Vol. 39 No. 4

Transactions of Information Processing Society of Japan

Regular Paper

An Approximate Analysis of the AVL Balanced Tree
Insertion Algorithm

Ryozo NAKAMURA,' NINGPING SUN't and TAKUO NAKASHIMA!

Two particularly interesting questions concerning the performance of the AVL balanced tree
insertion algorithm are: i) If all n! permutations of n keys occur with the equal probability,
what is the expected height of the constructed AVL balanced tree? ii) What is the probability
that an insertion requires rebalancing? Although some empirical results about the expected
height of the AVL balanced tree and the probability that an insertion requires rebalancing
have been obtained, the mathematical analysis of these two problems is still open. In order
to analyze both of these questions we should grasp the characters of the AVL balanced tree
structures. In this paper, as the first step toward the analysis of these two open problems, we
assume that all AVL balanced trees with the given number of nodes and height are constructed
with equal probability instead of the hypothesis that all n! permutations of n keys occur with
equal probability. Based on this assumption, we first derive a formula to enumerate the
different AVL balanced trees with n internal nodes and height h. Then, we propose the
formulae to evaluate the expected height of the AVL balanced tree and the probability that
an insertion requires rebalancing. The results from these proposed formulae are very close to

Apr. 1998

those empirical ones obtained so far.

1. Introduction

The binary search tree technique is such a
simple and efficient dynamic search method
that it is qualified as one of the most fundamen-
tal and important algorithms. The search cost
on the binary search trees is quite dependent on
the shapes of the trees. In a binary search tree
built from n random keys, the operations such
as insertion and search require O(log n) units
of time on the average, however, in the worst
case, they take the linear time as O(n). In or-
der to eliminate the worst case performance of
a binary search tree, several algorithms to bal-
ance the binary search tree were proposed and
implemented 23,

One of the most well known balanced tree
algorithms is the AVL balanced tree which
was proposed by two Russian mathematicians,
Adel’son-Vel’skii and Landis®. The balance
criterion of the AVL balanced tree is: A tree
is called balanced if and only if for every node
the heights of its two subtrees differ by at most
1. In this paper, the height of a tree is defined
to be the length of the longest path from the
root to a leaf node.

According to the analysis of Adel’son-Vel’skii
and Landis, the height of an AVL balanced tree

t Department of Computer Science, Faculty of Engi-
neering, Kumamoto University
11 Graduate School of Science and Technology, Kuma-
moto University

1006

with n internal nodes, denoted by h(n), always

lies between the heights of the perfectly bal-

anced tree and the Fibonacci tree, i.e.,

Mloga(n +1)] = 1 < h(n) < 1.4404logy(n + 1) — 1.328.

1

The lower bound of Eq. (1) denotes the height
of the perfectly balanced tree, while the upper
bound shows the height of the Fibonacci tree.

Some empirical results about the average be-
havior of the AVL balanced tree have been ob-
tained, but no mathematical analyses of the fol-
lowing two questions about the AVL balanced
tree insertion algorithm have been resolved suc-

cessfully since 1962.

i) If all n! permutations of n keys occur

with the equal probability, what is the
expected height of the constructed AVL
balanced tree?
What is the probability that an insertion
requires rebalancing, i.e., how often do
we need to do a single or a double rota-
tion to restore the desired balance?

It is extremely difficult to mathematically an-

alyze both of these problems in conformity with

the hypothesis that all n! permutations of n

keys occur with equal probability. In order

to solve these two questions it is indispensable
to grasp the characters of the AVL balanced
tree structures. In this paper, we take the first
step toward analyzing the above two open prob-
lems by assuming that all AVL balanced trees

ii)

Vol. 39 No. 4

with the given number of nodes and height are
constructed with equal probability. Based on
this assumption, we analyze both the expected
height of AVL balanced tree and the probabil-
ity that an insertion requires rebalancing. We
first derive a formula to enumerate the differ-
ent AVL balanced trees with n internal nodes
and height h. Then, we propose the formulae
to evaluate both of these problems. The results
from the proposed formulae are very close to
those empirical ones shown in Refs. 2) and 3).

