Vol. 39 No. 7

Regular Paper

Transactions of Information Processing Society of Japan

July 1998

Dynamic Scheduling Algorithms for Real-time Signal Processing
on Ring-based Multiprocessor Systems

HIROYUKI MIYATA,t* MASATO TAKAHASHI,"** HIROYUKI TAKANO'
and KAZUHIRO AOYAMAT't

This paper describes a study of the performance of dynamic scheduling algorithms used in
the design of distributed real-time systems. The study is based on a simulation model assum-
ing a ring-based shared memory multiprocessor. An application is a multiple-target-tracking
algorithm. In order to design an optimal dynamic scheduling algorithm with several require-
ments, we classified scheduling schemes according to the essential procedures for dynamic

scheduling, and proposed four scheduling algorithms.

The results show that a scheduling

algorithm with distributed qualification and a resource reservation mechanism significantly

improves system performance.

1. Introduction

Recent technological advances in multipro-
cessors and VLSI are making hard real-time sig-
nal processing feasible. A key to realizing this
goal will be research on the architecture of mul-
tiprocessors for signal processing.

The choice of an interconnection network is
one of the most important considerations in
the architecture of multiprocessors. Several
schemes for interconnection of multiprocessors
have been proposed, such as a shared bus, a
cube network, and a ring network?). Since
a shared bus is connected to a shared mem-
ory and some processors, it is usually difficult
to speed up the bus because of physical con-
straints, while a cube network becomes increas-
ingly complex as the number of nodes grows
large. A ring network, however, is a simple form
of point-to-point interconnection and, since the
function of its routers in the-interface block
is also simple, it could allow faster operation
speeds and less expensive hardware. From this
reason, we use a ring network for multiproces-
sors.

Use of a dynamic scheduling algorithm is an-
other key technique for real-time signal pro-
cessing on multiprocessors. There has been a
great deal of discussion in the literature about

t Information Technology R&D Center, Mitsubishi
Electric Corporation
11 Kamakura Works, Mitsubishi Electric Corporation
% Presently with Kamakura Works, Mitsubishi Elec-
tric Corporation
¥ Presently with Communication Research Labora-
tory, Ministry of Posts and Telecommunications

dynamic scheduling algorithms on multiproces-
sors?)~7). For example, Casavant, et al.®) pre-
sented a taxonomy of scheduling algorithms in
distributed computing systems, Wang, et al.¥
defined the quality of load sharing (Q-factor)
and evaluated several scheduling algorithms us-
ing the Q-factor, and Stankovic, et al.>) pre-
sented a scheduling algorithm with hard real-
time constraints. However, there have been few

" papers about dynamic scheduling algorithms

2331

with hard real-time constraints on ring-based
multiprocessor systems. Though a ring network
is a simple form, the maximum distance be-
tween two nodes is n — 1 if unidirectional links
are used in an n-node system. Any delay in
communication between nodes may affect dy-
namic scheduling algorithms more than other
interconnections of multiprocessors.

In this paper, we propose dynamic schedul-
ing algorithms for real-time signal processing
on ring-based multiprocessor systems, and eval-
uate them by means of simulation. In order to
avoid communication delay between nodes, a
reservation mechanism is adopted. If one node
is qualified to accept a task, the resource in the
node (for example, CPU power) is reserved be-
fore moving the task. Qualification mechanisms
are classified as centralized or distributed. Our
interest is to determine which type of mecha-
nism is better for real-time signal processing.

In the next section, we explain a real-time
signal processing algorithm called Multiple Hy-
pothesis Tracking (MHT). After that, we give
an overview of our system. Then, we dis-
cuss our proposals for dynamic scheduling algo-
rithms in order to provide guidelines for system

2332 Transactions of Information Processing Society of Japan

design. Finally, we discuss classified dynamic
scheduling algorithm schemes and explain our
selection of the best scheme for our system.

