 14, 1997)
(Accepted December 1, 1997)

Mohamed Hamada is a
Ph.D. student at the university
of Tsukuba since October 1994.
He received his M.Sc. in com-
puter science and pure Mathe-
matics from Ain Shams univer-
sity, Cairo, Egypt in 1993. He
worked as an assistance lecturer at Ain Shams
university from 1988 to 1994. His research in-
terest is narrowing and term rewriting.

Deterministic and Non-deterministic Lazy Conditional Narrowing 663

Tetsuo Ida is a professor
at the University of Tsukuba,
where he leads a research group
of symbolic computation
(SCORE) in the institute of in-
formation sciences and electron-

: ics. His research includes inte-
gration of functional and logic programming,
term rewriting and parallel and distributed
symbolic computation. He received a Doctor of
Science from the University of Tokyo. He is an
editor of the Journal of Symbolic Computation,
the Journal of Functional and Logic Program-
ming and Texts and Monographs in Symbolic
Computation. He is a member of the ACM,
the TPSJ, the JSSST, the IEICE, the Associa-
tion of Logic Programming and the IEEE Com-
puter Society.

