Vol. 39 No. 10

Transactions of Information Processing Society of Japan

Regular Paper

An Empirical Study of Information Needs
in Collaborative Software Design

JAMES D. HERBSLEB' and E1J1 KUWANAt#*

The increasing scale of software structures together with current social and technical factors
all point to a new software development style featuring collaboration. The difficulty of software
development is greatly increased by the social and organizational context in which it takes
place. One type of solution often suggested to help alleviate these difficulties is providing tools,
methods, or techniques which give developers access to more information about the project
in the form of design rationale, knowledge about the problem domain, user scenarios, or the
software design. In order to try to determine the kinds of information software developers
in a team actually need, we examined questions experienced developers asked each other in
actual development meetings during the upstream activities in several projects. We found that
developers most often ask about what the requirements are, how users will interact with the
system, what the functional definitions and interfaces of the software modules are, and how
the functionality of these modules will be realized. In addition, the mix of questions changed
substantially as the projects moved from early requirements definition to preliminary design.
Based on these results, we propose a set of empirically-based suggestions for the kinds of

Oct. 1998

assistance design teams need in getting the information they require.

1. Introduction

To begin by stating the obvious, group soft-
ware design is a hard problem. Not only is it in-
tellectually challenging®:19:1%) but the social,
organizational, cultural, and business contexts
in which the work inevitably takes place add
enormously to the complexity of the task?»").
In particular, communication and coordination,
adapting to changing requirements, and dissem-
inating sufficient knowledge of the application
domain are pervasive sources of difficulty in real
world collaborative software design.

It is often suggested that tools which facil-
itate recording, searching, and retrieving im-
portant information would provide valuable as-
sistance in overcoming these context-generated
problems. But there exists a wide variety of
opinions on precisely what sort of information
would be most useful. The most frequently
discussed possibilities seem to be design ratio-
nale, knowledge of the application domain, user
scenarios, and knowledge gemerated by design
methods.

1.1 Rationale for Design Decisions

In Computer Supported Collaborative Work
(CSCW), Software Engineering, and HCI (Hu-
man Computer Interaction) areas, much atten-

1 Lucent Technologies, Bell Laboratories
t1 NTT Software Laboratories
* Presently with NT'T Multimedia Service Promotion
Headquarters

2888

tion is currently focused on methods, notations,
and tools for recording rationales for design de-
cisions. What is represented in this approach is
not primarily the application domain or the sys-
tem design itself, but rather the space or history
of arguments surrounding the actual decisions
made as development progresses (see Ref. 22)).
A prototypical sort of question that such rep-
resentations are designed to answer is a why
question about a design alternative and the ba-
sis for choosing or rejecting it. The actual eval-
uations of the alternatives, the criteria for eval-
uating them, and their organization into design
issues are additional layers of structure that
may also be explicitly represented'®.

The most commonly advocated framework
for selecting and organizing this kind of data
is argument structure (e.g., gIBIS®), SIBYL'®),
and QOC20>). It typically includes nodes such
as issue, alternative, argument, criterion, goal,
and claim. Figure 1 shows QOC20 vocabu-
lary. Questions are key issues which shape the
argument spaces, Options are alternative solu-
tions and Criteria are for comparing and eval-
uating Options. These are also linked up into
structures by relations. For instance gIBIS®
has links such as achieves, supports, denies, pre-
supposes, subgoal-of, and subdecision-of. So far,
some tools such as gIBIS and rIBIS, which pro-
vide a functionality of argument structure, have
been provided and evaluated. The most ex-
pressive language to date is Decision Rationale



Vol. 39 No. 10 An Empirical Study of Information Needs in Collaborative Software Design 2889

LArgument |___| Argument —l

Criterion

[ Question

Consequent question <

Supports

Positive t
"""""""""""""""""""""""""" Negative assessment

Fig. 1 Argument structure example:
QOC?29 vocabulary.