2. Multiple Hypothesis Tracking:
MHT

There have been several recent studies of
a tracking algorithm called Multiple Hypoth-
esis Tracking (MHT)-19) in relation to multi-
target tracking, robot vision, and automobile
navigation. In MHT processing, the number
of computational tasks can rapidly increase ac-
cording to the number of target signals and
clutter (unnecessary signals). The MHT al-
gorithm theoretically generates hypotheses cor-
responding to all combinations of signals from
targets and clutter. But it is difficult to imple-
ment a pure MHT algorithm, even if a multipro-
cessor is used, because of computational explo-
sion. In order to avoid this problem, hypothe-
ses are generally weighted according to their
probability, which is calculated from the cor-
respondence between a predicted position and
an observed position. Thus, a hypothesis will
be eliminated if its probability is below a pre-
selected value.

3. System Overview

Figure 1 shows an overview of a system
whose nodes are connected by SCI: Scalable
Coherent Interface (IEEE Std 1596-1992)).
Later, we will call a processor a “node”.

SCI offers the following benefits: (1) low la-
tency, (2) ease of building distributed shared
memory, and (3) the fact that it is a pub-
lic (IEEE) standard. We use a real-time OS
that has the following benefits: (1) ease of en-
hancement into a parallel version, (2) good real-
time performance, and (3) executability in a
microprocessor. The microprocessor that we
use offers the following benefits: (1) good pro-
grammability and (2) availability for general
use.

The hardware design trade-off is described in
Ref. 11) and 12).

4. Dynamic Scheduling Algorithms

We define dynamic scheduling as that in
which an OS decides the scheduling of a task
dynamically in the system, and static schedul-
ing as that in which a compiler decides the
scheduling of a task according to a program.
Dynamic scheduling algorithms in real-time
systems are classified in Table 1, according

July 1998

Real-Time OS

“
\\ Microprocessor
N VE: scI

Fig. 1 System overview.

Table 1 Classification of dynamic scheduling

algorithms.
Static | Dynamic
Centralized System A B
Distributed System C D

to a procedure described by Stankovic, et al.5).
There have been several studies of type A and
C. Optimal dynamic scheduling algorithms in
A and C are not generally optimal in B and D.
In type B, work is currently in progress. On the
other hand, type D is described as a challenging
area. Our study, which centers on schemes for
dynamically allocating tasks on a system with
distributed nodes to optimal execution nodes,
is of type D.

4.1 Dynamic Scheduling Algorithms

on Distributed Systems

Basically, dynamic scheduling algorithms on
distributed systems are divided into two se-
quential portions: a global scheduling portion
and a local scheduling portion. The global
scheduling portion is a mechanism for distribut-
ing the load to other nodes. The local schedul-
ing portion is a mechanism for guaranteeing the
time conditions in each node. The load distri-
bution mechanism decides in which node the
task should be executed. The guarantee mech-
anism decides whether the node can satisfy the
deadlines for the tasks.

In the global scheduling portion, it’s usually
difficult to know the exact current status of the
all nodes because of communication delays in
gathering the loads from each node. In ad-
dition, gathering load information frequently
leads to heavy network traffic and low system
efficiency.

On the other hand, in the local scheduling
portion, our system uses a simple algorithm to
judge whether or not the task can be executed
within the pre-selected time based on the dead-
line time, the current time, and the execution
time of the task. Therefore, our discussion be-

Vol. 39 No. 7

low will concentrate on the global scheduling

portion of the algorithm.

4.2 Classification of Dynamic Schedul-
ing Algorithms on Distributed
Systems

In this subsection, we classify dynamic
scheduling algorithms in distributed systems.
As regards the scheduling scheme, we specified
that our system would use dynamic, symmet-
ric, sender-initiated load distribution in a dis-
tributed system.

We propose to classify dynamic scheduling al-
gorithms on the basis of three functions: qual-
ification, determination, and reservation.

(1) Qualification is a procedure for deciding
whether a node can execute a task by
a deadline. Multiple qualified nodes are
possible. A node investigated by a qual-
ification procedure is called an objective
node.

(2) Determination is a procedure for select-
ing one of the qualified nodes to which
the task will be distributed.

(3) Reservation is a procedure for reserv-
ing hardware resources in some qualified
nodes, and is explained in more detail in
the next subsection.

We will classify scheduling algorithms accord-
ing to the node in which “qualification” or “de-
termination” is executed.

