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On the Church-Rosser Property of Root-E-overlapping
and Strongly Depth-preserving Term Rewriting Systems
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A term rewriting system (TRS) is said to be strongly depth-preserving if for any rewrite rule
and any variable appearing in its both sides, the minimal depth of the variable occurrences in
the left-hand-side is greater than or equal to the maximal depth of the variable occurrences
in the right-hand-side. This paper gives a sufficient condition for the Church-Rosser property
of strongly depth-preserving TRS’s and shows how to check this condition. By assigning
a positive integer (called weight) to each function symbol, the notion of a strongly depth-
preserving system is naturally extended to that of a strongly weight-preserving system, and
a similar sufficient condition for the Church-Rosser property of strongly weight-preserving

TRS’s is obtained.

1. Introduction

A term rewriting system (TRS) is a set
of directed equations (called rewrite rules).
A TRS is Church-Rosser (CR) if any two
interconvertible terms reduce to some com-
mon term by applications of the rewrite rules.
This CR property is important in various ap-
plications of TRS’s and has received much
attention?)~3):5)~8) _ Although the CR property
is undecidable for general TRS’s, many suffi-
cient conditions for ensuring this property have
been obtained!):2):5)~8)

However, for nonlinear and nonterminating
TRS’s, few results related to the CR property
have been obtained. Our previous papers®)6)
were the first to give nontrivial conditions for
the CR property by using the notions of non-
E-overlapping (stronger than nonoverlapping)
and E-critical pairs to extend that of criti-
cal pairs. We gave some sufficient conditions
for the CR property that can be applied to
subclasses of right-linear TRS’s. In the case
of non-right-linear TRS’s, it has been shown
that there exist non-E-overlapping and depth-
preserving TRS’s that do not satisfy the CR
property, but that all non-E-overlapping and
strongly depth-preserving* TRS’s satisfy the
CR property?~'1). Here, a TRS is depth-
preserving if for each rule & — § and any vari-
able z appearing in both a and 3, the maximal
depth of the z occurrences in « is greater than
or equal to that of the z occurrences in 8%. A
TRS is strongly depth-preserving* if it is depth-
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preserving and for each rule @ — 3 and for any
variable x appearing in «, all the depths of the
T occurrences in « are the same!®).

In this paper, we first slightly extend the
definition of strongly depth-preserving* TRS’s;
that is, a TRS is strongly depth-preserving if
for each rule @ — § and any variable z appear-
ing in both a and g, the minimal depth of the
T occurrences in « is greater than or equal to
the maximal depth of the z occurrences in §.
Obviously, a TRS is strongly depth-preserving
if it is strongly depth-preserving*. We extend
the result in Ref. 11) by showing that for this
new class of strongly depth-preserving TRS’s,
the non-E-overlapping condition also ensures
the CR property.

Next, we show that even if a strongly depth-
preserving TRS is E-overlapping, a condition
called root-E-closed (in Section 3) ensures the
CR property (Theorem 1), and we give a decid-
able sufficient condition for this root-E-closed
condition.

By assignment of a positive integer (called
weight) to each function symbol, the notion of
depth is naturally extended to that of weight:
the weight of an « occurrence is the sum of the
weights of function symbols appearing in the
path from the root to the z-occurrence. Using
the notion of this weight, we can give the defi-
nition of strongly weight-preserving TRS’s in a
similar way to that of strongly depth-preserving
TRS’s and obtain the corresponding root-E-
closed condition which ensures the CR property
of strongly weight-preserving TRS’s (Theorem
2). For example, TRS R = { f(z) — g(h(z),z),
g9(z,z) = a, b — h(b)}*?, where z is a vari-
able and f, g, h, a, b are function symbols, is
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CR by this result (see Example 4 in Section 6).
(It was stated in Middeldorp, et al.'?) without
proof that this TRS R is CR.)

This paper is organized as follows. Section
2 is devoted to definitions. In Section 3, we
give the root-E-closed condition. Some asser-
tions to prove Theorem 1 are given in Section 4
and Theorem 1 is proven in Section 5. In Sec-
tion 6, we give a sufficient condition for the CR
property of strongly weight-preserving TRS’s,
and in Section 7, we give a decidable sufficient
condition ensuring the root-E-closed condition.

2. Definitions

The following definitions and notations are
similar to those in Refs. 2), 5) and 8) ~ 11). We
use € to denote the empty string and ¢ to denote
the empty set. Let X be a set of variables, F
be a finite set of function symbols graded by an
arity function a : F — {0,1,2,---}, and T be
the set of terms constructed from X and F.

For a term M, we define the set O(M)
of the occurrences (positions) as follows: If
M is a variable, then O(M) = {e}. If
M = f(Mi,Ms,---,M,) for some f € F,
My,--- M, € T, then O(M) = {} U {iu |
1 <i¢ < mn, u € OM;)}. For example,
O(f(g9(z),a)) = {e1,11,2} where z € X,
f,9,a € F. We use M /u to denote the subterm
of M at occurrence u, and M[u + N] to denote
the term obtained from M by replacing the sub-
term M/u by term N. The set of occurrences
O(M) of M is partially ordered according to the
prefix ordering: u < v iff Jw. ww = v. In this
case, we denote w by v/u. If u < v and u # v,
then u < v. If uXv and v £u, then u and v are
said to be disjoint, and are denoted by u|v. Let
V(M) be the set of variables in M, O, (M) be
the set of occurrences of variable z € V (M),
and Ox(M) = Uzey(a)Oo(M), that is, the
set of variable occurrences in M. Let O(M)
= O(M) — Ox (M), the set of non-variable oc-
currences. We also use N[u ¢ M/u | u € U]
to denote the term (N{u; < M/u1]) - -+ [u,
M/u,) it U = {uy, - ,u,} and uy, -, u, are
pairwise disjoint. We use root(M) to denote
the function symbol of a term M at occurrence
g, that is, the top symbol.

The depth of occurrence u € O(M) is de-
fined by |ul, i.e., the length of u. Let H(M)
= Moaz{|ul | u € O(M)}, the height of M. For
example, H(f(g(z))) = 2, H(a) = 0, where
f,9,a € Fandz € X.

CR. Property of Root-E-overlapping and Depth-preserving TRS’s 993

A rewrite rule is a directed equation a — 8
suchthat a € T'— X, B € T and V(o) D V(B).
A term rewriting system (TRS) R is a finite set
of rewrite rules.

A term M reduces to a term N at occurrence
uif M/u = o(a) and N = M[u « o(8)] for
some a - 8 € Rand 0 : X — T. We denote
this reduction by M - N. In this notation u
may be omitted (i.e., M — N) and —* is the
reflexive-transitive closure of —. Let M & N
be M 5 Nor N5 M.

Un—1

Let v : My 8 My - M,_y "5' M, be a
sequence of ¢ reductions. Then, let R(y) =
{uo, -, un—1}. If R(v) are pairwise disjoint,
then v is said to be a two-way parallel re-
duction, and is denoted by My«-M,. Let
R(Mo+~M,) = R(y). (Note: R(y) = ¢,
ie, My++—M, is allowed.) The term ‘two-
way’ can be omitted if there is no possibil-
ity of confusion. Let «+* be the reflexive-
transitive closure of «<+». If u < v for all
v € R(M«—N), then we denote this parallel

. > . .
reduction by M Z% N. In particular, if u = ¢,
—i >u
then we may use M i3’ N. Let «»* and
E—=1NV
«+* be the reflexive-transitive closures of 5

E—INV .
and «+ , respectively.

We assume that v : My <= M; «— -+ s
M, in the following definitions.

