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In this paper, we propose a linear data distribution technique, which extends the traditional
BLOCK or CYCLIC distribution for intra-dimension as in HPF, to permit partitioning the
array elements along slant lines. The array distribution patterns are determined by analyzing
the array subscript references in loop nests. If the data are distributed along the slant lines,
then we show the conversion algorithm between global address and local address, and the
conversion algorithm from global iteration space to local iteration space. Some experimental
results on a distributed memory parallel computer, CP-PACS, show the efficiency of our
subscript analysis, and also show that the proposed data distribution technique can achieve
better performance than the traditional data distribution for some scientific applications.

1. Introduction

For programming on massively parallel dis-
tributed memory machines, selecting an appro-
priate data decomposition is of critical impor-
tance to the performance of the data-parallel
program for these machines. The important
consideration for a good data distribution pat-
tern is that it should maximize the system per-
formance by balancing the computational load
and by minimizing remote memory accesses.
Languages, such as Fortran D7) and HPF %)
support the functionalities of the distribution
and alignment of data arrays through compiler
directives. For example, in HPF 13), arrays are
decomposed in two steps: the data alignment
step, which deals with how data arrays should
be aligned with respect to one another, and the
data distribution step, which deals with how
data arrays can then be distributed onto pro-
cessors. Most of the existing data-parallel lan-
guages use the regular distribution, e.g., block,
cyclic or block-cyclic distribution, as in Fortran
D, Vienna Fortran® and HPF. The advantage
of such a distribution method lies in the easiness
to compute the local addresses for accessing
the array elements and to generate the SPMD
(Single Program Multiple Data) code for each
processor. However, for some scientific applica-
tions, it is not always possible to minimize the
communication cost.

In this paper, we propose a technique called
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the linear data distribution, which partitions
array onto processors along parallel hyper-
planes. We determine the array distribution
pattern based on analysis of the array subscript
references in the loop nests. We mainly con-
centrate our attention on two-dimensional ar-
rays, since most of the arrays used in scientific
computation application have less than three
dimensions 1%). Moreover, two-dimensional ar-
rays can be easily generalized to that of higher
dimensions. A hyper-plane in two dimensions is
a line; hence, we discuss the techniques to find
the best method to partition data into parallel
lines, such as rows, columns or slant lines, which
will lead to a reduction in communication over-
head. If data are distributed along slant lines,
we will show the conversion algorithms between
the global and local addresses, and the conver-
sion algorithm from the global iteration space
to the local iteration space.

The rest of this paper is organized as follows.
Section 2 gives the overview of our linear data
distribution. Section 3 describes the algorithms
for conversion of the global address and the it-
eration space to the local ones. The experiment
along with evaluation of the result are presented
in Section 4. Related works and conclusion are
given in Sections 5 and 6, respectively.

2. Linear Data Distribution

The traditional data distribution pattern
used in most of the data-parallel languages is
restricted to a method where arrays are dis-
tributed along intra-dimension with BLOCK or
CYCLIC. However for some scientific applica-
tions, such a distribution fashion cannot guar-
antee the minimization of communication over-
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i (b)
Communication-free data distribution for ar-

ray A, B in loop L1, the number of processors
p=3. (a) Array A. (b) Array B.

Fig.1

head.
Example 1 Consider the following loop
nest Lq:

doi=1m

do ] = 1,712
A, j) = F(A(i+1,5-1), B(i+1,5+1))
enddo
enddo L

no matter how the array A is distributed along
rows or columns over processors, the data com-
munication among physical processors cannot
be avoided when the SPMD program is exe-
cuted. But if we extend the distribution pat-
tern as anti-diagonal (Fig.1), no communica-
tion will occur. We call this distribution pat-
tern as partitioning along slant lines.

For this proposal, we suppose that, distribu-
tion of array elements over processors are not
limited along intra-dimension, i.e., rows or/and
columns, it can extend to inter-dimension, we
call it linear data distribution. In other words,
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the array elements partitioned onto a certain
processor satisfy linear equation ai + bj = ¢,
where a,b and ¢; are constants and ¢,j are
array subscripts. For example, in Fig.1(a),
a=1,b=1, and ¢ = 4,7,10,... for the pro-
cessor Ps.

In the following discussion, we suppose that
array size is denoted as n; X ng and the sub-
script starts from 1 while processors are num-
bered starting from 0.