Qualification is also categorized into two
types: centralized and distributed. In central-
ized qualification, load information is gathered
into a sender node, and qualification is exe-
cuted in the sender node. In distributed qual-
ification, task information is distributed to ob-
jective nodes, and qualification is executed in
the objective nodes. Centralized qualification
seems to be easy to implement. However, in
distributed qualification, the sender’s load for
distribution would be lighter than in central-
ized distribution, because the qualification pro-
cedure is executed concurrently.

Determination is also categorized into two
types: centralized and distributed. In central-
ized determination, qualification information is
gathered into a sender node, and determina-
tion is executed in the sender node. In dis-
tributed determination, determination is exe-
cuted at each qualified node. Distributed deter-
mination is too complicated to implement, and
we will therefore not discuss it further. Instead,
we will now concentrate on centralized determi-
nation. Both centralized and distributed qual-

Dynamic Scheduling Algorithms for Real-time Signal Processing 2333

ification algorithms have their own respective
merits.

4.3 Reservation Mechanism

In distributed systems, communication de-
lay should be considered. All arriving infor-
mation may be different from that of the cur-
rent states. All node states are changing con-
currently. When a node (for example, node-
A) succeeds in acquiring state information from
another node (for example, node-B), the cur-
rent state of node-B may have already changed
on account of a communication delay. In the
worst case, the task may be rejected by a se-
lected node because of a state change during a
communication delay. The sender then has to
find another node, which may also reject the
task. The task can thus be thought of as being
sent around from one node to another.

Because of the above characteristic of dis-
tributed systems, reservation can be effective.
Reservation means reserving some resources
(e.g., CPU time) to execute a task on a node
before distribution of the task. The timing
of reservation in centralized qualification algo-
rithms is different from that in distributed qual-
ification algorithms. In our system, the reserva-
tion in centralized qualification is expected to
be performed at the same time as acquisition
of information on the load of each node, while
the reservation in distributed qualification is ex-
pected to be done just after qualification at each
node.

An advantage of these reservation mecha-
nisms is that a task is guaranteed to be accepted
in a selected node, if it arrives before the sched-
uled time. Two drawbacks of the reservation
mechanism are the time overhead for the reser-
vation and the possibility of wasted resource,
since reserved resources are wasted if they are
not used. To avoid this, a reservation release
mechanism may be required. However, it may
make the whole mechanism more complicated.

Our interest is to determine whether the ben-
efits of the reservation mechanism outweigh the
cost of the complication.

4.4 Four Dynamic Scheduling Algo-

rithms

We propose four dynamic scheduling algo-
rithms, shown in Table 2, where their names
are abbreviated to two letters, of which the first
identifies the qualification class, and the second
existence or nonexistence of reservation.

¢ Qualification class: C stands for central-

ized. D stands for distributed.

2334 Transactions of Information Processing Society of Japan

Table 2 Scheduling classification.

Qualification
Centralized | Distributed
Reservation CR DR
No reservation CN DN

e Reservation: R denotes the existence of
reservation. N denotes the non-existence
of reservation.

5. Evaluation Using Simulation

A simulation study of the above four algo-
rithms was conducted, using several sets of pa-
rameters. This section describes the simulation
model, the parameters, the workload model,
and the criteria for the evaluation. The sim-
ulator was built by using a discrete simulator
called SES/Workbench!¥.

5.1 Simulation Model

The simulation model for the simulator is de-
scribed below.

(1) There is a time frame within which exe-
cution of all tasks should be completed. This
time frame is continuously repeated.

(2) The requirements for all tasks are known
at the beginning of the time frame.

(3) The time frame is divided into three
parts. In the first part, every node checks
whether the tasks in the node can be executed
within the time frame. In the second part, ev-
ery node tries to find another node that can
execute its overload of tasks. This part needs
a dynamic scheduling algorithm, and is a main
theme of this paper. In the last part, every
node executes its allotted tasks.

(4) A preemptive scheduling algorithm is as-
sumed, and we use a round-robin algorithm.
(5) The configuration of an input node is also
specified. An input node serves both for compu-
tation and as an entrance for information from
one or more sensors. For example, we adopted
four configurations as alternative design choices
in the initial phase of system development.

e One input node in every four nodes (1:4)
There is just one input node in every four
successive nodes in a ring network. In other
word, there are three computation nodes
between every two input nodes.