Let R(v) = Up<cicn B(Mi++—M;11) and
MR(v) be the set of minimal occurrences in
R() under the prefix ordering. Foru € O(M,),
if there exists no v € R(v) such that v < u, then
v is said to be wu-tnvariant. Let My = o(a)
or M, = o(a) for some « —+ 8 € R and
o : X — T. Then, v is said to be a-keeping
if 7 is u-invariant for all u € O(a). That is, v
is a-keeping iff all reductions of v occur in the
variable parts of a. Parallel reduction sequence
7 is said to be a peak if v : My & M; «*
M,_; = M,. We denote by ~[é,j] the sub-
sequence MMy 14+ -+« M; of v where
0<i<j<n Letuec MR(y). Then, the
cut sequence of vy at w is v/u = (Mg /u«s My Ju
> -+ M, Ju). We denote by v[¢' /€] the se-
quence obtained from reduction sequence v by
replacing subsequence or cut sequence (or cut
subsequence) £ of v by sequence ¢’. The com-
position of v and d : Ny <+ Ny 5 -+ =N,
where Ny = M, is denoted by (7v;6).

Let v® be the reverse sequence of 7, namely,
vB o My 4+ -+ <43 My < My. The num-
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ber of parallel reduction steps of v is |y|, = n.
(Note: If 6 : M«+M, then |6, = 1.) Let
net(y) be the sequence obtained from v by re-
moving all M;«+ M;,, that satisfy the equa-
tion M; = M1, 0 < i < n. We use ||y to

denote |net(y)|,. Let H(y) = Maz{H(M;) |
0<i<n}
Example. Let § :

fle,e) = flg(e), g(c))
“ a <+ a, then |6, = 3, net(d) : fle, )
> £(9(0),9()) <+ @, 8]y = 2 and H(5) =
H(f(g(c),g(c))) = 2.

We need the definitions of le ft(vy, h), right(y,
h), ldis(~y,h) and width(vy,h) in Ref.11): Let
v i Moe+sM, -+ >M,. Then, left(y,h) is
i (0 <i<n)if H(M;) is h and H(M,), -,
H(M;_,) are less than h, and left(v,h) is un-
defined if there exists no such M;; right(vy, h)
is defined in a similar way to left(y,h) by
replacing the term “left” with “right”; that

Il — left(y®,h); ldis(y,h) is |yl, —
left(y,h); width(v,h) is defined if either
left(vy,h) or right(vy, h) is defined, and in this
case, width(vy,h) is right(y,h") — left(vy,h")
where h' (resp. h'') is the least value satisfy-
ing the conditions that h’ > h (resp. h"” > h)
and right(y,h') (resp. left(vy,h")) is defined.
Roughly speaking, left(y, h) returns the suffix
1 of M; (i.e., the ith term of ) that is first found
as the term of height h in searching from the left
end of vy, while right(vy, h) returns that found in
searching from the right end, and width(y, h) is
right(y,h) — left(y,h). We also need the def-
initions of Kigis(7), Krighe(v) and Kuyian(y)
irl Ref.11): Let v : Mo«+sM; -+ M, and
H(y) = (H(Mo),H(M), --,H(M,)). Intu-
itively, we can suppose that the sequence of the
heights H () represents the shape of a moun-
tain; that is to say, H(M;) is the height of
the mountain slope at a distance ¢ from the
left end, 0 < ¢ < n. To characterize H ),
we use the following three parameters Kjq;5(7y),
Krigne(7) and Kuyiatn(7): Kiais(y) is the set of
I7lp — left(y,h), 0 < h < H(y), and gives a
characterization of the shape of the left slope of
the mountain represented by H(7Y); Kyigne(?y)
is the set of right(y,h), 0 < h < H(y), and
gives a characterization of the shape of the right
slope of the mountain; Ky;q:n(7y) is the set of
right(vy,h) — left(v,h), 0 < h < H(y), and
gives the widths of the mountain at the lines of
height h, 0 < h < H(y). Henceforth, H(y) is
called a mountain. These formal definitions are
given in Ref. 11).
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Example. Let § : f(c) «+— f(g(g(c))) «—
fg(e)) «+ F(f(g(g(c))) «+ f(f(c)) e+ g(c)
where f,g,c € F. Then, we have left(4,1) =
0, left(6,3) =1, left(d, 4) = 3, right(8,1) = 5,
rzght(d 2) = 4, nght(é 4) = 3, ldis(6,1) = 5,
Idis(8,3) = 4, ldis(6,4) = 2, wzdth( 1) =5,
width(6,2) = 3, width(d,3) = 2, width(d,4) =
0. We have Kizis(0) = {(1,5), (3,4), (4,2) },
Kuiarn(8) = {(1,5), (2,3), (3,2), (4,0) } and

Kyagna(6) = {(1,5), (2,4), (4,3) }.

We define an ordering <;,C N x N (where
N = {0,1,2,---}) as follows: (a,b) <;
(@) (a<d Ab<V)V(a=d Ab< V).
Let <; be <5 |J =. We use <5 to denote the
multiset ordering of this ordering <,. Let €,
be < |J =. We use {--},, to denote a mul-
tiset, e.g., {1,1,2},,. We use <, to denote
the multiset ordering of a lexicographic order-
ing < (i.e., (a,b) < (a,b0') & (a < a')V(a =
a Ab < b)). Let £, be <, |J =. Note
that if (a,b) <s (a',b'), then (a,b) < (d',b),
but the converse does not necessarily hold. If
A < B, then A «,, B. The orderings of >,
and > are well-founded, and thus >, and >,
are well-founded?). These relations <, and
& s are used as well-founded orderings for both
sets Kldis(’Y) ,S) Km'gh.t (’Y) ’S’ Kwidth(’Y),S and for
multisets of them such as Kjg;5(y) U Kjais(Y')-

Kiais(7), Krignt(y) and Ky;gen(7y) are used to
prove assertions S(n), P(k) and Q(k). More-
over, Kjg;s(7) is used in the definition of the
root-E-closed condition. <« will be used to
prove assertion S(n) and and <, will be used
to prove assertions P(k) and Q(k).
Definition of (§ < 7)

We define a relation < over parallel reduc-
tion sequences as follows. Let v : M«+* N

and § : M«—* N. Then, § <X v if |4|, =
"Y|p7 |5|np = h’lnpa Kldis(5)<=<sKldis('7) and
Koight(0)EsKrighe(7y). (Note that if § <+, then

H(0) < H(v) holds, since Kjais(0)€sKiais(7v),
and < is reflexive and transitive.) Intuitively
speaking, § < v if mountain H(d) is screened
by mountain H (), when H(v) is put in front of
H (), i.e., H(8) is not a bigger mountain than
H(y). This ordering < will be used to prove
S(n) and define the root-E-closed condition.

A pair of rewrite rules « — 8 and o' — ' is
overlapping iff there exist u € O(a) and map-
pings 0,0’ : X — T such that o(a/u) = o'(a'),
where u = € implies that (o — ) # (o' = §').
In this case, the pair is overlapping at u, and
root-overlapping if u = €.



Vol. 39 No. 4

Definitions of (E-overlapping TRS,
root-E-overlapping TRS)®

Two rules o — 3 and o' — B’ are said to
be E-overlapping at u € O(«) iff there exists a

E—INV

sequence o(a/u) «+—* o'(a') for some map-
pings ¢ and ¢’. A TRS R is said to be E-
overlapping if there exist two rewrite rules that
are E-overlapping in R. Note that in this def-
E—1NV
inition, if o(a/u) ++—* o'(a') is replaced by
og(a/u) = o'(a'), then the two rules are said
to be overlapping?, and R is overlapping. If
R is overlapping, then R is also E-overlapping,
but the converse does not necessarily hold. A
TRS is said to be root-E-overlapping if every
two rewrite rules overlap at ¢ (the root posi-
tion) when they are E-overlapping.