2.1 Definition of Linear Distribution

Definition 1 Let P = {Py, Pi,...,Pp_1}
be a virtual processor set, p is the number of
processors. Each P also has a set whose ele-
ments are all data to be distributed over it. For
linear distribution, given the values of constant
a and b, an array A distributed onto virtual
processor Py, can be represented as

Ap = {A(i, j)|ai + bj = ¢f,1 <I< L}

where L is the number of linear lines distributed
onto Pj.

Example 2 For loop nest appeared in Ex-
ample 1, the communication-free data distribu-
tion is

Ap = {AG, i+ =,

h=2+k+(1-1)xp,

By, = {B(i,j)li+j =c,ck = +2,

(2’2) < (/L,J) < (n11n2)}'
Obviously, the traditional distribution such as
BLOCK,CYCLIC can also be represented by
linear distribution. For instance,
(BLOCK,*) distribution can be expressed as
Ak = {AG,j)li = cn
kxB+1<c<(k+1)*B}
where B is the block size.
(*,CYCLIC) distribution can be expressed as
Ay = {AG, )j = en
c=lxp+k+1A0<I<L}

where
L= ) k > (na mod p)
1%2] +1, k < (ny mod p).

2.2 Distribution Analysis

We distinguish two types of array references
according to whether an array appears both on
the left hand side and the right hand side of
the loop body (refer to as the lhs and the rhs
arrays respectively) or not. If an array is not
only assigned its value (appearing as the lhs
array), but also used as an operand (appear-
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ing as the rhs array), data dependence (flow or
anti dependence) will occur in this loop. If a
set of array elements possesses the dependence
relation each other is partitioned on the same
processor, communication among processors is
not required. This and the next subsection de-
scribe how to compute the coefficients a and b,
based on an analysis of two types of array ref-
erences. We call these distribution analysis and
alignment analysis respectively.

For an array appearing in a loop which has
loop-carried dependence, we denote the ex-
istence of the dependence relations between
A(i1,71) and A(is, j2) in the loop as follows:

doi=1,m
doj=1,n9
6(A(i1, 1), Alé2, j2)) L,
enddo
enddo

where i1, j1, 12, 2 are linear function of ¢ and j,
respectively, i.e.,

i1 = ayo + a1t + 1] (1)

J1 = Q9o + a1t + Q9] (2)

iz = Pro + Pu1i + Pi2g (3)

J2 = Bao + Baai + B22j. (4)
We assume that the array A can be partitioned
along

ai+bj =c. (5)

In order to eliminate the communication, the
lhs array element and the rhs array element re-
ferred in a loop iteration (i, j) should be parti-
tioned onto the same processor, which is satis-
fied if
ai1 +bj1 =c¢, aiz +bjz = d
where ¢ and ¢’ are constants assigned for the
same processor. If we assign ¢ = ¢’ then
aiy + bj1 = aig + bjs (6)
should be true. Since i1, j1, %2, and js are given
by Egs. (1), (2}, (3), and (4), applying them to
Eq. (6) we have
a(alo + a1t + a12j) + b(ago + ag1t + agzj) =
a(Bro + Brii + Br2j) + b(Bao + Bari + B22)
which implies,
aag + bazo = afio + bBo
a1y + bag; = afi1 + bBa

aaiz + bage = afiz + bBaa.
In matrix notation, we have,

(5)-

Q10 Qg0
a1p Q21
Q12 Q22

June 1998
B Bao a
B B2 ( b )
Bz Pa2
Let
Q10 Q20 Bro Bao
a = ai1 Q21 8= B B
01p Qg Bz Baa
and
a= a
b

Then the above system of equations can be

abbreviated as

(a—-Ba=0. (7

A nontrivial solution a (at most one of a and b
is zero) that satisfies Eq. (7) would imply zero
communication. Such a linear distribution is
known as a nontrivial distribution. We illus-
trate the use of the above sufficient conditions
with the following examples.

Example 3 Reconsider the loop L; in Ex-
ample 1. For array A referred to in L;, we ob-
tain the following using the subscript reference
analysis,

-1 1 o

0 0 ( ) -

0 0 b
which implies

a=nb.

We select a = 1, b = 1 as a solution. This
implies that A should be partitioned by anti-
diagonals to achieve communication-free paral-
lel execution, as shown in Fig. 1 (a).

