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1 Introduction

The size of an OBDD [1] largely depends on the
variable ordering. It is important to clarify the
lower bounds of OBDDs representing arithmetic
functions. In this report, we investigate a lower
bound of the size of OBDDs representing integer
division. More precisely, we focus on each bit of
the output of the n-bit / n-bit division, and prove
that the size of OBDDs representing the i-th bit is
(2("~9/8), We also prove the same lower bound
on V-OBDDs [3], A-OBDDs [3] and ¢-OBDDs:
To prove this lower bound, we introduce a strong
fooling set, which has a more restricted property
than a fooling set [4].

2 Preliminaries
2.1 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD)
is a directed acyclic graph which represents a
Boolean function. It has two sink nodes labeled
by 0 and 1, called the 0-node and the 1-node. The
other nodes are called variable nodes, labeled by
input variables. Each variable node has exactly
two outgoing edges, called 0-edge and 1-edge. A
unique source is called the root node. On every
path from the root node to a sink node, each
variable appears at most once in the same or-
der. Each node represents a Boolean function.
If node v is a sink node,. func(v) equals the la-
bel. If node v is a variable node, func(v) =
Z - func(0-succ(v)) + = - func(1-succ(v)), where
is the label of v, 0-succ(v) (1-succ(v)) is the node
pointed by the 0-edge (1-edge) of v. The function
represented by an OBDD is the one represented
by the root node.

Two nodes u and v of same label and represent-
ing the same function are called to be equivalent.
A node whose 0-edge and 1-edge point to the same
node is called a redundant node. Here we consider
reduced OBDDs which have node no equivalent
nodes and no redundant nodes. The size is the
number of nodes in the OBDD.
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An v-OBDD is defined as an OBDD with ‘v’
symbols. On every path from the node to a con-
stant node, only ‘v’ can appear more than once.
If the node v is labeled by an ‘V’, fune(v) =
fune(0-suce(v)) + func(1-suce(v)). Similarly, A-
OBDDs and ¢-OBDDs can be defined as OBDDs
with ‘A’ symbols and ‘@’ symbols respectively.
2.2 Strong Fooling Sets

Let f,(X) be a single output Boolean function
where the number of input variables is parame-
terized by n. A partition for f, is a partition of
X into two disjoint sets L and R. From an input
assignment [; - r;, we obtain a partial assignment
l; (ri) which is an assignment to all variables in
L (R). A fooling set of f, is the set A of input
assignments having the following properties.

There is some z € {0, 1}, such that f,(l;-r;) = 2
for all [; - r; € A, but for any two distinct assign-
ments [;-r; and [; -7; € A, either f,(li-7j) # z or
fallj-mi) # 2.

We introduce more restricted fooling sets,
named strong fooling sets. A strong fooling set
A has the property that f,(l;-r;) # z for any two
distinct assignments /; - r; and [; - r; € A (i < 7).
The set is called a 0-strong fooling set when z = 0,
and a 1-strong fooling set when z = 1.

Theorem 1 (2] Let the function f, have a fool-
ing set A containing at least ¢ elements for every
balanced partition (L,R). The size of the OBDD
representing f, is Q(c) for any variable ordering.
A balanced partition is a partition of X such that
[WIY]] < ¥ N L| < Y]] for some w, Y(C X).

3 OBDDs Representing Division

n-bits / n-bits division is described as follows.
Find the value of @ = (gn-1..-9o) such that
Sr w2 = (T ¢ - 2) (T % - 2') + R and
R < (X7} y; - 2%), when an assignment of inputs
X = (Tp-1...20) and Y = (yp_1...%o) is given.
Let a function Div? dénote the output ¢; of n-bits
/ n-bits division.

Lemma 1 For every balanced partition for the
set of inputs, the function Divy has a 0-sirong
fooling set containing at least 2/~ elements.
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Sketch of Proof: Let Xy denote the up-
per half (2,1 e -Tp/a),s and Xp denote the lower
half (zn/3-1...%0). Then, X is partitioned into
four sets, Xy, = Xy n L, Xpr = Xpn L,
Xvr = Xu N R, Xpgr = Xp n R. For an inte-
ger p (—=n/2 < p < n/2), define the set Args, =
{<$i+n/2,$¢+p)|0- <t < n/2 - p} if p > 0, and
Argsy = {{Tignj2-p, )0 <1 < n/2+p}if p< 0.