2. Expected Height of the AVL Bal-
anced Tree

In this section, according to our assumption
that all AVL balanced trees with the given
number of nodes and height are constructed
with equal probability, we analyze the expected
height of the AVL balanced tree with n internal
nodes.

According to its definition, the AVL balanced
tree with n nodes and height h can be con-
structed as Fig.1. For a root node, if its left
subtree is an AVL balanced tree with k£ nodes
and height h — 1 then its right subtree must
be constructed as an AVL balanced tree with
(n — k — 1) nodes and height h —1 or h — 2. If
we interchange the left and the right subtrees
essentially the identical case will occur.

As we have mentioned, the optimum is
reached if the tree is perfectly balanced for
n = 2P*t1 — 1. On the contrary, the worst AVL
balanced tree is the Fibonacci tree, i.e., given
the height of the tree, a Fibonacci tree is the
AVL balanced tree with the minimum number
of nodes. Therefore, the well-known definition
of the Fibonacci tree is redefined as follows.

i) The height of the Fibonacci tree with
only one node is 0.

ii) If the left subtree is the Fibonacci tree
with height A — 1 and the right subtree is
the Fibonacci tree with height h—2, then

Q__root

numbe
number

of nodes
k

of nodes
n-1-k

Fig.1 The organization of the AVL balanced tree
with n nodes and height h.

An Approximate Analysis of the AVL Balanced Tree Insertion Algorithm 1007

the binary search tree is the Fibonacci
tree with height h.

iii) Only when satisfied with the above two
conditions, a binary search tree is a Fi-
bonacci tree.

Let f(h) be the number of nodes of the Fi-
bonacci tree with height h, from the above def-
inition, f(h) can be expressed by the following
recursive formula,

fth)y=f(h=1)+ f(h—2)+1, (2)
where £(0) =1, f(1) = 2.

The closed form expression of the recurrent

formula (2) is given as follows),
F(h) = (8177 = 237%)/VB) — 1,
where &1 = (1 4+5)/2, 2 = (1 — V5)/2.

Now we consider how to count the number
of the AVL balanced trees with n nodes and
height h. Here, we inspect the range of k, the
number of nodes in the left subtree of the root
node. Since the Fibonacci tree is the AVL bal-
anced tree with the minimum number of the
nodes, the lower limit of ¥ will be f(h — 1).
On the other hand, for the upper limit of k,
since it is clear that the left subtree with height
h — 1 must have no more than 2" — 1 nodes,
and based on the balance criterion of the AVL
balanced tree, the height of the right subtree of
the root node is not less than h — 2, i.e., the
minimum number of nodes of the right subtree
is f(h — 2). Therefore, the upper limit of k
should be min{2" — 1,n — 1~ f(h —2)}. From
the above analysis, the number of the AVL bal-
anced trees with n nodes and height h, denoted
by AV L(n,h), can be expressed by the follow-
ing recursive formula,

min{2" —1,n—1—f(h—2)}

AVL(n,h) = AVL(k,h —1)
k=f(h~-1)
x{AVL(n—k—1,h —1)
+2AVL(n -k —1,h —2)}, (3)

where n >3, AVL(1,0) = 1, AVL(2,1) = 2.

Based on Eq.(3), we can count the number
of the AVL balanced trees constructed with n
nodes and height h. Some results obtained by
Eq. (3) are shown in Fig. 2 in accordance with
the different heights of the AVL balanced trees
respectively, and tree structures of some simple
AVL balanced trees are also presented there.
From these figures, we can see that the number
of the AVL balanced trees increases explosively
with increasing of the number of nodes.