Example 4 Consider a more complicated
nested loop L3

doi= 1,’/’L1
do ] = 1,7L2
0(A(2+5+1,360),A(2,i+j—1)) Ls
enddo
enddo

For array A in L3, we have

10 0 -1
a=\| 2 3 B=10 1
10 2 1

applying them to Eq. (7), we have,
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that is

a=-b
We select a = —1 and b = 1 as a solution.
This shows that the diagonal partition of A are
nontrivial distribution.

It is possible that there only exists trivial so-
lution for a and b (a = 0 and b = 0), which im-
plies that there is no communication-free par-
tition for A in this loop. We do not illustrate
such instance due to limited paper space.

2.3 Alignment Analysis

For a loop in which the assignment to array A
uses values of array B, to ensure that the data
elements are read in a statement residing on the
same processor as the one whose data element
is being written onto, the alignment between
distributions of A and B must be specified. In
the alignment analysis, although we can not de-
termine how to distribute A and B onto the
processors but we can specify the relationship
of which elements of A and B get distributed
on the same processor.

In this subsection, we will deal with the loop
such as

doi=1m
do j =1,n9
A(ir, j1) = F(B(i2, j2)) Ly
enddo ‘
enddo

where i1, j1, %2, and js are of the same functions
as in Section 2.2. Similar to the distribution
analysis, we specify that the arrays A and B
are distributed along

a9 +bij1 = ¢
and

azis + baje = c2
respectively. Because the relation of elements of
A and B is an alignment relation, we need not
limit that they have the same value of ¢ when A
and B are distributed along the above formulas.
After analyzing the subscript references for A
and B similarly to Section 2.2, we should find
a solution for the following system of equations
to achieve communication-free partitioning:

—og —ag 1 a1
a1 a1 O by | =
Q12 ap 0 C1
—Bro —B20 1 as
Buu PBa O be
B2 B2z O C2
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Notice that there may be an infinite number
of solutions, we are interested in the relation-
ship between a1,b1,c; and asg, be,cy. Consider
the loop in Example 5.

Example 5 Compute the alignment rela-
tions of A and B in following loop nest.

doi=1,ng
do j=1,n9
A(i+j,9) = F(B(i—1,7)) Ls
enddo
enddo

Communication-free partitioning is possible if
the system of equations

0 01 a
1 10 b =
1 0 0 1
1 01 as
1 00 by
010 Cy

has a nontrivial solution. The system of equa-
tions are reduced to the following set of equa-
tions:

as = ap + bl

by =a

c) = C2 + a3
which has a solution (1) a; =0, by =1, ay =1,
and by = 0. This means that A is parti-
tioned into columns and B is partitioned into
rows (Fig.2). We also can select solution (2)
ai =1, by = -1, az = 0, and by = 1, which
implies that A is partitioned into diagonals and
B is partitioned into columns (Fig. 3).

In practice, the type of partition selected will
be determined through the distribution analysis
of A (or B).

2.4 Data Distribution Strategy

For our linear distribution technique, if coef-
ficients @ and b have been obtained through the
subscript reference analysis, we can simply de-
scribe the data distribution strategy as follows:

Data Distribution Strategy

Say mn arrays are used in a loop. For ¢ =
1,2,...,n

(1) f a; = 0 A b; # 0, select (*,BLOCK)
or (*,CYCLIC). Practically, which of these two
schemes is determined by other factors of the
loop nest. For instance, if the bound of the
inner-loop is the function of the index of outer-
loop, selecting (*, CYCLIC) can achieve a good
load balance. The same reasons are valid for
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Fig.2 Communication-free data distribution for
solution (1) of Loop Ls.

(2).

(2) If a; # 0 A b; = 0, select (BLOCK,*) or
(CYCLIC,*).

(3) If a; # 0 A b; # 0, select the linear distri-

- bution (a,;, bz)

(4) f a; = OAb; = 0, it only has trivial distri-
bution solution. The good distribution scheme
is determined by other factors of the loop nest.

(5) check the alignment relationship
[(as,b5), (a;,b;)] so that no conflict occurs.

3. Index Conversion and Iteration
Space Conversion '

For the traditional regular BLOCK/CYCLIC
distributions, there exists a set of direct alge-
braic formula for conversion between local and
global indices. But if linear distribution is se-
lected, no such algebraic formula can be applied
when parallelizing compiler generates SPMD
programs. Therefore we should consider the
index conversion algorithm between local and
global and we also implement the conversion
algorithm from global iteration space to local
iteration space.