Language (DRL)'®), which includes all of these
and more. What is represented is the “rhetor-
ical” space around decisions, and structure is
created by links which have strictly rhetori-
cal significance. If this sort of information is
found to be sufficiently useful, it could be main-
tained in parallel with some more traditional
representation, or information about the ratio-
nale could be integrated with a design notation
(such as data-flow diagrams) by adding appro-
priate links and nodes (e.g., Ref. 28)).

1.2 Knowledge of Application Domain

In a major study of collaborative software de-
velopment projects, Curtis, et al.”) found that
one of the problems that was most salient and
consistently troublesome was “the thin spread
of application domain knowledge.” Particularly
rare and important was command of the larger
view, i.e., the integration of all the various and
diverse pieces of domain knowledge. This was
essential for creating a good computational ar-
chitecture, and for forging, communicating, and
sharing a common understanding of the system
under development.

Recently, there has been increased attention
to analysis of problem domains and represent-
ing domain knowledge (see, e.g., Ref. 8)). Typ-
ical methods support the representation of the
problem domain in terms of nodes like enti-
ties, objects, processes, or data, and links such
as data flow, control flow, relations, inherits,
subclass-of, and so on. The basic idea is to
represent the domain and the system, gener-
ally in terms which domain experts would un-
derstand. A prototypical sort of question an
analysis model is designed to answer would be
what the system is actually supposed to do.

1.3 Scenarios of Use

Closely related to application domain knowl-

edge are scenarios of use. In contrast to general
domain knowledge, scenarios of use concern the
ways in which the system will need to fit into
the dynamic flow of activities in its environ-
ment. As noted by Guindon!!), scenarios of use
are one of the major kinds of knowledge devel-
opers bring to bear in designing software. These
scenarios are very important for understanding
and sharing the requirements between design-
ers and end users, and appear to play a role in
the sudden unplanned discovery of partial solu-
tions. In a similar vein, Curtis, et al.”) also con-
cluded from extensive interviews with software
developers that scenarios of use were very im-
portant for understanding and sharing the be-
havior of the application and its relation to its
environment. Yet they observed that while it is
common for customers to generate scenarios as
they are determining their requirements, they
very seldom pass them on to the developers.
In other words, scenarios of use are very useful
methods as a supporting cross cultural commu-
nication between designers and end users. As
a consequence, the developers had to generate
their own scenarios, and could only predict the
obvious ones and not ones which created un-
usual conditions. There is also anecdotal evi-
dence that scenarios of use are very helpful in
the user interface design process'”. A proto-
typical sort of question for a representation of
a user scenario would be how a user would ac-
tually perform some task, given a system with
some specified functionality.

1.4 Knowledge Generated by Design

Methods

Finally, there are many software design meth-
ods, with associated notations, rules-of-thumb,
principles, and development philosophies. They
fall within several broad categories, includ-
ing structured design (e.g., Ref.21)) , entity-
relation modeling (e.g., Ref.4)), and object-
oriented design (e.g., Refs. 1), 30), 31)). There
are many claims by advocates of these tech-
niques, and also some empirical evidence, e.g.,
from research on software errors??, that design
methods can have a significant positive impact
on the development process. It is unclear how
much of this effect is attributable to an im-
provement in the ongoing design process and
in the quality of the design decisions made, and
how much is attributable to capturing knowl-
edge in the system’s notation so that it can be
used at later stages. But it seems very plausi-
ble that capturing this sort of knowledge could



2890 Transactions of Information Processing Society of Japan

significantly impact the later stages of develop-
ment. The basic units of design notations vary
considerably, and so the kinds of questions they
could answer vary accordingly. But in general,
prototypical questions concern what the various
software components are and what they do, as
well as how they generate this external behav-
ior.

1.5 What Is Really Needed?

Unfortunately, despite a proliferation of tool-
building in labs around the world, there are cur-
rently very few data about the kinds of infor-
mation software engineers need as they design
software. So, in effect, each tool-building effort
embodies a set of largely untested assumptions
and predictions about what will prove helpful.
Testing these assumptions should be given top
priority, since they determine the potential of
various classes of tools to assist in the design
process.