An E-overlapping parallel reduction sequence

>u
v o(a)fu < o'(B)] « o(a)u o' ()] <"
o(a) — o(B) is standard iff for the subsequence
v o'(a!) «—* o(aju), R(®') N (O) N
O(a/u)) = ¢; that is, any reduction in 4’ occurs
in the variable parts in o'(a’) or o(a/u).

Definition of
(strongly depth-preserving TRS)

TRS R is strongly depth-preserving if Ya —
B€ER VreV(B) Maz{lv]|ve 0408} <
Min{lu| | u € Oz(a)}.

That is, a TRS is said to be strongly depth-

preserving if for any rewrite rule and any vari-
able appearing in its both sides, the minimal
depth of the variable occurrences in the left-
hand-side is greater than or equal to the max-
imal depth of the variable occurrences in the
right-hand-side.
Note. This definition slightly extends the pre-
vious one?~1) (i.e., TRS R was said to be
strongly depth-preserving if Vo — 8 € R Vz
e V(B) Maz{|v| |v e O.(8)} < Maz{|u| | u €
O(a)} and Vz € V(o) Vu,v € Oy(a) |u] = |v}.)
Example. Let B = {f(z,z) = a, ¢ = g(c),
g(x) = f(x,2)} and Ry = {f(g(x), 9lg(x))) =
hg(z),9(c)), ¢ = g(c)} where a,c, f,g € F and
z € X. Both R; and R, are strongly depth-
preserving. (But Ry was not strongly depth-
preserving in the previous definition!?).)

3. Root-E-closed Condition

In this section, we introduce a condition
called root-E-closed. We will prove that thisis a
sufficient condition for the CR property of root-
E-overlapping and strongly depth-preserving
TRS’s.

CR. Property of Root-E-overlapping and Depth-preserving TRS’s 995

Definition of (root-E-closed TRS)

A TRS R is root-E-closed if R is root-E-
overlapping and satisfies the following condi-
tion (x):

() For any standard root-E-overlapping par-

E—I1NV
allel reduction sequence v : ¢(3) + o(a) «+~*
o'(a') — o'(B") for some rule o = 3, o' —
€ R and mappings 0,0’ : X — T, there exists

§ : o(B) «»* o'(f) such that the following
conditions (i) and (ii) hold:
(i) 6=~

(ii) At least one of the following conditions
(1)—(3) holds:
(1) 8lnp < Ylnp
(2)  Kigis(0) <5 Kigis(7)
3) If §[0,1] : o(B) & Mfor some M then
0[1,16]p] : M«+* o'(f') is e-invariant.
Note that if 6 < v and H(4) < H(y), then
(2) holds.
That is, a TRS is said to be root-E-closed if it
is root-E-overlapping and for every v : o(8) +

E—INY

o(a) «=* o'(a') = o'(B"), there exists a par-
allel reduction sequence 6 : o(f8) «—* o'(8')
such that § < #; that is, l_{'(é) is screened
by H (v) and ¢ strictly less than v under one
of the components of <, i.e., [8],p < |Y|np OF
Ki4is(0) <s Kiais(7)-
Example 1. TRS R3 = {f(z,z) — h(z,x),
flg(z),2) = a, ¢ = g(c), h(g(z),z) = a},
where a,c, f,g,h € F and z € X, is strongly
depth-preserving.

We first note that only the pair of the
first and second rules has E-overlapping se-
quences. Thus, Rs is root-E-overlapping.

Let v : h(o(z),0(z)) & flo(z),0(x)) >
flg(o'(z)),0'(z)) = a be a standard root-E-
overlapping sequence. Using o(x)«++—* g(o'(x))

£—iny

*

and g(z)«* o'(z), let § : h(o(x),0(x)) «
h(g(o'(x)),0'(z)) = a ++— a. Then, ||, = |v|p
and |8lnp = |Vlnp — 1, and thus part (1) of
the root-E-closed condition (ii) holds, that is,
[0]np < |¥|np- It is straightforward to show that
é < . Hence, Rj3 is root-E-closed.

4. Assertions

In this section, we show that if TRS R is root-
E-closed and strongly depth-preserving, then
R is CR. Henceforth, we are dealing with a
fixed TRS R and assume that R is root-E-closed
and strongly depth-preserving unless otherwise
stated.
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To show this, we use the following five as-
sertions: S(n), P(k), P'(k), Q(k) and Q’'(k)
(where n > 0, k > 0). Assertion Q(k) ensures
that TRS R is CR.

Assertion S(n)

Let v : M«+* N where |y|, = n.

Then, 36 : M«+* N such that the following
conditions (i) and (ii) hold:

(i) There are no peaks in &

(i) 6=~
Assertion P(k)

E—1NV

Let v: M «* o(a) = o(B3) for some rule
o — B € R and mapping o where H(y) < k.

Then, 3§ : N«+* o(B) for some N such that
the following conditions (i) and (ii) hold:

iy M->*N

(ii) Either H(6) < H(vy) or d is

e-invariant and H(6) = H(v).
Assertion P'(k)

Let v : My«+t>My——Ms--- M, where
H(y) < k, the number of e-reductions in
v is | (>0) and each e-reduction is M; -
M;; for some i (0 < i < n). Let M, 5
M 1, My, 5 M;,+1 be the e-reductions of
¥, 0 <11 <idg-+- <4 < n. Then, there exist
ij (1<j<1)and §: Nein* My, for some N
such that the following conditions (i) and (ii)
hold:

(1) My —-* N

(ii) Either H(d) < H([0,4; + 1]) holds or

t; =1, H(S) = H(v[0,i; +1])
and ¢ is e-invariant.
Assertion Q(k)u)

Let v : M«+~* N where H(y) < k. Then,
36 : M +—* L «=* N for some L such that
H(5) < k,M —* Land N —* L.

Assertion Q’(k)ll)

Let v; : M «* M;, where H(;) < k,1 <
t <nandn > 2. Then,36§: M +—* N for
some N such that H(J) < k and Vi (1 <7 < n)
M; —* N.

S(n) says that for a given sequence v, there
exists § such that § has no peaks and § < 7.
On the other hand, the previous definitions of
S(n) and S’(n) in Ref.11) said that it is pos-
sible to remove the outermost peak, so that
by repeating this process, we can obtain se-
quence § having no peaks. The current version
of S(n) describes and extends this result. P(k)
and P’(k) are slightly simpler than the versions
given in Ref. 11) in the sense that the conditions
that M «+* N and My«+* N had to satisfy in
the previous definitions are removed. @(k) and
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Q' (k) are the same as in Ref. 11).

To prove these assertions, we use the follow-
ing properties of Idis, right and width given in
Ref. 11).

Property 3'V

Let v : Mo«+—M; ---«+>M,. Let u € MR(y)
and ¥ = 7[4,j]/u where 0 < i < j <mn. Let § :
Lie+sLiyy -+ L; where L; = M;/u,L; =
M;/u, 18], = iy and H(5) < H(). Let 1/ =
V[6/7].

(1) If Kiais(6) €5 Kiais(7), then Kigis(v') €5
Kiais(7)-

(2) I Krignt(0) €5 Krigne(7), then Kypigne(v')
<:<s Km'ght(')’)'

(3) U Kiais(6) S, Kiais(7) and Krigni(8) <5
Kright(7), then Kuyigin(v') €5 Kuwigen (7).