Let us first consider the distribution method

June 1998

s, oo |0 |0 0 o

i Array B

Fig.3 Communication-free data distribution for
solution (2) of Loop Ls.

from a global array to local arrays. With re-
spect to the traditional regular distribution,
the local array spaces are usually allocated to
nearly 1/p of the size of the global arrays and
data are distributed across processors with the
same size for the row or column of each local ar-
ray, whenever the distribution scheme is along
the row or column. But in linear distributions,
the sizes of each row in local arrays are dif-
ferent, since the global arrays are distributed
along slant lines, and cyclicly partitioned to
each processor in order to get a good load bal-
ance. Hence, we should allocate the local ar-
ray space as (number of slant lines) x (maximum
size of line length). Reconsider the array A in
Example 1. Let p = 4 and A is an 8x8 ma-
trix, A is partitioned along slant lines i + 5 = c.
The local data are distributed to each processor
Py, P, Py, and Ps, as shown in Fig. 4. If we al-
locate 2 dimensional arrays for them, we must
assign the local array space as 4x8, since it con-
sumes the 2 times the space of global array and
half of the local space is useless.

We therefore allocate the local array space
as one-dimensional array when the linear dis-
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PO:  ALD
A5.1). A42). A(B3). A4 A(LS)

A(8.2). A(7.3). A(6.4). A(5,5), A(4,6), A3,7), AQ2,8)
AB,6), A(7,7), A(6.8)

Pl: AQ2D. AQD
A6.1). A5.2). Al43). A(34). A25). A(L6)
A(B3). A(T4). A(6,5), A(5.6), A4,7), A(3.8)
A@B)7), A(7.8)

P2:  AGD. AL A3
AL A(62). AS3). A(4.4). A3S). AQS6), A(LT)
ABA), A(75), A6.5). A(S.7), A(48)
ABS)

P3: Af4.1. A(32). A(2.3). A(14
A(B.1). A(7.2). A(6.3). A(5.4). A(4,5), A(3,6), A(2,7), A(1,8)
A(8,5), A(7,6), A(6,7), A(5.8)

Fig.4 Array A’s elements distributed to each proces-
sor for loop L1, where A (8,8) and p=4.

PO : A'= A(LD) A(5,1), A(4.2), AB33), A24), A(L,5), A)2), A(7,3),
A(6,4), A(5,5), A(4,6), A7), A28), AB6), A(7,7), A(68)

bound[4] ={1, 2,7, 14}

Pl : A= AQD, A(L2), A(6,1), A5,2), A(4,3), A(34), A(2,5), A(L,6),
A(8,3), A(7,4), A(6.5), A(5,6), A(4,7), A(3.8), A(87), A(7.8)
bound[4] = { 1, 8, 9, 15}

P2 : A= AG,1), AQ22), A(1,3), A(7.1), A(6,2), A(5,3), A(4,4), AB.S),
AQ2,6), A(1,7), A84), A(7.5), A(6,6), A(5,7), A(4.8), A(8.8)
bound(4] ={ 1, 4, 11, 16}

P3: A= A4, AGY), AQ2,3), A(1,4), A8,1), A(7.2), A(6,3), A(5,4),
A(4,5), A(3,6), A(2,7), A(1,8) , AB,5), A(7,6), A(6,7), A(5.8)
bound[4] ={ 1, 5, 13}

Fig.5 The structure of the local arrays and their
bound arrays for loop Lj.

tribution is applied. The global array elements
distributed along ai + bj = c are cyclicly parti-
tioned by following the ascending order of the
values of ¢, that is, the line whose value of ¢ is
minc (minimum c) is partitioned to Fp, next to
P, and so on. For one processor, some paral-
lel lines whose values are cj,cz,...,cr, where
¢; < ¢j, 1 < j, are partitioned over it, and the
elements are also stored into local array follow-
ing the ascending order of the local values of c.
Attached to each local array is a bound array
which records the first position of each slant line
in the local array. For the current example, the
local value of the array element and its bound
array are shown in Fig. 5.