It is very difficult, however, to test these as-
sumptions directly with studies in the field.
The expense, risk, and the difficulty of inter-
preting the results of complex processes in the
real world make this option untenable. Tools
can fail to be helpful or fail to be used at all for
many reasons which have nothing to do with the
value of their basic functionality. Laboratory
studies, on the other hand, are generally unin-
formative since the problems that these tools
are designed to address are the result of scale.
Getting the information one needs is a major
problem only in projects which involve a signif-
icant number of people working together for a
substantial period of time on a problem of real-
istic complexity. Laboratory studies involving
one or a very few people for an hour or two on a
relatively simple task with no history or context
cannot generally produce comparable needs for
information.

This research attempts to inform this issue
by using an indirect measurement of the kinds
of information that groups of software develop-
ers need. We examine the questions that arise
in actual requirements specification and design
meetings among software engineers. The cen-
tral assumption is simply that the questions
asked in these meetings by experienced, profes-
sional software designers are a reasonably good
indicator of the kinds of knowledge that should
be made available during these collaborative de-
velopment stages. Asking a question generally
indicates that the questioner believes the an-
swer contains knowledge important in the im-

Oct. 1998

mediate context, and that the questioner does
not currently possess this knowledge.

The research we present in this paper is an
empirical study of questions in group software
design. We have data from software develop-
ment meetings in two countries. We examined
all of the questions in our sample, and devel-
oped a classification scheme for them. From our
results, we have attempted to determine what
kinds of information the questions asked for,
and we offer empirically-based suggestions for
the kinds of assistance group software develop-
ers need.

2. Method

2.1 Data Profile

We use two basic kinds of data in this study.
The first is a set of minutes from 38 design
meetings held at the Nippon Telegraph and
Telephone Corporation (NTT) Software Labo-
ratories that took place over an eight month pe-
riod. The minutes track meetings of one group
of .developers in a single project, the task of
which was to specify requirements and design
for a new version of an existing software devel-
opment environment. The meetings from which
our data are drawn spanned the requirements
definition and preliminary design phases of de-
velopment (see Refs. 12), 13)). Individual mem-
bers of the team wrote the minutes, generally a
day or two after the meeting, using their notes
and documents from the meeting. The chore of
taking minutes rotated among the development
team.

This body of data covers a single team over a
substantial continuous period of time on a ma-
jor re-design project. One potential weakness of
this data stems from the fact that it is filtered
through and reconstructed by each minute tak-
ing individual. Presumably, this will not cause
too much distortion, since minutes customar-
ily capture the most important points, and the
minute-takers were experts in the software de-
sign domain. However the second data source
was included in part to compensate for these
possibilities.

The second type of data we used is videotape
protocol data gathered in the United States
from three software requirements and prelim-
inary design meetings. Each meeting had soft-
ware requirements and/or preliminary design
as its primary activity, and had either four or
five participants, and lasted from slightly un-
der one hour to slightly over two hours. (See



Vol. 39 No. 10 An Empirical Study of Information Needs in Collaborative Software Design 2891

Refs. 26), 27) for a detailed description and
analysis of these data.) Two of the meetings
were teams at Andersen Consulting. One was
concerned with specifying a client-server archi-
tecture to be used by Andersen to build sys-
tems for a variety of customers. The other, in-
volving a different team, was concerned with
requirements of “reverse engineering” software
which would heuristically identify and describe
structure in large, old, unstructured, assembly-
language programs. In the third meeting, a
team at Microelectronics and Computer Corpo-
ration (MCC) was discussing a knowledge-base
editor, trying to determine its basic functional-
ity. Like the NTT data, these projects involved
both the requirements specification and design
phases. These three particular meetings were
chosen from a larger body in an attempt to find
meetings as diverse as possible, in terms of per-
sonnel and organization, and to span the early
software development stages.