As a result of our evaluation, the expected

1008 Transactions of Information Processing Society of Japan Apr. 1998

AVL(1,0)=1, AVLQ,1)=2, AVL(3,1)=AVL(LO)AVL(L,0)=1, 1.2e+09
o Q o) 1e+09
o SN RN
o o o 0 8¢+08
[
=
S 6e+08
< 4e+08
AVL(4,2)=2AVL(2,1)AVL(1,0)=4, |
2e+08 .
O, o] o} o}
/o/ o o< Yo o >o o o 0 /]
© o © o 20 25 30 35 40 45 50 55 60 65
n
le+19
9e+18
AVL(5,2)=AVL(2,1)AVL(2,1)+2AVL(3,1)AVL(1,0)=6, 8e+18 / : \
Te+18 I \
o) o} o O O, P
6e+18
LR /o/ \O\ °< \O\ O/ \ <\ o >°\ g Se+18 [
o o o o o o o/ d Yo s R
< 4e+18 \
3e+18
2e+18 8
AVL(6,2)=AVL(2,)AVL(3,1)}+AVL(3,)AVL(2,1)=4, le+18
0
30 40 50 60 70 80 90 100 110 120 130
/O\ o o /O\ /o\o)
1 —
o/ o/ o \O J oo O/ e+39 N
9e+38 H
8e+38 n
Te+38 fl \
AVL(7,2)=AVL(3,)AVL(3,1)=1. 8 Ges38 I 1
3 5e+38 !
O/O\O i 4e+38 { \
O/ \O O/ \o TR T S I—
2e+38 . 4
le+38 . 1
0

50 100 150 200 250 300

7 T o 1.4e+79 !
J4e+ T T
5 !\
1.2e+79
50 I
_ \ 1e+79 | .
“ 40 . - ~ ’ l
£ \ C 8ev78
> 30 | , ‘
< > 6e+78
20 <
4e+78 — 1
10 2¢478
0)\
9 10 11 12 13 14 15 0 : : -
78 0 n 2 50 100 150 200250 300 350 400 450 500 550
n
16000 . 4e+159 .
14000 3.5e+159 I
12000 3e+159 1
< 10000 : A] 52504159 ; .
g 8000 5 24159 ‘
< 6000 1 1564159 ’ 1
4000) 1 1e+159 : : 1
2000 ; 5e+158 : J \ 1
0 : o i

1214 16 18 20 ff 2426 28 30 32 100 200 300 400 500 600 700 800 900 10001100
n

Fig.2 The number of the AVL balanced trees with n nodes and height h.

height of the AVL balanced trees built from n of nodes in the AVL balanced tree with height
nodes can be derived by EAV L(n) as follows, h as NAV L(h),

EAVL(n ZhAVL(n h)/ZAVL(n h). (4) NAVL(h) = ZnAVL(n k) /ZAVL(n h). (5

where [logg(n +1)] =1 < h <1.44logy(n+1) — 1.328. We show the expected helght and the average
Futhermore, we denote the average number number of nodes of the AVL balanced trees ob-

Vol. 39 No. 4

14

12 12120 6g()-0'694
10 froetmem e
= FAV]
. A/’L’(‘ L
—NAVL(h)

height of the AVL balanced tree (h)

0 i L i i
0 100 200 300 400 500 600 700 800 900 1000
: number of nodes (n)

Fig.3 The expected height and the average number
of nodes of the AVL balanced tree.

tained by Egs. (4) and (5) with the solid lines in
Fig. 3. Using the method of least squares in the
regression analysis %), we can see quantitatively
that the expected height of the AVL balanced
tree approximates to 1.212log, n — 0.694 and
the average number of nodes approximates to
(1.459)2" which are drawn by the dotted lines.

3. Probability that an Insertion Re-
quires Rebalancing

In this section, we also assume that all AVL
balanced trees with the given number of nodes
and height are constructed with equal proba-
bility, and propose the analysis for the second
problem: what is the probability that an inser-
tion requires rebalancing?