Let Split, = Args, N [(Xvr x Xpr) U (Xur X
Xpr)l- Split, contains at least n/8 elements
for some p [2]. Then, for every balanced parti-
tion, there exists some Split, which have at least
n/8 elements. Define U = (Um-1...u),V =
(vm-1...v) as follows, where m = n/2 — |p|. If
P20, u =24, and v = 244, Hp <O,
Ui = Tipn/2—p a0d v; = z;. The set Arygs, consists
of all pairs (u;,v;) for 0 < i < m.

For above p, construct a set 4 of input assign-
ments, such that each assignment satisfies the fol-
lowing, The set contains at least 2*/8~1 elements.

1) H p > 0, v is assigned 1 for each p < i < n/2,
and assigned 0 foreach 0 < i< p,n/2<i< n. If
p < 0, y; is assigned 1 for each 0 < i < n/2 — p,
and assigned 0 for each n/2 —p < i < n.

2)If p > 0, z; is assigned 0 for each 0 < 7 < p,
n—p<i<n Ifp<o0,z is assigned 1 for each
nf2+p<i<n/2-p.

~ 3) For each (u;,v;) € Args, — Split,, u; is assigned
1 and v; is assigned 0

4) Whether (uo, ) is in (Args, — Split,,) or not,
ug is assigned 1 and vg is assigned 0.
5)Foreachi (0<i<m), u;=7; .

We consider the case p > 0. One property of a
strong fooling set is that the output of Divg is 0
for all assignments in A. As X = U2"/24+ V2P and
Y=2"2_20 X = YU+ (U4 V)2? =Y(U +1).
This means that the output of Divg is 0 for all
assignments in A.

Another property is that Divg(l; - ;) = 1(# 0)
for any two distinct assignments /; - r; and I; - r;
in A (i < j). Let g[l; - r;] denote U + V for the
. assignments /; - 7;. As is shown above, g[l; - ;] =
g{l;-r;] = Y. However, g[l;-r;] and g{/;-7;] can not
be equivalent to Y. Hence, g[l; - ;] < g[l; - ri] or
gllj 7] < g[li-r;] holds. Let ly-71,l3-74,- - - denote
all assignments in .A. ‘Without loss of generality,
gllig1 - 7] > glli - ri41] holds for any i. As g[l;41 -
ri) > Y{-r] = glli - mi], glliva - i) > glli - 7]
holds for any k. Therefore g[i; - ;] = Y[l; - ;] >
glli - ;] holds. For I; - r;, the quotient is U and
the remainder is (U + V')2P. This means that the
output of Div} is 1 for all assignments I;-r; (¢ < 7).

In the case p < 0, A is similarly proved to be
a strong fooling set. It is shown that there exists
a 0-strong fooling set A containing at least 27/81

elements for every balanced partition. ]
Theorem 2 The size of the OBDD representing
Div} is (2"/8) for any variable ordering.
Corollary 1 The size of the OBDD represent-
ing Div} is 9(2("“)/ 8) for any variable ordering,
where 0 < 1 < 7.

4 vVv-OBDDs, A-OBDDs and $-OBDDs
Representing Division ,
Theorem 8 Let a function f, have a fooling set
containing at least ¢ elements for every balanced
partition. If the set is a 1-fooling set (a 0-fooling
set), the size of the V-OBDD (A-OBDD) rep-
resenting fn is Q(c) for any variable ordering.
Sketch of Proof: Suppose the set A is a 1-
fooling set. Assume that the size is less than c.
Then there exist two distinct assignments I; - r;
and [; - r; in A, such that a single node v is led
from the root node by both [; and /;, and the 1-
node is led from the node v by both r; and r;.

This breaks the property of a 1-fooling set. o
Theorem 4 Let a function f, have a strong fool-

ing set containing at least ¢ elements for every
balanced partition. The size of the &-OBDD rep-
resenting f, is Q(c) for any variable ordering.
Sketch of Proof: Suppose the set A is a 1-
strong fooling set. Assume that the size is ¢ (¢! <
¢). Define a matrix A = [ai;]1<i j<c Tepresenting
A, where a;; = f,(li-r;). Also define two matrices
B = [biliciceickce and C = [ex;lichec1<i<or
where b;x (ck;) = 1 if and only if an assignment
l; (r;) gives an odd number of paths from the root
node (the node v;) to the node v; (the 1-node).
As A = B - C over GF(2), ¢ < ¢/ holds when the
rank of the matrices are considered. A contradic-

tion occurs. a
Corollary 2 The size of the V-OBDD represent-

ing Div? is Q(2(n—9)/ 8) for any variable ordering.
The same lower bound holds on the A-OBDD and
the &-OBDD.
5 Conclusion

In this report, we proved that the size of OB-
DDs, v-OBDDs, A-OBDDs and &-OBDDs repre-
senting division has an exponential lower bound.
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