As one would expect, the three organizations
from which the data are taken differ with re-
spect to development methods. NTT’s devel-
opment process was governed by internal NTT
guidelines similar to those published by IEEE
(e.g., Refs. 12}, 13)) and ISO 9001. The devel-
opment style was based on Composite Design
Methods and SA/SD. The Andersen Consult-
ing projects made use of Method/1, a propri-
etary method with very detailed specification
of required documents and deliverables. The
style tended to be process-oriented (rather than
data-structure oriented. Development on the
MCC project was in the context of a research-
oriented artificial intelligence project, and ap-
peared to be much less structured than in the
other two settings.

These two data sets complement each other.
The videotape data are unfiltered and unrecon-
structed, so do not suffer from those potential
sources of distortion. The chief disadvantages
of the videotapes are first, that we have no real
way of knowing which of the questions we iden-
tify would be considered important by the soft-
ware engineers themselves; and second, these
are only three brief snapshots of three different
projects, a sample with many potential biases.
The NTT minute data compensates for these
weaknesses, since it is a continuous eight month
sample of questions deemed important enough
to record.

2.2 Data Analysis

As we mentioned above, our basic assumption

is that the questions software engineers ask in a
meeting provide a good heuristic for identifying
knowledge that should be made available to col-
laborative software developers. We extracted
from our data not only explicit questions, but
also implicit requests for information, includ-
ing statements of ignorance that were inter-
preted as questions. We excluded such things
as rhetorical questions, questions intended as
jokes, questions that were embedded in digres-
sions and clearly bore no relationship to the
task, requests for action that were worded as
questions, and questions that asked for a re-
statement of something that was badly worded
or just not heard clearly. In general, these dis-
tinctions were quite easy to make.

Once we had identified the questions, we cate-
gorized them according to the following scheme.
First, we identified one or more targets for
each question. A target is simply the thing,
happening, or task that the questioner was ask-
ing about. Many questions had more than one
target, in which case each target was included
in the data.

Second, we categorized each target according
to the attribute which the question referred
to. We adopted a simple classification of tar-
get attributes into who, what, when, why,
and how. This turned out to be a simple, yet
meaningful and comprehensive set of categories.
We used the following criteria to determine the
attribute: Questions about who built an ob-
ject or performed a task, or about skills needed,
were categorized as who. What questions con-
cerned the external behavior or function of a
target, i.e., what it was or what it did, without
regard to how that function was actually car-
ried out. How questions focused on the partic-
ular way that a target carried out its function
or the way a task was performed. For example,
a question about the way a user would accom-
plish a task by interacting with the software,
would be coded how. Questions about dead-
lines and scheduling were categorized as when.
Finally, questions asking why some decision was
made, or about an evaluation that was assigned
or might be assigned to some alternative, or
soliciting a comparison of alternatives, or ar-
guments about alternatives were categorized as
why. If a question referred to two or more at-
tributes of a single target, each was categorized
separately and is reflected in our results.

Next, we categorized the target according to
the stage in the traditional software life cycle in



2892 Transactions of Information Processing Society of Japan Oct. 1998

Table 1 Examples of (paraphrased) questions and how the targets of each
question were categorized according to attributes and stages.

Question Attribute | Stage

What kinds of user interfaces will we support? What Requirements
How will the user specify a range? How Requirements
What is the correct behavior for this module? What Design

Does context management access this data structure? | How Design

Why should I have two tasks running at once? Why Design

Table 2 Examples of (paraphrased) two-questions and how each relation

was categorized.

Question Relation
Will the application have a single I/0 layer? Realize
To remove things from the agenda, must the user take them off? | Realize
Does I/0 always go through the message manager? Interface
Is the hint window the same as the message area? Same

which the target was (or would be) created. We
used a simple scheme which included require-
ments specification, design, implementa-
tion, testing and maintenance. We used the
IEEE standards for software requirements and
design descriptions'?)13) and software engineer-
ing text books (e.g., Refs.8), 9)) to develop
our criteria for these stages. The thrust of this
classification, of course, is that descriptions of
what the software system, as a whole, is sup-
posed to do are requirements. Design, on the
other hand, concerns determining the modules
into which the system will be decomposed and
the interfaces of these modules (preliminary de-
sign), and the ways in which their functionality
is to be realized (detailed design). Implemen-
tation was defined just as writing and com-
piling statements in a programming language,
and was relatively easy to identify. Testing was
also straightforward. The date the software was
released marked the beginning of the mainte-
nance phase. Table 1 shows some example
questions and how we categorized the targets
of the questions.

