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1 Overview

This article describes how a Java! virtual machine can
make use of the inherent concurrency of Java programs
on a massively parallel machine, NEC’s Cenju-3%. An
application written with the Java programming lan-
guage has two different ways to introduce concurrency:
threads and processes®. While it is possible to introduce
parallelism by using processes, the granularity is likely
to be coarse and applications will have to be written
specially for parallel machines* or else lack flexibility,
scalability and have a very low degree of parallelism.
On the other hand, while most Java applications are
already highly multi-threaded, the problem of locality
of objects shared between threads makes it difficult to
take advantage of the availability of many processors.
In this paper, we address this problem by describing
the implementation of a parallel Java virtual machine
on Cenju-3, illustrating the use of low-level commu-
nications and remote DMA accesses in implementing
release consistency( R C) for distributed shared objects.

2 Cenju-3 communication

Cenju-3 provides a high-speed, low-latency communi-
cation interface called NIF which we used for building
our shared objects system. These primitives include
fast, short messages and DMA transfers that can be
both either one-to-one or one-to-many. A hardware
multicast whose cost is about equivalent to the peer-
to-peer communication is very interesting for building
an efficient shared memory system as shown in [5].
But, two simultaneous multicasts whose destination
sets overlap each other can result in a network dead-
lock, so its use is better restricted to one. processor in
order to be used safely. This implies using a sequencer
on a PE for processing multicasts which has the very
nice side-effect of making them atomic. Another re-
striction of communications concerns the short mes-
sages which shouldn’t be longer than about 400 bytes
in order not to require any additional processing at the
receiver. DMA transfers are limited to 256kB over a

1Java is a trademark of Sun Microsystems, Inc., and refer to
Sun's Java programming language technology. This research is
neither sponsored by nor affiliated with Sun Microsystems, Inc.

2Cenju-3 is a MIPS R4000 symmetric distributed memory
parallel machine. )

3This includes programs communicating together and
applets.

4Such a program can make use of systems such as HORB{2].

dedicated address space of 2MB. We used DMA trans-
fers for sending data and short messages for control.
These communication primitives are used by accessing
hardware registers, so we decided to build a lightweight
communication library providing flow control in order
to increase flexibility and portability.

3 Distributed Shared Objects

It is not the purpose of this article to describe the dif-
ferent consistency protocols used for implementing a
distributed shared memory and ample information can
be found in [1, 3, 4]. It is enough to say that our im-
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Figure 1: Architecture of the overall system.

plementation relies on a release-consistent object-based
distributed shared memory system. As shown in fig-
ure 1, one PE is dedicated to act as a sequencer; also
a part of the address space on each PE is reserved for
the shared memory and the relationship between each
PE’s image is release consistent. The figure also illus-
trates how threads, and local or shared passive objects
can interact.

3.1 Locks

The synchronization scheme for threads in the Java
language is based on monitors and can be expressed
in terms of acquire and release on a lock, enclosing
reads and writes. Furthermore, the guarantees made
on shared variables by the language make release con-
sistency also valid in the general case.

synchronize (a) {  acquire(lock)
read(a, b, c) read(a, b, c)
write(a, b, ) write(a, b, ¢)
release(lock)

Many distributed locking algorithms exit, the simplest
solution being to use a sequencer and implement a
token-based algorithm. As we have to use a sequencer
for broadcasts anyway, there is no point in trying to
implement a more complex algorithm that would also
have implicitly a sequencer as bottleneck for processing
multicasts.
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3.2 Distributed locks

The sequencer propagates the updates of objects and
manages shared locks by arbitrating their use amongst
PEs. As shown on figure 2, when a PE needs a lodk, it
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Figure 2: Global locks granting mecanism.

sends an AcqQ message to the sequencer and waits until
an OK is returned. At this point, the PE can go on
and modify objects. These “dirty” objects are tracked
by being put into a list. At the end of the critical sec-
tion, the PE does a release which implies transfering by
DMA the “dirty” objects to the sequencer then sending
a REL message which contains the identifier of the lock
as well as the coordinates of the objects updated. At
this point, the PE can continue its execution while the
sequencer must multicast the updated objects before it
can grant a right on that lock to the next requesting
PE.

3.3 Locks and threads

Some additional management was needed in order to
allow many threads to run on each PE. Three threads
running on the same PE and competing for the same
lock are represented in figure 3. Thread a asks first for
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Figure 3: Local management of shared locks.

the lock and an AcqQ message is sent to the sequencer.
Meanwhile, b also asks for the lock and its request is
registered locally to be processed after a’s. After a
while, the lock is granted to the PE, which can give it
to ¢ then 5. On the other hand, ¢ asked for the lock
after the PE received it and had to issue a new request
to the sequencer in order to prevent startvation of other
PEs. It is granted the lock only during the next cycle.

4 Shared objects in Java
The virtual machine makes use of our system to share

objects between PEs. When starting, the main thread
starts on one PE and generates other threads that can

be started on other PEs. When an new object is cre-
ated, it is local by default and can become a shared
object when needed. Objects need to be shared by
reachability which means that, whenever a shared ob-
ject points to another object, this new object becomes
shared as well and is moved into the shared object
space.

5 A note on performance

We measured cycles of acquire, update and release on
our system, having only one thread asking for the lock.
Our system could perform 4760 cycles a second as an
average. Equivalent systems running on a network
of workstations usually run at an order of magnitude
slower. It should also be noted that there is no addi-
tional cost on reading an object and, as [5] points out,
the ratio of writes to reads in most applications can be
around 10% writes and even 1% is not uncommon.

6 Conclusion

In this paper we described how to make threads
location-independant in a distributed memory machine
in order to build a Java virtual machine which would
make use of threads to generate actual parallelism. As
most Java applications will be developed without tar-
geting parallel machines, the ability of MPP to run un-
modified Java applications is likely to be determinant
for their acceptance as servers in the near future.
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