Property 41

Let 7y be a parallel reduction sequence. Then,
Kiais (net(y)) 5 Kigis(y) and Krigne(net(y))
-<—“<s Kright(7)~
Property 5'1)

Let v : Mo«+M; - --«+M, and 7 = 7[0,1]
where 0 < ¢ < n. Let § : Lo« e L
where 0 < j, L; = M; and H(8) < H(%). Let
7' =[6/7]. Then, Kiais(7') <uw Kiais(7) and
Kwidth(7’> Lw Kwidth('}’)-

Property 6

Let v : Mo«—M; -+ -« M,. Let u € MR(y)
and ¥ = v[¢, j]/u where 0 <4 < j <n. Let § :
Li+++Liy1 - L; where Ly = M;/u,L; =
M;/u. Let v' = ~[§/7].

If 6 <7, then 7' < .

Property 7

Let v : Mo++=My - -+ M;and § : No+—N;
-5 N, where Vi (0 <4 <) 35,5 (0<j <
i < j' < 0) H(N) < H(M,) and H(N;) <
H(M;).

Then, Kiais(0)SsKais(y) and Kpigne(8) <,
Kright (7). Moreove, if |8]np < |y]np, then § < .

We only need to prove Properties 6 and 7. See
Ref. 11) for the proofs of the other properties.
Proof of Property 6

Note that |0], = ||, holds because § =
Y. I Kiais(0)$,Kiais(7) and 8], = |¥lp,
then K 4is(v)€,Kigis(7) holds by Property
3(1). Similarly, Kpight(y')EsKrignt(y) holds
by Property 3(2). It is obvious that |y'[, =
[7lp and |¥'|np < |V|np- Thus, 4" < v holds,
and therefore Property 6 holds. a
Proof of Property 7

By Property 2 in Ref.11), for any ¥ €
{ldis,right, width} Ky (8)€,Ky () iff V(h,1) €
Ky(6)3(R',1I') € Ky (%) (h,1) <5 (W',1'). Thus,
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Property 7 obviously holds. m|
5. Proofs of Assertions

We are now ready to prove these assertions.
We first prove S(n) by induction on n > 0.
Then we will prove that P(k) = P'(k) and
Q(k) = Q'(k). Using these results, we will fi-
nally prove P(k) A Q(k) by induction on k£ > 0.
Proof of S(n)

We prove S(n) by induction on |y|, = n. Let
v : M«+* N such that ||, = n.

Basis. n = 0, 1.0Obvious.
Induction Step. n > 1.

Let weighti(v) = (HO), |Vlnp, Kiais(7))
where we use €, as the ordering of Kj4;5(7y)’s
and use the lexicographic ordering < as the or-
dering of weighty (y)’s. Note that if § < v, then
obviously weighty(§) < weighty (7).

Basis. H(y) =0 and |y|np = 0. Obvious.
Induction Step.

Let v : Mo«+>M; -+« M,. We apply the
induction hypothesis to v[1,n] : My«=* M,.
Then, there exists §; : My«—* M, such that
there are no peaks in §; and §; < v[1,n]. Let

(5 = (M()(—HMl);(Sl.

Note that § < + holds by 6, < ¥[1,n] and

Property 6.

There exist two cases for 7[0,1], namely,

Mo —E) M1 or Mo e(:mv M1 (Case 1), and
My & M, (Case 2).

Case 1: My = M; or M, oy M,

If My = M, then there are no peaks in 4,
since there are no peaks in §;. Thus, S{n) holds.

Next, we consider the case of M s M.
Either d; is e-invariant (Case 1-1) or §; has e-
reductions (Case 1-2).

Case 1-1: 4, is c-invariant.

In this case, since § is e-invariant, we can ap-
ply the induction hypothesis to cut sequences
8/i of 6, where 1 < ¢ < a(root(M,)). That
is, there exists n; such that there are no peaks
in n; and 7; X 0/i. Let p = d[m/(6/1)] ---
[7:/(6/1)] where I = a(root(Mp)). Then, there
are no peaks in n and n < 4 (< ) holds by
Property 6. Hence, S(n) holds.

Case 1-2: §; has e-reductions.
Let 6; = 011;012; 013 where d1; is e-invariant

and 4;, is e-reduction. We apply the induction
E—I1NV

hypothesis to 6{; = (My «+ My);d11) and
obtain & such that there are no peaks in &,
& = 61, and & is e-invariant. It follows that
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& = (&1;012; 013) has no peaks (since R is root-
E-overlapping) and £ < 6(< 7). The proof is
similar to that in Case 1-1. Hence, S(n) holds.
Case 2: My & M.

There are two cases for é;: 6; is e-invariant
(Case 2-1) or é; has e-reductions (Case 2-2).
Case 2-1: §; is e-invariant.

In this case, § has no peaks, and therefore
S(n) holds.

Case 2-2: 6; has e-reductions.

We prove this case by induction on the num-
ber of e-reductions of form = in 4;.

Basis. d; has no e-reductions of form —».

In this case, every e-reduction in d; is <, and
thus § has no peaks.. Hence, S(n) holds.
Ignduction Step. 01 has e-reductions of form
.

Let 6 = 511;612;513 where 6y; is an &-
invariant and d;5 is e-reduction. Then, 19 :
N 5 N' for some N, N’, since if N & N, then
61 could have a peak, which is a contradiction.

Let 61 = (AM() (E— M']);é‘]l;&lg where MO =
o(B),M; = o(a) and 615 : o' (') S o'(B') for
some rules @ — 8, o' — B’ and mappings o,o’.

There are two cases: in Case 2-2-1, (@ — ()
= (¢/ = f'), and in Case 2-2-2, (a — fB) #
(o = B). -

Case 2-2-1: (a — ) = (' = ).

Since dy; satisfies the condition (i) of S(n),
that is, there are no peaks in §;1, and TRS R is
root-E-overlapping, we have M R(611) N O(a) = ¢.

Let |011], = m. For each z € V(B), we
choose a redex occurrence u, € O,(a). Let oy
be mappings satisfying the equation op(z) =
Me/ug, 1 < k < m+ 1. Let Ny = ox(B)
where 1 < k£ < m + 1. Then, we have
fg : Nl(: U(ﬁ))(—HNlH—)NQH—)Ng R
Np e Npyr = Npga (= 0'(8)). Note
that [§i], = m + 2 = |&], and [{i]np <
|€ilnp — 2 < |&ilnp hold. It is straightfor-
ward to prove that Kjgis(£)E,Kais(€1) and
Kright(€1) €K pigre(d') hold, since H(Ng) <
maz(H (M), H(B)), 1 < k < m+ 1 hold by
the strongly depth-preserving property. Hence,
&; satisfies the conditions that

& <& and € |np < |&ilnp-

We have weighty(£1;613) < weight;(d) and
(&1;013) = 6 by Property 6. (Note that § =
(£1;613).) Thus, by the induction hypothesis,
S(n) holds.

Case 2-2-2: (a — ) # (¢ = 3).

Note that & is standard, since é; has no

peaks and TRS R is root-E-overlapping. By the
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root-E-closed condition, there exists &f : o(8)
«* o'(B') such that
(i) & =X& and
(if) at least one of the following
conditions (1)—(3) holds:
(1) &1lnp < 1&1lnp
(2)  Kiais(§1) <5 Kiais(6r)
(3) If£0,1]: 0(B) & M for some M,
then €1[1,|€Ll,] : Metr* of (8') is
e-invariant.

Note that (£1;013) =< & by Property 6.
If (1) or (2) holds, then weight;(&];813) <
weight1(d). Thus, by the induction hypothe-
sis, S(n) holds.

There remains the case in which (3) holds.
In this case, if £[0,1] : 0(8) & M for some M,
then the number of = reductions in (&];d13) is
less than that in §. Thus, the induction hy-
pothesis ensures that S(n) holds for (&];613).
Hence, S(n) holds for .