As mentioned earlier, many questions had
more than one target. In these questions, the
relation between the targets was central to what
the question was asking about. In order to in-
vestigate these relations, we categorized them
as follows: Realize is a relation between a
function and the means of carrying it out. For
example, the functionality might be “editing a
document,” and the means for carrying it out
might be things like cutting, pasting, and so
on. Same concerns whether targets are iden-
tical in some way. Interface is a relation be-
tween targets communicating with each other.
Evolve is the relation between an earlier and

Table 3 Correlations between the basic frequencies
for the two data sets.

Target Creation Stage Frequencies | 0.98
Target Attribute Frequencies 0.97
Relation Frequencies 0.92

later version of a target. Finally, task assign-
ment is a relation between persons and tasks
they are performing. Table 2 has examples
of some multiple-target questions and how we
categorized the relations in them.

Finally, we wanted to see how the knowl-
edge needs of a software design team changed
over the early software development activities.
As mentioned above, the videotapes were se-
lected in order to have an example of a meet-
ing in early requirements specification, late re-
quirements specification, and preliminary de-
sign. The minutes were taken from 38 meet-
ings which spanned these same stages. In order
to divide the questions from the minutes (to
a rough approximation) into these same three
stages, we simply put the questions in tempo-
ral order and divided them into thirds. In this
way, we were able to look at how distributions
of targets and relations changed over these early
project stages.

3. Results

3.1 Results and Findings

One of the most interesting and surprising
findings is the extraordinary degree of sim-
ilarity in our results between the two data
sets. Table 3 gives the correlations between
the videotape and minute data for the basic
frequencies we report. This degree of similarity
was quite unexpected, given the enormous dif-
ferences between the two data sets. Recall that



Vol. 39 No. 10 An Empirical Study of Information Needs in Collaborative Software Design 2893

Percentage of Targets
0% T

61%

60% T

50% A

40%

30% ¢

20% A

10% 1

0% A
what why how when who
Target Attribute

Fig. 2 Percentages of attributes. The difference be-
tween the two data sets, though small, is sta-
tistically reliable (X2 = 27.10, p < 0.001).

the minutes were filtered and reconstructed,
while the videotapes were not; the minutes were
from a re-design project while the videotapes
were all from original design projects; and the
data sets are from different countries and cul-
tures. Yet all the correlations are 0.92 or higher.
This degree of similarity is really quite aston-
ishing.

Figure 2 shows that the what attribute was
asked about much more often than any other,
with how also at a relatively high frequency. So
the engineers asked approximately twice as of-
ten about the basic functionality or external be-
havior of a target as they did about the details
of how it would be realized. This clearly sup-
ports the widely-held belief that understand-
ing what the software is supposed to do is the
biggest problem in upstream software develop-
ment.

One of the biggest surprises here is the rel-
atively low frequency of why targets. This is
the sort of knowledge that design rationale no-
tations are designed to capture, and given the
very high level of interest and expected bene-
fits from such systems, we anticipated that we
might see a great many why targets. But in
fact they are only about 6% of targets in both
data sets.

In both data sets, as one would expect, tar-
gets created in the requirements stage were
by far the most frequently asked about, and
design was a distant second (see Fig. 3). The
percentage of targets created in other stages is
vanishingly small by comparison. It is a little
surprising that targets which would be created
during the later stages, such as potential fu-

Percentage of Targets
0% 7
63%
60% +
50% +
M videotape
40%
0% T O minutes
30%
30% +
20% T
10% +
2% 4%
o (IR 0% 1% 0%
+ t + i
Requirement  Design Implement Testing Maintain
Target Creation Stage

Fig. 3 Percentages of targets created in the software
development stages. The small differences
across the two data sets are statistically reli-
able (X2 = 40.35, p < 0.001).