¢ One input node in every two nodes (1:2)
Every second node is an input node.

e All nodes serve as equivalent input nodes
(1:1)

Every node is an input node.
e Only two input nodes in the entire system

July 1998

(only-2-node)
There are only two input nodes in the sys-
tem.
We adopted these four system configurations
for two reasons: to allow a choice as regards
the number of input nodes in the initial phase
of our system development, and to reflect the
characteristic of the simulator that hypotheses
(i-e., tasks) in MHT generate new hypotheses
(tasks). Namely, when the system configura-
tion is set at 1: 1, it corresponds to a simulation
in which new tasks are generated equally in all
system nodes. When the input node configura-
tion is set at 1:4, it corresponds to generation
of a new task at one in every four nodes.
(6) We evaluate the response characteristics
of the system.
5.2 Parameters
A list of the main parameters is shown in
Table 3. Since we have a prototype machine
based on an SCI ring, we assumed that some
parameters were the same as those of the real
machine. We define all of the times in detail,
and therefore there are no non-deterministic el-
ements in the simulator. In other words, the
estimated time in the simulator is always fixed.
The number of nodes in the evaluated system .
is also specified. We evaluated 4, 8, 16, 32 and
64 nodes in the simulator.
5.3 Workload Model
Table 4 shows the workload model. We used
four conditions related to the ratio between the
number of tasks already existing in the system
and the number of tasks newly input. The ra-
tio represents the CPU time consumption. For
example, 50% means that half of the CPU time
in the time frame will be used for the tasks. We
assigned two priorities for tasks: high and low.
First, in Condition 0, the system is empty in
the initial state. High-priority tasks whose size
is 100% of the system capacity are then input.
The expected final state is 100% high-priority
tasks. The scheduling completion time (i.e., the
time when the scheduling algorithm finishes the
load-balancing procedure) is calculated.
Second, in Condition 1, the system is filled
to capacity with low-priority in the initial state.
High-priority tasks whose size is 50% of the sys-
tem capacity are then input, and the schedul-
ing completion time is calculated. In this con-
dition, the scenario is that half of the existing
tasks will be purged and replaced with newly
input high-priority tasks. Since 50% of the sys-
tem will be filled with high-priority tasks and

Vol. 39 No. 7

Dynamic Scheduling Algorithms for Real-time Signal Processing

Table 3 Parameter list.

Categories Parameters Time (us)
Communication delay SCl-input 0.1
SCI-bypass 0.7
SCI-output 1.4
CPU execution time Access to local memory 10
Get-lock, Release-lock 10
Create message 10
Create task 10
Judgment of guarantee 20
Round-robin Quantum 1000
Overhead time of exchange 7.2
Task Time frame 32000
Average execution time 8000
Table 4 Workload model.
Initial State | Newly Input Final State
Priority | High | Low High | Low | High | Low
Cond.O 0% 0% 100% | 0% | 100% | 0%
Cond.1 0% 100% | 50% 0% 50% | 50%
Cond.2 | 50% 50% 50% 0% | 100% | 0%
Cond.3 0% 100% | 100% | 0% | 100% | 0%

50% with low-priority tasks, it is expected to
be easier in this condition than in Conditions
2 and 3, described below, to look for qualified
candidate nodes for task distribution.

Third, in Condition 2, the system is filled
with low-priority and high-priority tasks (50%
each) in the initial state. High-priority tasks
whose size is 50% of the system capacity are
then input, and the scheduling completion time
is calculated. The scenario in this condition is
that low-priority tasks existing in the system
will be replaced by newly added high-priority
tasks. The system is expected to execute only
high-priority tasks. In this situation, it is ex-
pected to be more difficult and to take longer
than in Condition 1 to look for qualified candi-
date nodes for task distribution.