E—I1Nnv

If £&0,1] is o(8) = M or o(B) > M
for some M, then we can easily prove that
S(n) holds: if o(B) > M, then (€);6,3) has
no peaks, and thus S(n) holds. If o(8) s
M, then we apply the induction hypothesis to
(&1[1,1€11p]; 613) and use the proof of Case 1,
and consequently S(n) holds. O
Proof of P(k) = P'(k)

We prove P’(k) by induction on the number
1 > 1 of e-reductions appearing in v where
vt Mo+" M;, 5 M;, 41 “" M;, 5 Mg -+
=" M, S My 41 " M, and H(v) < k.
Basis: the case of [ = 1. Obvious.

Induction Step: the case of [ > 1.

We first apply P(k) to +[0,i; + 1], so that
there exists § : N«+* M;, 41 for some N such
that

(1) My —* N

(ii) Either H(§) < H(v[0,%1 + 1])
or H(6) = H(v[0,41 + 1])
and ¢ is e-invariant.

If H(8) < H([0,%1+1]) holds, then let j = 1,
that is, ¢; = i1, so that the above conditions (i)
and (ii) ensure P'(k).

The case in which H() = H{v[0,%; +
1]) and § is e-invariant remains. Let 4 =
((5,’)’[11 + l,n]) : N «* Mi1+1 o Mn
Note that H(y') < k by (xp’2). Since § is
e-invariant, <y’ contains (I — 1) e-reductions:
Mig '—E*> Mi2+1, tee 7Miz —E-) Mi1+17 and thus the
induction hypothesis ensures that 4; (2 < j <1)

(*p’1)

(xp’2)
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and 7 : N'«+* M;, 1 exist for some N’ such
that the following conditions hold:

N —* N’ (xp’3)
Either H(n) < H(y")
where ¥ = (&;y[i1 + 1,45 +1]) : (xp'4)

N> My 41,01 H(n) = H(Y"),

1; = 4jand nis e-invariant.

Then, we can show that 7 satisfies the follow-
ing required conditions:

My —* N’ (xp’5)
Either H(n) < H(v[0,4; + 1])
or H(n) = H(v[0,i; + 1)), (+p’6)

t; = 4; and 7 is e-invariant.

By (#p’l) and (xp’3), we have My —* N’,
and thus (xp’5) holds. (*p’6) holds by (xp’4)
and H(y") < H(vy[0,i; + 1]). Hence, P'(k)
holds. )
Proof of Q(k) = Q' (k)

The proof is the same as that of Q(k) =
@' (k) in Ref. 11), since the latter proof can be
applied to any TRS. 0
Proof of P(k) A\ Q(k)

We prove that P(k) A Q(k) by induction on
k > 0. We first prove P(k), then Q(k).

Basis: the case of k = 0.
Proof of P(0)

In this case, for v : M«+* o(a) — o(f),
note that H(y) = 0 implies that 8 is not a
variable, since a € F' (i.e., a is a function sym-
bol) and o(a) = M since 7 : M«-* o(a) is
g-invariant. Let N = o(f) and 6 : N. Then,
H(6) = 0,M —* N and 4 is e-invariant, as
claimed. |
Proof of Q(0)

Let v : My«+—M; - -++—M, where n > 0,
H(y) =0, My = M and M, = N. We prove
Q(0) by induction on n > 0. In the case in
which n = 0 or n = 1, the proof is obvi-
ous. Consider the case of n > 1. Without
loss of generality, we can assume that M; #
M;q for all § (0 € ¢ < n). Thus, note that
MoH—>M1 1mphes that MO f) M1 or M1 i) M()
holds, since H(y) = 0. If My 5 M; holds,
then by applying the induction hypothesis to
y[L,n] : My—Msy - - My, Q(0) holds for +.
The case of M; 5 M remains. Similarly, for
Miet>M;, where 1 < i < n, M; 5 My
or Mi+1 *E-) Mz holds. If Mi+1 i) Mz for all
i (1 <i<n),theny: My « My - + M,,
so that obviously @(0) holds. Otherwise, let
i be the least number such that M; = My
(1 <3< TL) Then M;_, & M; 5 M.
If M;_1 = M, then the proof is obvious.
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Otherwise, since TRS R is root-E-closed, 39 :

Mz‘—l“H* MH-I such that

() =9 —-1,i+1]

(ii) At least one of the following conditions
(1)—(3) holds:

(1) [8]np < I7fi = L0+ 1lnp

(2) Kiais(6) <s Kiais(y[i — 1,4 +1])

(3)1f 6[0,1] : M; 4 & M for some M, then
01,161} : M«* M;y, is e-invariant.

By (i), H(3) = 0 and 3], = Iyli — Li + 1]|,

hold, and therefore neither (2) nor the case of

M;_y & M in (3) holds. If (1) holds, then

when the induction hypothesis is applied to

~[0,4 — 1];6;v[¢ + 1,n], @(0) holds. The case

of M;_; = M remains. If i = 1, then My > M

and M« Moers™ M,. In this case, we are

done. If 5 > 1, then we have M;_o & M;_1 >

M. If this process is repeated, (1) will hold in

the end, or else My 5 M’ for some M' such

that M'«M,, and thus Q(0) will hold. O

Induction Step: the case of & > 0.

Proof of P(k)

Let v : Myo«-M;y - - <My «+> M, where
H(y) =k, Mg =M, M,,_; = o(a) and M, =
o(B). Let 3 =~[0,n — 1] and Ty = {x | % =
7/u; for some u; € MR(¥) N O(a)}.

We define the weight of 4 as follows:

weights () = |_| Kiais(net(v))
"/ieF'y

where | | denotes the union of multisets. We
use the multiset ordering <, as the order-
ing of weighta(y)’s and <, as the ordering of
Kigis(7)’s.

Basis: the case of weight2(%) = ¢, that is,

I, = ¢ (in this case, 7 is a-keeping).

For any z € V(a), let Oy(a) = {ug,, gy, -
Ug,, }. Since the reductions of v occur only in
the variable parts o(z)’s, z € V(a), we have
Ci:o(@) (= Mp—y/us,) < Mp_2/ug, -
MO/uwi (: M/uzl)
for all u,, € Oyx(a), 1 <i <!, and z € V(a).
Note that ¢; = (7/ug,)™ and H((;) < H(y) —

[uz,| =k — |ua,| <k.

Let hy = Maz{H((;) | 1 < i < Il;}. Let
Uy = u,, satisfy the condition that |uz| =
Min{|ug,|,-- -, [ug,, |} Then,

he + |ug| <k (xpl)

holds, since if H((;) = h, for some j, then h, +
|ug;| < k and |ug| < |ug,| hold. Hence, since
he < k, we can apply Q'(h;) to C1,--+, G, by
the induction hypothesis. Thus, there exists
Nz : o(x)+—* N, for some term N, such that
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Y
M «* o) —= o)
AR
o'(B)(=N)
Fig.1 Parallel reduction sequences in the proof of

P(k).

H(n,) < hg and
Vi (1<i<ly) M/uy, =" N;. (xp2)

Let ¢/(z) = N, for all z € V(a). Using nZ :

o' (z)e* o(x), let
§:0'(B) <" a(B).

Then, the strongly depth-preserving prop-
erty ensures that for all z € V(f), v, €
0:(8), |vz] < |ug|, so that we have

H(6) < Maz({hs +[va| | v, € Oa(8)
U{HB)}) < Maz(hy + ua], H())
By (#pl), it follows that

H(5) < k. (+p3)
In particular,
if B is a variable, then H(d8) < k. (xp4)

(To obtain H(§) < k, we need the strongly
depth-preserving condition, which is used only
to establish this.) Since M = afu,, + M/ug,,
uz, € Ogz(a), z € V(a)] and by (xp2), there
exists a parallel reduction sequence such that

M —* o'(a) = o'(8). (*p5)
(See Fig.1.)
Let N = ¢'(8). We can now prove that

the conditions (i) and (ii) of P(k) hold for ¢ :
Nes* o(B). Since M —* N holds by (xp5),
the condition (i) holds.