When a new key is inserted into the AVL
balanced tree using the tree insertion algo-
rithm 23| there are only two essentially dif-
ferent cases that will cause imbalance, which
are represented in Fig.4(a). Two other es-
sentially identical cases will occur if we reflect
the two diagrams of Fig. 4 (a) by interchanging
the left and the right subtrees. In these dia-
grams the rectangles «, 3, v, 0 represent the
subtrees with the respective heights, and the
heights added by the insertions are indicated
by the crosses.

In case 1, using a single rotation we simply
rotate the tree to the right, attaching 8 to B
instead of A. While in case 2, we use a double
rotation, first rotating (A, B) left then (B, C)
right. These simple transformations restore the
desired balance shown in Fig. 4 (b).

Because the structure of the AVL balanced
tree is very complex, we can not easily find the
probability that an insertion requires rebalanc-
ing only based on these two cases. Our care-

An Approximate Analysis of the AVL Balanced Tree Insertion Algorithm 1009

case 1 case 2

(a)

l rebalancing 1

single rotation double rotation

(b)

Fig.4 Imbalance resulting from the insertion and
restoring the balance.

pattern-1 pattern-2
X KX XX XX X
Fig.5 Two essential patterns in an AVL balanced

tree.

ful scrutiny of the two cases in Fig. 4 reveals
that there are only two essentially different pat-
terns in the AVL balanced tree, called pattern-1
and pattern-2. As shown in Fig. 5 the heights
added by the insertions are indicated by the
crosses.

In other words, when we insert a new key
into the external nodes of the AVL balanced
tree with n nodes and height h, only these two
patterns should be associated with the rebal-
ancing shown in Fig.4. According to these two
patterns, there are only two different cases that
the imbalance will happen due to an insertion
as follows.

1. imbalance I

The “imbalance I” indicates that an inser-
tion at the external nodes of the leaf of
pattern-1 causes the AVL balanced tree im-
balance.

2. imbalance IT

The “imbalance II” indicates that an in-

1010 Transactions of Information Processing Society of Japan

sertion at the external nodes of pattern-2
causes the AVL balanced tree imbalance.

In order to find out the probabilities that
these two imbalance cases occur, we introduce
three functions into our analysis.

First, in the case of imbalance I, we denote
p1(n, h) as the average number of pattern-1 in
the AVL balanced trees with n nodes and height
h by the following recursive formula,

min{2" ~1,n—1—f(h—2)}
pi(n,h) = m Z AVL(k,h—1)
k=f(h—1)
X[AVL(n —k —1,h —1)
x{p1(ksh — 1) +p1(n —k—1,h — 1)}
+2AVL(n —k —1,h —2)
x{p1(k,h = 1) +p1(n—k—1,h—2)}], (6)

where n > 2 and the initial value of p; (n, h) is
D1 (2, 1) =1.

For instance, p;(4,2) is the average number
of pattern-1 in the AVL balanced tree with 4
nodes and height 2, since AVL (4,2) is 4 shown

as follows,
/D o ((:\o J :): o O\a\)

ar ar &R ar
by Eq. (6) we get,

p1(4,2) 2AVL(2,1)AV L(1,0)

1
T AVL(4,?2)
X{pl(Q’l) +p1(170)}
1
=522 {140} =1

Similarly, p1(5,2) is the average number of
pattern-1 in the AVL balanced tree with 5
nodes and height 2, it becomes

ARA A P ANV IR NN

B8 BRAR ERAR

1
AVL(5,2)

x{p1(2,1) + p1(2,1)}
1 8 4
:5‘2'2{14'1}:5:5‘

And in the AVL balanced tree with 6 nodes
and height 2,

P GRS AP

the average number of pattern-1 is

p1(5,2) = AVL(2,1)AVL(2,1)

p1(6,2) = 2AVL(2,1)AVL(3,1)

1
AVL(6,2)

Apr. 1998

Fig.6 The instances of imbalance II.

x{p1(2,1) +p1(3,1)}
1

=722 1{1+0} =1.