It is clear that there exists greatly different
structures between the global and local arrays,
thus one should develop a special conversion al-
gorithms between the local and global indices

Algorithm 1 gi2li
Input: giobal index (ig,jy) and linear distribution co-
efficient (a,b)
Qutput: processor number Pj and local index 3;

1. calculate the minimum value of ¢-minc and maxi-
mum value of c-mazc for linear distribution (a,b) and
value ¢ for global index (g, jg)

mine — a+b axb>0

axni+b axb<0
_ axny+bx*xng axb>0
maxcw{ a+bxng axb<0

c=axig+bx*jg
2. calculate the processor number Pj:

P, = (¢ — minc) mod p
3. calculate L: the number of slant lines of global array
and I: the number of local lines distributed onto Py

L = mazc— minc+1

jo{ L+l Lmodp— P, >0
- L/p otherwise
4. compute all values of ¢ and local value ¢ distributed
onto Py

global c = {c;|1 <i < LAc¢; <cj, if i <j}

localc = {ck|c} = Chti-1)xpr1 AL <0 LU}
5. compute the bound of the one-dimensional local ar-
ray A’:

fori=1tol

15[i] = tuple(local c[i], a,b);

tuple() compute the number of legal tuples < ¢,j > that
satisfy ai + bj = local_c[ |

bound[u] = bound[1] + Z:;ll ij[v],
where bound[1] = 1 :
6. get the local index 7; in processor Pj:

ifaxb < 0 then

i = { boundiu]+ (j; —)/lal  c<a+b
L= boundfu] + (ig — 1)/b c>a+b
ifaxb> 0 then

c<axni+b

. _ f bound[u] + (jg — 1)/a
b= boundu] + (n1 —ig)/b c¢>ax*xny+b

where ¢ = local_c[u]

Fig.6 The conversion algorithm from the global
index to the local index.

and a conversion algorithm from global itera-
tion space to local iteration space for compiler
generated SPMD programs. The algorithms
gi2li, li2gi, and gs2ls in Figs. 6~8 are the con-
version from global to local index, the conver-
sion from local to global index, and the conver-
sion from global to local iteration space respec-
tively. Here we assume sign (a) = sign (a * b).
Because, for example, if axb < 0, ai + bj = ¢
and —at — bj = —c are designated the same
distribution.

Example 6 For the example in this section,
the local array A’ and its bound are given in
Fig.5, and

minc=1+1=2
mazc =8+ 8 =16
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Algorithm 2 li2gi
Input: local index %;, processor number Py, linear dis-
tribution coefficient (a, b)
Output: global index (34, jg)

1. find out u such that
bound[u] < 4; < bound[u + 1]

2. get local value c of the line corresponding to %;:
¢ = local_c[u]

3. ifaxb < 0 then
if ¢ < a+ b bf then
Jg = (41 — bound[u]) * |a| + 1
ig=(c~bxjg)/a
else
ig = (i — bound[u]) *b+1
Jjg=(c—axig)/b
endif
else
ifc<axn; +bthen
Jg = (41 — bound[u]) xa + 1
ig = (c—bjy)/a
else
ig = n1 — (4 — bound[u]) x b
Jg=(c—axig)/b
endif
endif

Fig.7 The conversion algorithm from the local index
" to the global index.

L=(16-2+1).
Given the global index (3,6), the local index 4;
is computed as follows:
c=3+6=9
Pk—(9 2) mod 4=3
i =bound[2] +(6—-1)/1=5+5= 10
which means A'(10) = A(3,6) on processor Ps.
Also, using Algorithm 3, we can obtain the
SPMD node program of L; as follows:
do j =1,
do ¢ = bound[j + 1] — 1, bound[j], —
A'(i)=A'"(i - 1)+ B'(3)
enddo
enddo

4. Experimental Results

In order to evaluate the ideas presented in
this paper, we conducted some experiments
implemented on CP-PACS, a 2048-processor
MIMD distributed memory parallel computer
developed at the University of Tsukuba. All
the node programs are written in C, using PAR-
ALLELWARE* programming environment, a
commercially available package that extends C
and FORTRANY7 with a portable communica-

is shown in Fig.9.

Algorithm 3 gs2ls

Input: loop nest its type is as Ly or Lg;
Output: SPMD program for input loop.