Table 4 Cross-tabulation of two most frequent tar-
get creation stages and three most fre-
quent target attributes.

Requirements Design

Frequency | % all | Frequency | % all
what 404 43% 153 16%
why 33 1% 20 2%
how 118 13% 156 17%
total 555 60% 329 35%

ture modifications, test suites and testing pro-
cedures, implementation issues, and so on, were
almost never asked about.

Table 4 shows a cross-tabulation of the three
most frequent attributes and the two most
frequent creation stages. By far the most
frequent sort of target, accounting for nearly
half of all targets, was requirements-what.
This sort of question asks such things as what
is this requirement, what does it mean, what
is the software actually supposed to do. Three
other types of targets were also relatively high
in frequency. Requirements-how targets are
basically asking about user scenarios, or the
particular way in which the user (or other ex-
ternal system) will interact with the software.
Design-what targets generally concern what
software modules are supposed to do, how their
functions and interfaces are defined. Finally,
design-how targets concern the particular way
in which functions will be carried out in the
software, often asking about things such as al-
gorithms and data structures. There is also a
sprinkling of why targets from both require-
ments and design. The six categories defined



2894 Transactions of Information Processing Society of Japan Oct. 1998

Percentage of Multi-Target Questions

80% T
6 2%
0% T 8%
60% +
| videotape
50% 1 0 minutes
40% T
30% +
4 18%
20% 14%
10% + 5%
2% 0% 2%
0% +

Task

same realize interface evolve

assignment
Relation Between Targets

Fig. 4 Distribution of relations in multiple-target
questions. The small difference between the
data sets is marginally significant (X2 = 9.21,
p < 0.06)

by this cross-tabulation account for about 95%
of all targets in our sample.

About half (48%) of the questions in our sam-
ple had multiple targets. Nearly all of these
(97%) had two targets, a few had three, and
one had four. By far the most frequent rela-
tion among targets, as shown in Fig. 4, was
realize, with a significant portion of interface
and same, but very few task assignment and
evolve relations.

As mentioned earlier, we have data from each
of three early stages of software development:
early requirements definition, late requirements
definition, and preliminary design. Figure 5
shows the changes, over these early develop-
ment stages, in the six most frequent kinds of
targets. Two kinds of targets are consistently
highly frequent throughout. The single most
frequent kind of target at each stage concerns
what the requirements are. So the develop-
ers seem primarily concerned with understand-
ing what the software is supposed to do, well
into the design phase. The other consistently
frequent type of target is design-how, asking
about the particular way in which the function-
ality will be realized. The relatively high fre-
quency of these targets during the very early
stages is somewhat surprising. After all, these
targets occur in relatively detailed questions
about the design, concerning things such as al-
gorithms, data structures, and the like. Pre-
sumably the fact that they are very frequent
even in early requirements definition indicates
a concern with assessing the feasibility or diffi-
culty of various requirements.

100%
90%
80%
70%
60%
50%
40%
30%

Requirements-
20% fwhat|

10%

Percentage of Targets at Each Project Stage

0%

Early Late
Requirements
Definition

Preliminary
Requirements Design
Definition

Stage at Which Question Was Asked

Fig. 5 Changes in the most frequent types of targets
over time. The horizontal axis represents the
stage at which the question was asked, while
the areas represent the six most frequent types
of targets. The differences across stages are
statistically reliable (X2 = 127.4, p < 0.0001).

In contrast with these targets which are con-
sistently frequent, there are two types which
change dramatically in frequency over time.
One is requirements-how, or, roughly, user
scenarios. These are very frequent during early
requirements definition, but taper off substan-
tially by early design. So it appears that user
scenarios provide information which is very im-
portant during requirements definition, but less
useful in design. The second type of target
which changes in frequency over time is design-
what, which typically occur in questions about
such things as functional definitions of mod-
ules and interfaces between modules. These
targets are rare in requirements definition, but
quite frequent by the time preliminary design
is reached.

Finally, why targets remain consistently
infrequent. As the project progresses, require-
ments-why targets are traded off, as one
would expect, for design-why targets. But at
each stage, the total of why targets is a consis-
tent 5-6%.

