HHRAHEFLE2E (P8 Fuil) £2EAS

4 —287

Pipeline Stage Based Dynamic Load Balancing for

3Q—-4

Stephen Davis

Right-Deep Multi-Joins

Masaru Kitsuregawa

University of Tokyo, Institute of Industrial Science

1 Introduction

With ever increasing database sizes, parallel process-
ing has become an important technology for improving
over all query response time. However, this reduction
in response time comes at the expense of the increased
complexity required for distributing the work to be
done in a query evenly amongst the processors.

This paper presents our dynamic load balancing al-
gorithm for right-deep hash multi-joins executing on
a shared nothing architecture, which makes use of a
centralized processor to handle all load balancing deci-
sions. The overall goal is to assure that each processor
generates nearly the same number of multi-join result
tuples, and this is achieved through the dynamic mi-
gration of build relation tuples between processors.

2 Right-Deep Hash Multi-Join

A multi-join is a relational join operation where more
than two relations are being joined together. The
right-deep hash multi-join is a multi-join making use
of a right-deep query execution plan for determining
the order in which the pair-wise hash joins are per-
formed. This execution plan allows multiple pair-wise
joins to be executing simultaneously through the use
of pipelining. Each stage of the pipeline performs a
pair-wise hash join, with the join result tuples gener-
ated at a stage being used to probe the next stage.
In a hash join, the tuples of one relation, the build
relation, are used to build an in memory hash table,
and the tuples of the other, the probe relation, probe
against the hash table for matches on the join criteria.
In the right-deep hash join, the build relations are all
base relations, the first stage of the pipeline’s probe
tuples are read from disk, and the final stage’s result
tuples are written to disk.

When the right-deep hash join is processed on a
shared nothing architecture, each processor works on
each pipeline stage, with each relation partitioned
amongst the processors. Ideally, the relation parti-
tioning is performed so that all processors finish join
computation at approximately the same time, how-
ever determining such a partitioning can be too com-
putationally expensive. As a result, repartitioning is
done through heuristics making use of approximations
about the relations, hence there are generally varia-
tions in the amount of work done by each processor.
Also the time required to determine the best repar-
titioning is overhead since no join processing is being
done. Thus, a dynamic load balancing mechanism can
be used to reduce variations in the execution times of

the processors, while also allowing for reductions in
the time required for relation repartition scheduling.

3 Dynamic Load Balancing

The load balancing algorithm works to dynamically
redistribute the number of tuples remaining to be pro-
duced as a result of the multi-join evenly amongst the
processors. It is a centralized load balancing algorithm
which makes use of a processor, called the foreman, de-
voted solely to making load balancing decisions. The
foreman receives statistics about the multi-join from
each of the join processors (JPs), and based on these
statistics it determines how tuples stored in the JPs’
in memory hash tables should be migrated in order to
equalize the number of tuples remaining to be gener-
ated by all processors. Since the estimate of future
work is based on statistics obtained during join pro-
cessing, a basic assumption is that the attribute dis-
tributions seen so far reflects the distributions of the
remaining tuples to be probed.

The initial statistics gathering begins when the first
join processor has finished processing a fixed percent-
age of its probe tuples from disk. The processor which
first reaches this threshold sends a message to the
foreman, and the foreman then informs all of the JPs
that statistics gathering is required. The JPs send the
statistics, and continue with join processing. Based on
these statistics, the foreman determines whether load
balancing is required and if so, how the base relation
tuples should be migrated. Once the foreman has gen-
erated the load migration plan, it sends an enter load
balancing message to all join processors. The join pro-
cessors respond by sending an acknowledgement to the
foreman and stop performing join processing at this
time. Once the acknowledgements are received, the
foreman sends the load migration plan to each of the
JPs. At this point, the JPs perform the necessary
migrations and inform the foreman upon completion.
After all completion messages are received, the fore-
man sends an end of load balancing message to the
JPs which causes them to resume join processing. If
load balancing is performed more than once, then sub-
sequent balancings begin after a fixed interval of time
has passed, instead of being triggered by probe tuple
consumption.