1. if the loop is Lo then
2. compute the coefficient (a, b) according to i1, 71,12, j2
as described in Section 2.2.
3. compute the distance vector d and local distance e:

d= d1 _{ @10~ B0

B T\ @20 — B2

e= gcd(ldhl |d2])
4. compute the upper and lower bound of local iteration
space:

lower = bound[j] upper = bound[j + 1] — 1

j=1,2,...,1
5. translate the local loop as
doj=1,l

do i = t1,t2,13
5(4'(8), A'(i"))
enddo
enddo
where determine the t1,t2,t3 and ¢/ through
ifd; > 0 Ade <0 then

t1 = upper,ts = lower,t3 = —1,7 =i+ ¢;
ifdi <0Ads >0 then
t1 = upper,ty = lower,t3 = —1,i' =i — ¢;

ifdy > 0Ady > 0 then
t1 = lower,ty = upper,t3 = 1,7 =i —e¢;
ifdi < 0Ads <0 then
t1 = lower,ty = upper,tz3 = 1,9 =i +¢;
6. if the input loop is L4 then because elements
B(i2,j2) are aligned with A(¢1,71) and distributed to
the local array elements B’(¢), on the same processor
with A’(¢), So the loop is simply translated to
doj=1,1
do i = lower, upper
A'(i) = F(B'(3))
enddo
enddo

Fig.8 The algorithm conversion from the global
iteration space to the local iteration space.

tion library. The experimental programs are
the latter half part of ADI, namely an alter-
nating direction implicit solution for the two
dimensional diffusion equation, and a program
which includes a matrix multiplication loop
nest followed by a matrix transposition loop
nest, called MULTRANS.

The sequential source program MULTRANS
We measured that the
execution time of this sequential program is
201.76 sec (with data size 1024x1024). We also
implemented several versions of parallelized
programs through determining different data

* PARALLELWARE is a trademark of Nippon Steel
Corporation.
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doi=1,n
doj=1,n
dok=1n
Cli,g) = C(i,4) + A, k) * B(k, 3);
enddo
enddo
enddo
doi=1,n
do j =1,1
T = A(i,5);
A(3,7) = A(4,9);
A8 =T;
enddo
enddo

Fig.9 The sequential source experimental program
MULTRANS.

distribution schemes for each program, to ob-
serve how performance is influenced by differ-
ent data distribution schemes for the same pro-
gram, and to verify whether the executions and
the analytical results are consistent.

As is widely known, based on the traditional
BLOCK/CYCLIC distribution, the best dis-
tribution schemes for array A, B, and C in
the program shown in Fig.9 are (BLOCK,*),
(*,BLOCK) and (BLOCK,*), respectively, for
the matrix multiplication loop. However, in the
matrix transposition loop, A(i,j) and A(j,1)
have the data dependence relation in a loop it-
eration (z,7). Using the distribution analysis
technique proposed in this paper, we obtained
the coefficients of linear distribution (a,b) as
(1,1). That is, the linear distribution (1,1)
should be selected. Therefore, we implemented
two types of distribution schemes for array A,
where one is (BLOCK,*) for the entire pro-
gram (denoted as (B,*) in Fig.10), another
is (BLOCK,*) for the multiplication loop and
(1,1) distribution for the transposition loop
(denoted as (B,*) + (1,1) in Fig. 10). It requires
redistribution of A between the two loops. We
apply the naive redistribution approach!® by
using the global-local index conversion algo-
rithms (Figs.6, 7). The experimental results
with array size n = 1024x1024 on different
processor nodes are shown in Fig. 10. Theoreti-
cally, the ideal speedup of a parallized program
run on p processors is p times as much as the ex-
ecution time of sequential program, but due to
the affect of communication, the ideal speedup
cannot be achieved in practical.
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Fig.10 Performance of the different versions of the
experimental program MULTRANS on CP-
PACS (data size: 1024x1024).

Although the linear distribution version in-
curred a higher computation and communica-
tion overheads for converting the index and re-
distributing the array elements, due to lack of
communication execution of the transposition
loop, it shows better performance, especially
when the number of processors is numerous.
However, in the linear distribution version, we
also observed that the redistribution from the
distribution scheme (BLOCK,*) to (1,1) con-
sumed most of the cost of executing the matrix
transposition. In order to get more remarkable
improvement, we must develop the optimal re-
distribution algorithms between the traditional
and linear distributions®.