Finally, in Condition 3, the system is filled
with low-priority tasks in the initial state.
High-priority tasks whose size is 100% of the
system capacity are then input, and the sched-
uled completion time is calculated. The sce-
nario in this condition is that all low-priority
tasks existing in the system will be purged and
replaced by newly added high-priority tasks.
It is also expected to be more difficult and to
longer in this condition than in Conditions 0, 1,
and 2 to look for qualified candidate nodes for
task distribution. Moreover, since 100% of low-
priority tasks are to be purged, the total CPU
load for the scheduling procedure is expected to

be highest of these for the four conditions.

5.4 Criteria

Generally, the performance of real-time sys-
tems is calculated as the percentage of tasks
completed by the deadline, and is known as the
“guarantee ratio.” We use the guarantee ratio
as the first criterion for evaluating the perfor-
mance. In addition, we will use two other cri-
teria. The first is how quickly each scheduling
algorithm completes its load balancing proce-
dure, and the second is how often high-priority
tasks are rejected.

6. Results and Discussion

In this section, we will compare the character-
istics of the four scheduling algorithms, which
are derived from the simulation results.

Figure 2 shows the scheduling completion
time, plotted on the vertical axis, in relation
to the four conditions described above, plotted
on the horizontal axis. The number of nodes
is fixed at 16. The input node configuration
is set at 1:4. Before performing this simula-
tion, we predicted that algorithms with a reser-
vation mechanism might take longer to com-
plete scheduling, because they generate a high
volume of network traffic. We also predicted
that algorithms without a reservation mecha-
nism might take longer to locate a node that
can finally guarantee and accept tasks that have
been sent from one node to another.

2336 Transactions of Information Processing Society of Japan

N
[y

CN

—
W

Scheduling completion time (msec)

10 A
DR.........
LR ==
0
Cond. 0 Cond. 1 Cond. 2 Cond. 3

Task input conditions

Fig. 2 Completion time (16-node system).

The result shown in Fig. 2 indicates that algo-
rithms with a reservation mechanism perform
better than those without such a mechanism.
Furthermore, in the same situation with and
without a reservation mechanism, it is shown
that distributed qualification mechanisms per-
form better than centralized qualification ones.
The DR algorithm, which has both of the fea-
tures described here, achieves the best perfor-
mance.

This pattern was always observed in sim-
ilar figures when the values of the number
of nodes or input node configuration were
changed, within the range shown in Section 5.1
(5).

In term of the various conditions, it takes
longer in Condition 3 than the others, except
for CN algorithms. This result is reasonable
because, from Table 4, all of the low-priority
tasks are replaced by newly input high-priority
tasks and the load is the highest in four condi-
tions.

In real-time systems, it is important that
scheduling be done by the deadline. If the
scheduling completion time is long, it will not
be possible to execute some tasks by the dead-
line, especially in systems with large numbers
of nodes. In fact, in a 32-node system and a 64-
node system, tasks whose deadline was not met
were observed under the same conditions and
input node configuration as described above.
This phenomenon was observed only in CN and
DN algorithms, whose scheduling completion
time was longer, as shown in Fig.2. Neither
CN nor DN algorithms have a reservation mech-
anism. Since it is important that high-priority

July 1998

Table 5 Rejection by receiver candidate [on

Condtion 0].
Rejection CR CN DR DN
0 100.0% | 75.0% [100.6% | 45.3%
1 0.0% 21.9% 0.0% 29.7%
2 0.0% 3.1% 0.0% 15.6%
3 0.0% 0.0% 0.0% 6.3%

tasks should be completed by their deadline in
real-time systems, a short scheduling comple-
tion time should be considered important.

To analyze why non-reservation algorithms
have a long scheduling completion time, we
measured the frequency of rejection at a re-
ceiver candidate node and made histograms
based on the ratio of the number of tasks re-
jected at a receiver candidate node to the to-
tal number of input tasks. (The term “reject”
means that the task was not accepted by the
candidate node because the node status had
changed and the node could not afford to ex-
ecute the task.)