When making the data migration decisions, the
foreman examines each stage to estimate the num-
ber of join result tuples remaining to be produced by
the stage. Based on this estimate, the foreman deter-
mines how the stage’s build tuples should be migrated

4 —288

between the processors in order to balance the remain-
ing number of result tuples to be generated. The unit
of migration is a hash line which consists of all the
tuples of the stage’s build relation that map to the
same hash entry in a particular processor’s hash ta-
ble. Hash lines are migrated from highly loaded stage
fragments to lightly loaded ones, where a stage frag-
ment is the portion of the stage being processed on a
particular processor. A highly loaded stage fragment
is one generating more result tuples than the stage av-
erage, similarly a lightly loaded one is generating less
than the average. A sufficient number of hash lines
are migrated to equalize the expected number of re-
sult tuples generated by each processor. The tuple
migration decisions are made independently for each
stage, and since each stage is balanced amongst the
processors, each of the processors will be balanced.

4 Estimation of Tuples Re-

maining to be Generated

In order to estimate the number of result tuples, ERT,
remaining to be generated, each processor maintains
statistics about the number of tuples probed, TP, and
the number of tuples generated, TG, for each of the
stage fragments. Assuming that the attribute distri-
bution of the probe tuples probed so far is similar to
that of the remaining probe tuples, ERT for a stage
fragment is just TG/T P times the estimated number
of tuples remaining to be probed at that fragment.

The estimated number of tuples remaining to be
probed is determined using statistics about how the
probe tuples are being redistributed amongst the pro-
cessors for joining. For the first stage, a stage frag-
ment’s expected input is the total number of base
probe tuples remaining times the percentage of the
tuples probed so far which were probed at that stage
fragment. Similarly for subsequent stages, the stage
fragment input is estimated as the expected number
of tuples remaining to be generated at the previous
stage times the percentage of the already generated
output it has consumed so far.

5 Hash line selection

Hash lines are selected for migration so that after mi-
gration each stage fragment of a stage will produce
roughly the same number of result tuples. Since the
unit of load is the number of tuples remaining to be
generated, a hash line is selected based on the esti-
mated number of tuples remaining to be generated by
that hash line. This estimate is formed by multiplying
the expected number of tuples remaining to be gener-
ated by the stage fragment by the fraction of the stage
fragment’s result tuples generated by the hash line so
far. In order to determine this percentage, each hash
line maintains a count of the total number of result
tuples generated by it.

During selection, the foreman determines the ex-
pected load of each hash line for each highly loaded

stage fragment, sorts them by decreasing load, and as-
signs hash lines to lightly loaded stage fragments in a
first fit decreasing manner. Selection starts by sending
hash lines from the highest loaded stage fragments to
the lowest loaded ones.

6 Experiments

The experiments were performed through simulation
with the actual joins being performed. The relations
were artificially generated so that the number of tuples
generated by each stage fragment could be varied. The
simulator measures the time required to complete the
multi-join. Disk and network buffers are 8 kilobytes,
a read or write from disk takes a minimum of 1024
time units (TUs), probing against a single build tu-
ple takes three TUs, creating a result tuple takes 256
TUs, and transfers over the network take at least 1280
TUs. Each base relation has 240,000 tuples and the
tuples are uniformly partitioned amongst the proces-
sors. The initial probe relation is stored to disk, and is
repartitioned before join processing begins. The simu-
lation measures only the time required to perform the
join and does not include the time for building the
hash tables, or partitioning the base relations. The
first load balancing begins after a join processor pro-
cesses 45% of its disk tuples. The second balancing
occurs at the same time interval as the first.

The graph below shows the number of tuples gener-
ated at each processor for no load balancing, a single
load balance, and balancing twice. The table shows
the time required, the portion of that time caused by
load balancing overhead, and the maximum number
of tuples generated by a single processor.

8 Processors 3 Stages (40%)
180000 - v

160000
140000
120000
100000

Unbalanced ——
Balance once —-— 1
Balance twice =

Tuples

80000 |
60000 b

2 3 4 5 6 7 8
Processor number

Time | LB Overhead | Max tuple
No balancing | 114,729,197 0 175,55
Balance once 92,325,881 8,481,548 121,23
Balance twice | 97,725,838 12,181,298 116,70

7 Conclusion

As can be seen, load balancing evens out the number
of tuples generated by each processor, thus reducing
execution time.

References

[1] D. Schneider and D.J. DeWitt. “Tradeoffs in Process-
ing Complex Join Queries via Hashing in Multipro-
cessor Database Machines.” Proceedings of the 16th

International Conference on Very Large Data Bases,
August 1990.