If 3 is a variable, then the condition (ii) holds
by (¥p4). Otherwise, ¢ is e-invariant, and there-
fore condition (ii) holds by (*p3). Hence, P(k)
holds.

Induction Step: the case of

weighta(7) >4 ¢, that is, 7 is not a-keeping.
(Here, v: Mo(= M)+>M;y - «Mp_1(=
o(0)) = My(= o(8)) and 5 = 1[0,n 1]

Let 71 = 7/u; where u3 € MR(¥) N O(a).
Note that there exists an e-reduction in 7y, and
that H(y1) < k. Let v{ = net(y).

If S(n) is applied to 71, there exists a parallel
reduction sequence n : My /uj<+* My_1/u;
such that the following conditions (i) and (ii)
ho(lS " There are no peaks in 7.

(i) n=xm

Let v = ¥[n/v]- Kiais(n)$sKiais(v1) holds
by (ii), and thus by Property 4,

weights (') E,weights () (xp6)
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(Note that A <, B implies that A <, B.)
Let " = net(n) : Lo <+ Ly -+ «++ L,, where
TTLSTL——L LOZMo/Ul,Lm: n_l/ul.

Then, L; <& L;+; does not hold for any i (0 <
i < m) by (i) and root-E-overlapping of R.

If ' is e-invariant, then the definition
of weight; ensures that weightz(y') <y
weights (), and thus P(k) holds for (v'; (M, _;
++ M,)) by the induction hypothesis. Hence,
P(k) also holds for v. Let n’ have [ (> 0)
e-reductions, that is, let L;, = Lj 11, -+, L;
N L;,+1 be the e-reductions where 0 < 4; <

- < 4y < m. Then, by the induction hy-
potheses P(k') and P'(k') for k' < k (since
P(k') = P'(K")), there exists 7; (1 < j < 1)
and ¢ : N«+* L;, 1 for some N such that

(i) Lo »* N (*p7)

(ii) Either H(¢) < H(n'[0,i; 4+ 1]) (*p8)
orij =1 , H(C) = H(n'[0,4; + 1])
and ( is e-invariant.

Using this ¢, let 6 = ({;7'[i;+1,m]) : N «*
Li;4+1 ++* L. Then, by (xp8), we have

H(8) < H(n'), (*p9)
Either ¢ is e-invariant or (p10)
K4is(0) <o Kiais(n'), P

since H(¢) < H(n'[0,i; + 1]) implies that
Ki4i5(6) <w Kiais(n') by Property 5.

Let 4" = +'[((Lo —* N);d)/n]. Note that
net(n) = n'. Let M' = My[u; + N]. Then,
¥ i My «=* M, n—1) is decomposed
into two subsequences ¥ : My «++* M’ and
¥o : M' % M,,. (Note that Ly = Mo/uy.)
Since My —* M' by (xp7), it is sufficient to
show that P(k) holds for (Jo; (Mp«+M,)) :
M' «+-* M,, instead of the original ~.

We can show that weights(¥2) < weighta(y').
Since weights(F2) is obtained from weights (y')
by replacing Kj4;5(n') with UveMR(O)ﬂO(a/ul)
Kigis(net( 6/v)), if § is e-invariant, then ob-
viously weights(F2) <y wezghtg( "} holds
by (*p9). Otherwise, Kjg;s(net(d)) <
Ki4:5(n') by (xpl0) and Property 4, and thus
weights(F2) <y weighta(y') holds. By (xp6),
weights (Vo) <y weights (7). Hence, the induc-
tion hypothesis ensures that P(k) holds for (72;
(My—1+—M,)). It follows that P(k) also holds

for . O
Proof of Q(k)
Let v : My++—>My«—Ms--- M, where

H(y) <k, My = M and M, = N. We prove
Q(k) by induction on weights(y) which is de-
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fined as follows:
weights(y) = (H(7), Kwiaen (7))

We use the lexicographic ordering < as the
ordering of weights(y)’s and <, as the order-
ing of Kysatn(7y)’s. If H(y) < k—1 holds or vy
is e-invariant, then the proof can reduce to that
of Q(k —1). Note that if v is e-invariant, then
we can apply the induction hypothesis to cut
sequences of . Thus, assume that H(y) = k
and « has e-reductions.

We first prove that if v has no peaks,
then Q(k) holds. In this case, there exists {
(0 < 1 < n) such that for any e-reduction
Mi«—M;y1 (0 < i < n) either 7 < [ and
M, S My ori>1and M; & M, holds.

Therefore, let v, = 4[0,{] : My <+ My ---
= My and y2 = [l,n] : M «> My ---
+++ M, where v = (y;;72). Since v has e-
reductions, we assume that -y, has e-reductions.
This does not lose generality, since otherwise
we can consider v* instead of 4. (Note that
Kuwiatn(7) = Kuwigen(7F), so that weights(y) =
weights(v®).) Then, by P'(k), i (0 < i < 1)
exists and

n: Ne™ M; for some N
such that H(n) < H([0,7]), My —* N, and
either (a) H(n) < H(v[0,7]) or (b) i =1 and 5
is e-invariant.

We first consider case (a): H(n) < H(v[0,1]).
Let 7' = (;7[i,n]) : N <" M; " M,
= M,.

By H{(n) < H(v[0,i]) and Property 5,

Kuwiath (V") € Kuwiatn ()
holds. Thus, by the induction hypothesis Q(k)
for v', ' : N «+»* L «* M, exists for some
L such that N =* L, M,, —* L and H(¢') <
k. Since My —* N exists and for 4[0,i];7® :
Moy++* M; «+* N, we have H([0,i];7%) < k,
it follows that Q(k) holds for .

There remains case (b), in which i = [
and n : N«+* M is e-invariant. If 7, has
no e-reductions, then 7;vy, is e-invariant, and
thus the induction hypothesis ensures that Q(k)
holds for (n;72). Hence, Q(k) holds for 7,
since (y[0,1];7%) : My«+* M;«++* N has a
height at most k. Otherwise (i.e., if 5 has &-
reductions), we apply the same argument for £
as the above: by P’'(k), there exist j (I < j < n)
and

71+ N'«4+=* M; for some N’
such that H(7j) < H(Mp+—M,_ 1 «+*
M, —=* N' and either (a’) H(j

M;),
7)<
H(Mye+sMy_q - ! and

—M;) or (b)) j



Vol. 39 No. 4

7] is e-invariant holds. If (a’) holds, then Q(k)
holds for v, by a similar argument to that in
the above case (a).

Thus, there remains case (b’): j = [ and
7 @ N'«+»* M; is e-invariant. In this case,
let { = ;7% : Ne>* Mj«+* N'. Note also
that H(¢) < k, Mg —* N, ( is e-invariant and
M, —* N'. Note that for v;;n% : Myc* N
and for 7; y2 : N'«+* M,,, we have H(y;;n%) <
k and H(7;v2) < k.

Thus, the proof can be reduced to showing
that Q(k) holds for {. Since ¢ is e-invariant,
the induction hypothesis Q(k — 1) ensures that
Q(k) holds for ¢. Hence, Q(k) holds for ~.

We have proven that Q(k) holds for v without
peaks. If v has peaks, then when S(n) is ap-
plied to v, there exists a reduction sequence § :
Mo++—* M, such that the following conditions
(i) and (ii) hold:

(i) There are no peaks in é.