Table 5 shows the results observed in Con-
dition 0. The rejection count in the table rep-
resents the number of times that a task was
rejected at a receiver candidate node. As a re-
sult, it affects the scheduling completion time.
From Fig. 2 and Table 5, we were able to under-
stand the importance of the reservation mech-
anism and why it results in a lower overhead
time. Since the CR and the DR algorithms have
reservation mechanisms, the rejection count at
receiver candidate nodes is zero. The CN and
the DN algorithms, however, do not have such
a mechanism, and 75% of tasks in the CN al-
gorithm and 45.3% of tasks in the DN algo-
rithm were not rejected in receiver candidate
nodes. Other tasks (25% in CN and 54.7% in
DN) were rejected at least once at receiver can-
didate nodes. In addition, 25% of tasks in the
DN algorithm were rejected more than twice at
receiver candidate nodes.

Figure 3 shows the scalability of the system
with the CR, CN, DR, and DN algorithms. We
fixed the input node configuration at 1:4. and
adopted Condition 3.

From the results described above, for systems
of all scales from 4 to 64 nodes, we consider the
DR algorithm to be the best of the four algo-
rithms discussed in this paper. The reasons are
as follows: (1) the reservation mechanism pre-
vents a scheduling from generating re-try ses-
sions, and effectively reduces the network load,

Vol. 39 No. 7

70

) /

]

&
\
N

%

Performance
™
N

2

N
\

—
(=}

0 20 40 0 80
Number of nodes
Fig. 3 Scalability.

70
linear
o //
50
/ 12,111
40 ——

77
o

Performance
(72
S

20
10
0 . L A ;
0 20 40 80
Number of nodes
Fig. 4 Effect of Input Node Configuration on DR,

Algorithm.

and (2) concurrence of distributed qualification
reduces the completion time.

The DR algorithm, which is considered the
best so far, was examined further. Figure 4
shows the scalability of the DR algorithm for
input node configurationsof 1:1,1:2, 1:4, and
only-2-node. Condition 2 is adopted here. T'wo
curves, for the input node configuration of 1:1
and 1:2, are almost overlapped.

The performance of the only-2-node input
node configuration is inferior to the others. It is
thought that serialized processing at two input
nodes bottlenecked the system.

It is considered effective to adopt an 8- or 16-

Dynamic Scheduling Algorithms for Real-time Signal Processing 2337

node system using the DR algorithm, if the in-
put node configuration of 1:4 is adopted. The
input node configuration of 1:4 is a highly
probable configuration from the point of view
of a multi-sensor. In other words, it is not ef-
fective to use more than 32 nodes in a system
under the above four conditions.

7. Conclusion

No systematic design methodology has been
generally established for the dynamic schedul-
ing algorithms used in distributed systems.

This paper proposes three classification
axes (centralized/distributed qualification, cen-
tralized/distributed determination, and exis-
tence/absence of reservation) which are thought
to be effective for designing optimal dynamic
scheduling algorithms under certain conditions
and parameters. We also evaluated algorithms
in the categories outlined by those axes by
means of simulation under certain conditions.

With regard to our target system for imple-
menting Multiple Hypothesis Tracking (MHT),
we obtained the following results with our cur-
rent hardware, OS, and application parameters:

e Qualification: distributed qualification is

superior to centralized qualification.

e Reservation: a reservation mechanism is

superior to a non-reservation mechanism.

From the results described above, the follow-
ing design decisions are suggested: It is suit-
able for our real-time system to use a dynamic
scheduling algorithm that executes qualifica-
tion in a distributed scheme and provides a
reservation mechanism.

Our future plan is to verify our simulation
results with a real machine, which we are cur-
rently developing. In addition, we are going to
continue to study ways of improving the dis-
tributed qualification algorithm with a reserva-
tion mechanism.

References

1) Tomita, S.: Parallel Computer Architectures,
Shoko Dou (1986).

2) Okugawa, S.: Parallel Computer Architecture,
Corona Publishing (1991).

3) Casavant, T.L. and Kuhl, J.G.: A Taxonomy
of Scheduling in General-Purpose Distributed
Computing Systems, IEEE Trans. Softw. Eng.,
Vol.14, No.2, pp.141-154 (1988).

4) Wang, Y.T. and Morris, R.J.T.: Load Sharing
in Distributed Systems, IEEE Trans. Comput.,
Vol.c-34, No.3, pp.204-217 (1985).

2338 Transactions of Information Processing Society of Japan

5) Stankovic, J.A., Ramaritham, K. and Cheng
S.: Evaluation of a Flexible Task Schedul-
ing Algorithm for Distributed Hard Real-Time
Systems, Tutorial Hard Real-Time Systems,
pp.273-286 (1988).