Secondly, we consider the cases of imbalance
II. Not all pattern-2 in the AVL balanced trees
are associated with imbalance II. Only those in
the subtrees which are higher than their adja-
cent subtrees could possibly cause imbalance II.
We show some tree structure instances of Fig. 6
to explain this furthermore.

Obviously, imbalance II occurs only when a
new key is inserted into the external nodes of
those pattern-2 drawn within the dotted square.
Therefore, in order to compute the probability
that imbalance IT occurs, we only concentrate
on the average number of pattern-2 that will
cause imbalance II.

According to the case of imbalance II, we
intruduce the recursive functions ps(n,h) and
p3(n, h) into our analysis now. By ps(n,h) we
denote the average number of pattern-2 that
will cause imbalance II in the AVL balanced
tree with n nodes and height h.

min{2h —1,n—1—f(h—2)}

1
_ AV IL(k,h—1
AV L(n, h) (k,)

k=f(h—1)

X[AVL(n —k —1,h —1)
x{p2(k,h —1) + pa(n —k —1,h - 1)}
+2AVL(n—k—1,h —2)
x{p3(k,h = 1) +po(n—k =1,h—2)}}, (7)

p2(n, k) =

where n > 5,h > 2 and the initial value of
pa(n, h) is p2(5,2) = 1/3.

Here, by p3(n, h) we denote the average num-
ber of pattern-2 in the AVL balanced tree with
n nodes and height h, where for every node, if
the heights of its two subtrees are the same, all
pattern-2 in both of the subtrees are counted;
if the heights of its two subtrees are different,
all pattern-2 in the higher subtree are counted,
however for the lower subtree , only the pattern-
2 that will cause imbalance 11 is counted. These
two different cases are expressed in Figs. 7 (a)

Vol. 39 No. 4

g g
ba6d mﬁg}g P el e iy

the initial case

(a)

o ooy Kﬁ: B o

CEEEL R
(b)

Fig.7 The instances that pattern-2 is counted as
p3(n, h) is called.

and (b) respectively, where those pattern-2
drawn within the dotted square are counted
when ps(n, h) is called.

Therefore, function p3(n, h) is derived as fol-
lows,

min{2P ~1,n—1—f(h—2)}

—————-—AVLl(n,h) Z AVL(k,h — 1)
k=1 (h=1)

X[AVL(n—k —1,h — 1)

x{p3(k,h — 1)+ p3(n—k —1,h — 1)}

12AVL(n —k ~1,h —2)

x{p3(k,h —1) +pa(n—k —1,h —2)}], (8)

p3(n, h) =

where n > 3,h > 1 and the initial value of
p3(n, k) is p3(3,1) = 1.

Notice that, for every node, if the heights of
its two subtrees are different, py(n, h) contains a
reference to p3(n, h) which contains a reference
to pa(n,h). Hence, they are indirectly recur-
sive.

For example, in the AVL balanced tree with
5 nodes and height 2 shown as follows,

£ TS PN P

ARER ARBOR
pa(5,2) = m%(—g,—ﬁ?AVL(B, 1)AVL(1,0)
x{p3(3,1) + p2(1,0)}
21.2‘1‘1{14,0}:3:1,
6 6 3
3(5,2) = ————2AVL(3,1)AVL(1,0)

AVL(5,2)
X{p3(3, 1) + p2(1’0)}
:1,2.1.1{1+0}:2:l
6 6 3
here, p»(5,2) is equal to ps(5,2).
However, in the AVL balanced tree with 6

nodes and height 2,
2 2
& h o
@

3

£ £ F R

AREAR QRAR RER aRAR

An Approximate Analysis of the AVL Balanced Tree Insertion Algorithm 1011

o] o]
O . SR
& g n fRan ER&R
S D D S SSDD DDSS

Fig.8 Single and double rotations based on
pattern-1 and pattern-2.