(i) 6=vy

By (ii) and Property 3(3), weight3(d) <
weight3(y) holds. (Note that Kyign(6)
& Kuyiatn () implies that Kyan(d) <y
Kuyiatn(7).) Thus, the proof for v can be re-
duced to that for § without peaks, which we
have already given. O

We have proven that @ (k) holds for all & > 0,
and hence we have the following Theorem 1:
Theorem 1

All root-E-closed and strongly depth-preserv-
ing TRS’s are CR. m|

Theorem 1 obviously implies that non-
E-overlapping and strongly depth-preserving
TRS’s are CR. The proof of the non-E-
overlapping case derived from this proof of The-
orem 1 is more refined than the old one in
Ref. 11).

6. Weight-preserving TRS

By assigning a positive integer (called weight)
to each function symbol, we can naturally ex-
tend the notion of depth to that of weight, and
obtain a similar result to Theorem 1 for strongly
weight-preserving TRS’s.

Definition of
(strongly weight-preserving TRS R)

For a weight-assigning function w : F —
{1,2,3,---}, let Wy, (u, M) be the total of the
weights of function symbols occurring from the
root to occurrence v on term M. Formally,
Ww(é’,l’) = 0, Ww({‘:a fMl te Mn) = w(f)a
Wy (tu, fMy -+« My) = w(f)+Wy(u, M;) where
zeX, feFand M; €T (1<i<mn). ATRS
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R is strongly w-weight-preservingifVa — 3 € R
vz € V(B) Maz{Wy(v,B) | v € 0,(8)} <
Min{Wy(u,a) | u € Oz(a)}.

A TRS R is strongly weight-preserving if

Jw: F - {1,2,3,---} R is strongly w-weight-
preserving.
Example 2. Ry = {f(z,z) = a, ¢ —
h(C,g(C)), h’(g3(x)7g1(92(x))) - f(l',h(l',
g(ﬂ'))))} where z € X7 a,c, f)h7g7gl7927g3 S
Ry is strongly w-weight-preserving for a weight-
assigning function w such that w(gs) = 2 and
w(k) = 1 for all kK € F — {g3}. (Note that
Wy(11, h(gs(z), g91(g2(x)))) = 3.) But Ry is not
strongly depth-preserving.

The problem of deciding for a given TRS
whether it is strongly weight-preserving or not
can be reduced to that of solving integer pro-
gramming.

Example 3. For a TRS R4, we have the fol-
lowing integer programming problem:
k>1
h+gs>f+htg

htgi+g2>f+h+g
where for all k¥ € K = {a,c¢, f,9,h,91, 92,93}
These inequalities hold for a weight-assigning
function w such that w(gs) = 2 and w(k) = 1
for all k € K — {g3}. Thus, R, is strongly w-
weight-preserving.

If TRS R is strongly depth-preserving, then
obviously R is strongly weight-preserving, since
R is strongly w;-weight-preserving for the
weight-assigning function w; such that wq(f) =
1forall feF.

For any strongly w-weight-preserving TRS R,
we can construct a strongly depth-preserving
TRS R, that can simulate reductions of R. For
this purpose, we define a set of new function
symbols F' and a translation ¢ : F — F* as
follows:

F= {fl:fZ)"'?fk | f € F,W(f) :k}
where a(f;) =1, 1 <i <k and a(fx) = a(f)
W(F) = fu- fa-o fiu for f € F with w(f) =

Here, (fi - fo - =« f)My -+ M,
Nilfe - (feMy--- My) ---) for My, My, €
T, where a(fz) = n.

Translation 1 is extended to the translation:
T — T* as follows:

k

Ylx) =z forze X

for f € F, My,---,M, € T. Here, T is the set
of terms constructed from X and F.

_ Using this translation ¢, we define a new TRS
R, by
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Ry = {¢(a) = ¢(B) | — B € R}

It can be proven that R is strongly w-weight-
preserving iff R,, is strongly depth-preserving.

A strongly w-weight preserving TRS R is said
to be root-E-closed if the corresponding R, is
root-E-closed. Hence, by Theorem 1, we have
the following result:
Theorem 2

All strongly weight-preserving and root-E-
closed TRS’s are CR. |
Note. We can give a more direct definition of
root-E-closedness for TRS R using the maximal
weights of terms instead of the heights (max-
imal depths) of terms, that is, let W, (y) =
Maz{W,(M;) | 0 < i < n} where v is a re-
duction sequence such that v : My <+ M; «+

- My, and we use Wy, (M) instead of H(M)
and W, (v) instead of H(y). And left(~,h),
right(~y, h), ldis(vy, h) and width(~y, h) are rede-
fined by using W,,(M) instead of H(y). Also,
Ki4is (7)) Kright(7), Kwiain(y) and § < vy are
redefined by the corresponding new definitions.

Strongly w-weight preserving TRS R is said
to be root-E-closed if R is root-E-closed under
the above new definitions. Then, we can easily
obtain the same result as Theorem 2 using the
new version of root-E-closedness. Since non-E-
overlapping TRS’s are obviously root-E-closed,
we have the following corollary:
Corollary 1

All non-E-overlapping and strongly weight-
preserving TRS’s are CR. ]
Example 4. Since R4 is non-E-overlapping
and strongly weight-preserving, Corollary 1 en-
sures that Ry is CR. TRS R = { f(z) —
g(h(z),2), g(z,z) — a, b = h(®)}'? in Sec-
tion 1 is non-E-overlapping and strongly w-
weight-preserving for a weight-assigning func-
tion w such that w(f) = 2 and w(k) = 1 for
k € {a,b,g9,h}, and thus R is CR.

7. Sufficient Condition

In Section 5, we showed that all root-E-
closed and strongly depth-preserving TRS’s are
CR. Unfortunately, it is undecidable for any
strongly depth-preserving TRS R whether R is
root-E-closed, whereas it is obviously decidable
for any TRS R whether R is strongly depth-
preserving. Thus, we need to obtain decid-
able sufficient conditions for ensuring root-E-
closedness. In this section, we give such a con-
dition.

We first give the definition of strongly root-
overlapping TRS’s which are closely related to
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root-E-overlapping TRS’s. We show that if
TRS R is strongly root-overlapping and satis-
fies the condition (x) of root-E-closedness, then
TRS R is root-E-closed. (Note that TRS R
is root-E-closed iff R is root-E-overlapping and
satisfies the condition (*) of root-E-closedness.)
Definition. For a term «, let & be a lineariza-
tion of a, that is, a linear term satisfying the
condition that 6(&) = a for some substitution
6 such that (z) € X forall z € X, (eg.,, & =
f(z,y) is a linearization of a = f(z,2) where
f € Fand z,y € X). A pair of rewrite rules
a — B and o — §' is strongly overlapping (at
u) if the pair of @ — § and @ — ' is overlap-
ping at u (i.e., u € O(a) and o(a/u) = o'(&')
for some substitutions ¢ and ¢'.). If u = ¢, then
the pair is strongly root-overlapping. TRS R is
strongly root-overlapping if all strongly over-
lapping pairs of rewrite rules are strongly root-
overlapping.
Lemma 1

If TRS R is strongly root-overlapping
and satisfies the condition (%) of root-E-
closedness, then R is root-E-overlapping or non-
E-overlapping.
Proof

To prove this, we assume to the contrary that
R is E-overlapping and not root-E-overlapping.
Let vy : o(a)fu + o'(B)] + o(a)[u « o'(a)]

U
+—i+* og(a) = o(B3) be an E-overlapping but
non-root-E-overlapping sequence with the min-
imal number of parallel steps where a — £,
o — B € R and v € Oa) — {e}. Let

E—INVU

v @ o'(a) «* o(a/u) be the cut subse-
quence of g, and if there is more than one
sequence with the minimal number of parallel
steps, then we select the sequence 9 whose sub-
sequence -y has the minimal weight of weighty
where weights(y) = {H(y/v) | v € MR(y)N
O(a/u) N O(a’)}y,. Here, we use the multi-
set ordering < as the ordering of weights(y)’s.
Note that if § is E-overlapping and |d], < |Y0!p,
then ¢ is root-E-overlapping. We show that
weights(7) = ¢.