To show our distribution strategy in Section
2.4 is valid, another program, the latter half
part of ADI, is experimented. For this program,
a loop-carried dependence occurs in the first di-
mension of arrays. We first measured the execu-
tion time of this sequential program is 0.38 sec
(with data size 512x512). After analyzing the
subscript references we can get ¢ = 0 and
b =1, that is, the (*,CYCLIC) or (*, BLOCK)
distribution scheme should be selected. We
implemented three versions with the distri-
bution (BLOCK,BLOCK), (BLOCK,*) and
(*,CYCLIC). The performance where data size
n = 512x512 are shown in Fig.11. We ob-
served that if a suitable distribution scheme
is selected, the practical speedup of the par-
allelized program is near to the ideal one, and
inversely, if the distribution scheme is not prop-
erly selected, the performance of a parallelized
code may even be slower than sequential code
as reported by Blume and Eigenmann®).

We also observed that for the (BLOCK,
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Fig. 11 Performance of the different versions of the
latter part of ADI on CP-PACS (data size:
512x512).

BLOCK) and (BLOCK,*) distributions, the
performance did not improve when the number
of processors is increased, because the commu-
nication overhead has also increased. On the
other hand, because of the communication-free
execution under the (*,CYCLIC) distribution,
the performance of this version is much better
than the other two.

5. Related Work

Many researchers have tried to assist pro-
grammers in the difficult task of specifying a
data distribution. Balasundram, Fox, Kennedy
and Kremer? propose an interactive tool that
allows programmers to select regions of a se-
quential program. This tool responds to a data
decomposition scheme and diagnostic informa-
tion for the selected region. The tool outputs
a Fortran D program that can be translated by
the Fortran D compiler 715,

Gupta and Banerjee19:11) described the
PARADIGM compiler that decomposes the
data distribution problem into a number of sub-
problems, each dealing with a different distri-
bution parameter for all the arrays of the input
program (align pass, block-cyclic pass, block-
size pass, and num-proc pass).

Anderson and Lam? addressed the align-
ment and distribution problem in a linear al-
gebraic framework. However, they often sacri-
fice parallelism to reduce communication. The
tradeoff between communication and paral-
lelism is intimately related to parameters of the
target machine. Recently, Lim and Lam pre-
sented an algorithm to find the optimal affine
transform that maximizes the degree of paral-
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lelism while minimizing the degree of synchro-
nization in a program with arbitrary loop nest-
ings and affine data accesses'®). Their algo-
rithm is based on the concept of affine parti-
tioning. They address that partition are used
for two different purposes — space partition and
time partition. It seems that their algorithm is
more suitable for shared memory machines.

Dierstein, Hayer and Rauber® discuss a
branch-and-bound approach for distributing ar-
ray data of the input program automatically.
This algorithm incrementally constructs paths
in a decision tree where each node of the path
corresponds to the distribution of an array of
the source program. For each path, a commu-
nication analysis tool computes the communi-
cation costs resulting from the way considered
to distribute the array.

Ramanujan and Sadayappan'” and Chen
and Sheu® have worked on deriving data par-
titions for a restricted class of programs. They
concentrate on the problems of transforming
programs into the parallel form and reducing
the interprocessor communication overhead.

Application which motivate the need of non-
traditional BLOCK, CYCLIC distribution are
shown in Ref.12). In this reference some new
data mapping techniques are proposed to over-
come some limitations of the current HPF data
mapping methods, from which we obtain some
enlightenments.

6. Conclusions and Further Research

Our main focus in this paper has been on pre-
senting an array distribution scheme by analyz-
ing the subscript reference, which includes the
linear distribution technique, as is distinguished
from the traditional distribution scheme. This
technique is suitable for optimizing array dis-
tributions for some areas in scientific program-
ming. It can reduce the communication cost
when the data dependence is carried along the
slant lines in the loop nest. Another contribu-
tion of this technique is that the data distribu-
tion scheme for a loop nest can easily be de-
termined by using the analysis of the subsrcipt
reference. The main limitation is that we only
deal with static array distribution in individual
loops and do not consider dynamic distribution
between several loops.

We are currently exploring several directions
in which this work can be extended. We expect
to embed this method to a practical paralleliz-
ing compiler and plan to examine other strate-
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gies for searching through the space of possible
data partitions. We have also developed some
preliminary ideas on how to deal with the data
redistribution problem which includes the lin-
ear distribution for individual loops &%),
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