P2(6,2) = Sy 2AVL(3, DAV, 1)
x{p2(3,1) +p2(2,1)}
1
=>.2.1.2{0+0} =0,
1
3(6,2) 2AVL(3,1)AVL(2,1)

T AVL(s2)
x{p3(3,1) + p3(2, 1)}
=l oioiqo0y=1,
4
even though there are 4 pattern-2’s in these
AVL balanced trees, the average number of
pattern-2 that will cause imbalance II is zero.

Similarly, in the AVL balanced tree with 7
nodes and height 2,

o
BRRRARAR

1

pa(7,2) = mAVL@,l)AVL@, 1)
x{p2(3,1) + p2(3,1)}
=1-1{0+0}=0,
p3(7,2) = l _ AVL(3,1)AVL(3, 1)

x{p3(3,1) + p3(3,1)}

=1-1{14+1} =2,
there are 2 pattern-2’s in the AVL balanced tree
with 7 nodes and height 2, but there are no any
pattern-2 will cause imbalance II .

We are now in the position to analyze the
probability that an insertion requires the re-
balancing. As shown in Fig.4, we use a single
or a double rotation to restore the desired bal-
ance in both the imbalance cases. Based on the
two proposed patterns, these rotations are indi-
cated by two essentially different types of sub-
trees shown in Fig. 8, where S denotes a single
rotation and D denotes a double rotation.

As shown in Fig. 8, the single rotation and the
double rotation will happen with equal prob-
ability. Meanwhile, for a rotation, pattern-1
has one, while pattern-2 has two inserting po-
sitions. PR(n,h) is denoted as the probability
that a single or a double rotation should be used
to restore the desired balance when a new key
is inserted into the AVL balanced tree with n
nodes and height h. It is derived according to

1012 Transactions of Information Processing Society of Japan

the imbalance cases mentioned previously,

PR(n, h) = p1(n, h) pa(n, h). (9)

1 I 2
n+1 n+1
For example, when a new key is inserted into

the external node of the AVL balanced trees
with 4 nodes and height 2,

'

]] 88 &R
SD SD DS

the probability PR(4,2) becomes

1 2
PR(4,2) = gp1(4v2) + gp2(472)
1 14 2 0= 1
5 5 5

Another example is

1 2
PR(5,2) = 2p1(5,2) + 392(5,2)

1 A 21 1

6 3 6 3 3’

its tree structures are:

In Fig. 9 we show the probability that a sin-
gle or a double rotation occurs when a new key
is inserted into the AVL balanced tree with n
nodes and height h. To present it more clearly,
we show this probability with Figs. 9 (a) and (b)
individually. From both these figures we can see
that when the number of nodes is greater than
20 the probability that a single or a double ro-
tation occurs is below 0.27.

Finally, let P(n) be the probability that a
single or a double rotation will occur when the
(n+1)th key is inserted into the AVL balanced
tree with n nodes. From the above analysis it
can be defined as follows,

P(n) = ZAVL(n R)PR(n,h), (10)

AVL(

where AVL(n)= Eh AV L(n,h), and

[logo(n+1)] — 1 < h < 1.44logy(n + 1) — 1.328.

From Eq. (10), we can know when we insert
(n + 1)th key into the AVL balanced tree with
n nodes how often we need to do a single or
a double rotation. Figure 10 gives the prob-
abilities P(n) that the (n + 1)th key inserted
requires a single or a double rotation to restore
the balance. The results of Fig. 10 suggest that
if the number of nodes is greater than 20 the

Apr. 1998
035
0.3
A G Sy
< h=5 -
2 R R N S
0.25 AN
\ \
= 02 | ki 1
2 \
& . \
A 0.15 v
0.1 - \"‘
\
0.05 i
; |
0 : [\ A
0 10 20 30 40 50 60 70
number of nodes (n)
P ST B NG Y
H AN
5
= \
& \
A i
.\
'

0 I HE L
0 50 100 150 200 250 300 350 400 450 500
number of nodes (n)

(b)

Fig.9 The probability that a single or a double rota-

tion occurs when a new key is inserted into the
AVL balanced tree with » nodes and height h.