To the contrary, we assume that weighty(7y)
# ¢. Let v € MR(y)N O(a/u)n O(a'). Note
that «/v has e-reductions. Therefore, if v/v :
o'(a Jv)«+>* o(a/uv) had no peaks, then from
~/v we could obtain an E-overlapping but non-
root-E-overlapping sequence which contradicts
the minimality of . Thus, v/v must have
peaks. Therefore, we apply S(|y/v|,)* and ob-
tain a parallel reduction sequence 4, : o(a/uv)
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«+* o'(a’/v) that has no peaks and |d,], <
lv/vlp. If 4, has an e-reduction, then 4,
again contradicts the minimality of 7. Other-
wise, let v' = v[d,/(y/v)]; then weighty(v') <
weights(ry) holds, which again contradicts the
minimality of weighty of ~.

Thus, weights(y) = ¢, and thus ~ is stan-
dard. Therefore, the pair of @ - S and o/ — §'
is strongly overlapping at u(# ¢). However, R
is strongly root-overlapping, which is a contra-
diction. Hence, R is root-E-overlapping or non-
E-overlapping. O

Note that whether TRS R is strongly root-
overlapping is decidable. Next, we consider how
to check the condition (%) of root-E-closedness.
This approach is analogous to that of Ref. 6).
Condition I

For any strongly root-overlapping pair (o —
B, ' = ') where V(a) NV (a') = ¢, there ex-
ists a parallel reduction sequence either §— g/
M «-f' for some M where V(MYNV(B) = ¢
and H(B) < Maz(H(c'),H(#')), or B+ N
—+>p 3 for some N where V(N)NV(§') = ¢
and H(8') € Maz(H(a),H(B)). Here, «
is a one-step parallel reduction of the original
TRS R and —+ g is a parallel reduction of the
TRS R' = {a/u —» o'/u | u € Min{Ox(a) U
Ox(a")}, V(a/u) # ¢ and V(&' /u) # ¢} where
any variable appearing in rewrite rules in TRS
R' is regarded as a constant and no substitution
for the variable is allowed in rewriting —+—p.
Note that it is decidable whether TRS R satis-
fies Condition I
Lemma 2

Let TRS R be strongly depth-preserving. If
R satisfies Condition I, then R satisfies the con-
dition (*) of root-E-closedness.

Proof

Let v be any standard root-E-overlapping se-
quence v : My = My -+ <= M, 1 ++—= M,
with |Y|p = |Y|np where My = o(B), M; =
ola), Mp_1 = o'(d), M, = o'(8') for some
a =B, ad >3 €Rando, o : X = T.
Without loss of generality, we can assume that
V() NV(e) = ¢ and 0 = o’. Since the pair
(o = B, &' — ') is strongly root-overlapping,
by Condition I either £ : B—+>p M -3 or & :

* Let | = |yo|p, that is, the minimal number of paral-
lel steps of non-root-E-overlapping sequences. If ev-
ery root-E-overlapping sequence with (I— 1) parallel
steps or less satisfies (i) and (ii) of the condition (x)
of root-E-closedness, then we can prove that S(n)
holds for any n < I. The proof is similar to that of
S(n) in Section 5, and is therefore omitted.
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B+ N——p ,B’.

We consider only the former case. (The proof
of the latter case is similar.) Let v = y[1,n—1].
For each u € Min(Ox(a) UOx ('), we have
the cut sequence v'/u : o(a/u)«=* o'(a'[u),
so that by associating +'/u with the rule a/u
— a'/u in R', we obtain a parallel reduction
sequence ¢ : o(f)«++* o' (M) from —+—p M.
Note that [], = [7/], = [}, — 2.

Using the subsequence M-8 of &, let &'
= (0(B)«0(8); 6;0'(M) = o'(8")) : No (=
My) < Ny (= Mg) <> Ny -+ 5 Ny (=
o'(M)) «++ N, (= M,). Note that

16"y = 17lp and |6'|np < [V]np-

Let v € R(B—— g M). Then there exists some
u such that /v = a/u and a/u = o'/u € R'.
Note that v'/u : o(a/u) «—=* o'(a’/u). Since
B/v contains at least one variable by the def-
inition of R', then |v| < |u| holds by the
strongly depth-preserving property of TRS R,
and thus we have |v| + H(d/v) < |u|+ H(Y'/u)
< H(7). Thus, for any i (0 <i < n), H(N;) <
Moaxz(H(B), H(M;)) holds, since for every t €
Ox(f) there exists some v € R(B8——p M)
such that v < t by V() N V(M) = ¢, as
required by Condition I. If H(8) > H(M;),
then H(Mo)(= H(s(B))) > H(N;) holds. Since
H(B) < Maz(H(c'), H(")) by Condition I, we
have H(N;) < Maz(H(M,_1), H(M,)). Thus,
in either case 3j, 7' such that j <i A H(N;) <
H(Mj), and i < j' A H(N;) < H(Mj) for ev-
ery i (0 <14 <mn).

Hence, by Property 7, Kjgis(6") S Kiais(7y)
and Krignt (0') €K rignt (), and thus §' < v and
|0'|np < [¥|np hold. That is, the condition (%)
of root-E-closedness holds. a

By Lemmata 1 and 2 and Theorem 1, we have
the following theorem which gives a decidable
sufficient condition for root-E-closedness:
Theorem 3

Let TRS R be strongly depth-preserving.
If R is strongly root-overlapping and satisfies
Condition I, then R is root-E-closed or non-E-
overlapping; Therefore, R is CR.

Proof

By Lemma 2, R satisfies the condition (x) of
root-E-closedness, and thus by Lemma 1, R is
root-E-overlapping or non-E-overlapping. If R
is non-E-overlapping, then R is CR'D. Other-
wise (i.e.,if R is root-E-overlapping), R is root-
E-closed, and thus R is CR by Theorem 1. 0O
Example 5. To show that R; in Exam-
ple 1 of Section 3 is CR, we show that
Rs is root-E-closed. It is obvious that Rs
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is strongly root-overlapping. For a strongly
root-overlapping pair (f(z,z) — h(z,z),
flg(z'),2’y — a ), we have R' = {z —
g(z'),x — '} and a parallel reduction se-
quence h(z,z) —+—gr h(g(z'),z') ++ a, and
H(h(z,)) < Maw(H(f(9(2'), ")), H(a)). For
a strongly root-overlapping pair (f(g(z'),z") —
a, f(z,z) — h(z,z)), we have R" = {¢'(z) —
z, 2’ — ¢} and a«+ h(g(z'),2') —— g h(z,z),
and H(h(z,)) < Maz(H(f(9(z'),2")), H(a)).
Thus, Rj3 satisfies Condition I, and hence Rj3 is
root-E-closed; Therefore, Rz is CR.

8. Conclusion

In this paper, we have shown that all root-
E-closed and strongly depth-preserving TRS’s
are CR, and given a decidable sufficient con-
dition that ensures the root-E-closed condi-
tion. Note that root-E-closed TRS R is root-E-
overlapping (i.e., every E-overlapping sequence
is 0(B) « o(a) ++* o'(¢) = o' (8') for some
a — B3, d — f' € R and mappings o,0'). So,
it will be the next step will therefore be to find
sufficient conditions for the CR property of E-
overlapping (i.e., non-root-E-overlapping) and
strongly depth-preserving TRS’s.

(This work was supported in part by Grant-in-
Aid for Scientific Research 08680362 from the
Ministry of Education, Science and Culture.)
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