6) Ma, R.P., Lee, E.Y.S. and Tsuchiya, M.: A
Task Allocation Model for Distributed Com-
puting Systems, IEEE Trans. Comput., Vol.c-
31, No.1, pp.41-47 (1982).

7) Ramamoorthy, C.V., Chandy, M.K. and Gon-
zalez, M.J.: Optimal Scheduling Strategies in a
Multiprocessor System, IEEE Trans. Comput.,
Vol.c-21, No.2, pp.137-146 (1972).

8) IEEE Standard for Scalable Coherent Inter-
face (SCI), IEEE Computer Society, IEEE
Std., 1596-1992 (1992).

9) Reid, D.B.: An Algorithm for Tracking Mul-
tiple Targets, IEEE Trans. Automatic Control,
Vol.AC-24, No.6, pp.843-854 (1979).

10) Miller, M.L.: Implementation Notes for MHT
With Multiple Target Models, NEC Research
Institute (1993).

11) Takahashi, M., Aoyama, K., Miyata, H. and
Kan, T.: A Performance Comparison of several
Network Topologies Composed of Scalable Co-
herent Interface, Proc. 50th Domestic Confer-
ence of IPSJ, 6, Hardware-Systems, pp.6-25-6-
26, in Japanese (1995).

12) Takahashi, M., Aoyama, K., Miyata, H. and
Kan, T.: An Evaluation of Network Topolo-
gies Using SCI Interface, SWoPP-95, Eighth
IPSJ Summer United Workshops on Paral-
lel, Distributed, and Cooperative Processing,
TR 95ARC-113, Vol.95, No.80, pp.73-80, in
Japanese (1995).

13) Takahashi, M., Aoyama, K., Takano, H.
and Miyata, H.: A Simulation Study of Dy-
namic Scheduling Algorithms of Real-Time
Signal Processing on a Multi-Processor Sys-
tems, Hokke-96, Third IPSJ Workshop of High
Performance Computing and Evaluation ’96,
TR 96-ARC-117, Vol.96, pp.13-18, in Japanese
(1996).

14) SES/Workbench Reference Manual Release
3.0, SES, Austin, TX (1994).

(Received March 24, 1997)
(Accepted April 3, 1998)

July 1998

Hiroyuki Miyata was born
in Nagoya Japan in 1957. He re-
ceived M.S. degree in 1982, and
Ph.D. degree in 1998 in Infor-
mation Science from Kyoto Uni-
versity. He joined Computer
and Information Systems Lab-
oratory of Mitsubishi Electric Corporation in
1982. He was engaged in research and devel-
opment of massively parallel processors. From
1990 to 1991, he was also a vising scholar at
University of Illinois at Urbana-Champaign. He
is a senior engineer for work on parallel comput-
ing systems in Kamakura Works of Mitsubishi
Electric Corporation. He is a member of IEEE.

Masato Takahashi received
M.S.degree in Coordinated Sci-
ences from University of Tokyo
in 1990. He joined Computer
and Information Systems Lab-
oratory of Mitsubishi Electric
Corporation in 1990. He was
engaged in research of multiprocessor systems.
From 1996, he joined Communications Re-
search Laboratory of Ministry of Posts and
Telecommunications. He is a senior researcher
on satellite communications. He is a member of
IEEE.

Hiroyuki Takano was born
in 1967. He graduated in
Mechanical Engineering from
Tokyo National College of Tech-
nology. He joined Mitsubishi
Electric Corporation in 1988.
He has a great interest in par-
allel processing of tracking radar system. He is
engaged in development of avionics software at
Kamakura Works of Mitsubishi Electric Corpo-
ration since 1988.

Kazuhiro Aoyama is an
Engineer at Kamakura Works,
Mitsubishi Electric Corporation.
His research interests are real-
time computing and multipro-
cessor systems. He received his
B.Eng. and Ms.Eng. in instru-
mentation engineering from Keio University in
1983 and 1985 respectively, and his M.S. in
computer science from the University of Illinois
at Urbana Champaign in 1993.