0.35

0.3

[

P(n)

0.05 |

0 1 1 1 s H 1 i
0 50 100 150 200 250 300 350 400 450 500
number of nodes (n)

Fig.10 The probability that a single or a double ro-
tation occurs when a new key is inserted into
the AVL balanced tree with n nodes.

value of P{(n) is between 0.26 and 0.27 on the
average. Therefore, the necessary rebalancing
should occur with about 0.54 probability, i.e.,
the rebalancing is required once for every two
insertions. This result from P(n) is very close
to the ones from the empirical tests in Refs. 2)
and 3).

Vol. 39 No. 4

4. Conclusions

Based on our assumption that all AVL bal-
anced trees with the given number of nodes
and height are constructed with equal proba-
bility we have analyzed two interesting ques-
tions concerning the average performance of the
AVL balanced tree insertion algorithm: the ex-
pected height of the AVL balanced trees and
the probability that an insertion requires the
rebalancing. The proposed formulae can an-
alyze approximately the performance of these
two problems.

We have first derived the formula counting
the number of the AVL balanced trees with n
nodes and height h, i.e., AV L(n, h), then got
the expected height of the AVL balanced tree.
Next, to evaluate the second problem we have
revealed that the traditional cases causing im-
balance correspond to the two imbalance cases,
which are proposed based on the two essential
patterns. The results computed by the pro-
posed formulae are very close to the ones from
the empirical tests.

It is well-known that all the AVL balanced
trees should not be constructed with equal
probability if all n! permutations of n keys oc-
cur with equal probability. This is the reason
why our results differ slightly from those em-
pirical ones obtained so far. Therefore, based
on our proposed analysis, we should and could
exactly analyze both the expected height of the
AVL balanced trees and the probability that an
insertion requires the rebalancing in conformity
with the assumption that all n! permutations
of n keys occur with the equal probability.

References

1) Knuth, D.E.: The Art of Computer Pro-
gramming, Vol.l, Fundamental Algorithms,
Addison-Wesley, Reading, MA (1973).

2) Knuth, D.E.: The Art of Computer Program-
ming, Vol.3, Sorting and Searching, pp.451-
469, Addison-Wesley, Reading, MA (1973).

3) Wirth, N.: Algorithms + Data Structures =
Programs, pp.216-226, Prentice-Hall (1976).
4) Adel’'son-Vel’skii, G.M., Landis, EM.: An

Algorithm for the Organization of Informa-

An Approximate Analysis of the AVL Balanced Tree Insertion Algorithm 1013

tion, English translation in Soviet Math. Vol.3,
pp.1259-1263 (1962).
5) Draper, N.R. and Smith, H.: Applied Regres-
ston Analysis, John Wiley & Sons (1966).
(Received May 27, 1997)
(Accepted February 2, 1998)

Ryozo Nakamura received
the M.E. degree from Kuma-
moto University in 1968 and the
D.E. degree in computer science
from Kyushu University in 1985.
From 1968 to 1974, he joined
Chubu Electric Power Company.
Since 1975 he has joined in Faculty of Engineer-
ing of Kumamoto University, and is presently a
professor in Department of Computer Science.
His current research interests include the design
and analysis of algorithms and data structures.

Ningping Sun received her
B.E. and M.E. from Beijing
Polytechnic ~ University and
Kumamoto University. From
1983 to 1992 she joined Bei-
jing Information Technology In-
stitute as an instructor. She is
presently working for her doctoral degree in
computer science in the Graduate School of
Science and Technology, Kumamoto University.
She is interested in the design and analysis of
algorithms and data structures, operating sys-
tems.

Takuo Nakashima received
the ML.E. degree from Kuma-
moto University in 1986. From
1986 to 1988 he joined Fuyjitsu
Company. Since 1991 he has

joined in the Faculty of Engi-
* neering, Kumamoto University,

ol 2

and is presently a research associate in Depart-

ment of Computer Science. His research in-
terests include the design and analysis of algo-
rithms and data structures, and computer net-
work.