The relations between targets remain fairly
consistent over time. The realize relation is at
every point the most frequent by a very large
margin.

3.2 Summary of Results

¢ Questions taken from very different sources

of data (minutes versus videotapes, design
versus re-design, different countries and
cultures) showed an astonishing degree of



Vol. 39 No. 10 An Empirical Study of Information Needs in Collaborative Software Design 2895

similarity in the frequency with which dif-
ferent types of questions were asked.

e Several kinds of questions were consistently
frequent throughout the upstream develop-
ment activities we observed:

— Questions aimed at understanding
what the software is supposed to do.

— Questions aimed at understanding the
detailed design.

— Questions aimed at understanding the
particular way some functionality will
be realized, or carried out.

e Two kinds of questions changed radically
in frequency over time:

— Questions asking about user scenarios
decreased from early requirements to
preliminary design.

— Questions about modules and inter-
faces increased from early requirements
to preliminary design.

e Questions about rationales, issues, argu-
ments, evaluations, and criteria were con-
sistently infrequent.

4. Conclusions: What Is Needed?

We began this paper by asking what kinds
of information collaborative software design-
ers need in order to do their jobs in a team.
Empirically-based suggestions about the kinds
of assistance that would prove most beneficial
follow rather directly from our results. The
fact that the two very different sources of data
produced such extraordinarily similar results
greatly strengthens these conclusions. Any sin-
gle data set is subject to many biases, and may
be atypical with regard to software design in
general. But similar results with widely dif-
ferent kinds of data suggest that the findings
have considerable generality, at least within the
bounds we discuss below.

Insofar as we can judge from these data,
group software developers primarily need assis-
tance with the following:

(1) Understanding the problem domain

We are not the first, of course, to observe that
developers generally do not know enough about
the problem domain in which they are working
(e.g., Ref. 7)), and what the software is actually
supposed to do in that domain. This difficulty
could be addressed in a number of different way,
including such things as domain analysis and
modeling (e.g., Refs. 25), 29)), employing tech-
niques for including users in the development
process (e.g., Ref.23)), or perhaps just read-

ing about, taking classes in, or observing peo-
ple working in the domain (as suggested, e.g.,
by Ref. 5)).

Our data lead us to two further observations
about this problem. First, the need for knowl-
edge about the domain apparently does not in-
clude a need for information about reasons, ra-
tionale, issues, alternatives, evaluations, crite-
ria, and so on which are supported in design
rationale tools. At least, we see no indication
of this in our data. Second, whatever form the
assistance takes, it will very likely be needed
not just during requirements definition, but at
least through preliminary design, and perhaps
beyond.

(2) Exploring detailed design

The many questions about detailed design in-
dicate a need for tools such as rapid prototyp-
ing environments, or CASE tools that support
appropriate representations such as state dia-
grams, interaction diagrams, and the like in col-
laborative software development environments
such as CSME (computer-supported meeting
environment). Surprisingly, the need for this
sort of support is likely to begin at the out-
set of the project, in early requirements specifi-
cation, and continue throughout the upstream
stages. This, of course, is a major departure
from the kinds of recommendations one would
derive from a sequential waterfall-style model,
according to which these questions would not
arise until the detailed design stage.

(3) Tracking realize relations

Throughout the upstream activities, we
found many questions about the way some func-
tionality would be carried out. The property
of being able to assist in answering this sort
of question is often called traceability, and it is
already widely believed to be important. Our
findings can perhaps add another increment of
credibility to those asserting the importance of
this capability.

(4) Capturing and communicating user
scenarios

Scenarios of use could be made available to
developers in several ways. At least one soft-
ware engineering method, Objectory'® explic-
itly incorporates scenarios of use (“use cases”
as a central part of the method, and it will be
useful for group software designers to provide
an user scenarios sharing environment by uti-
lizing asynchronous and synchronous communi-
cation support tools. There are also other, less
formal techniques, (e.g., Ref.16)) for making



2896 Transactions of Information Processing Society of Japan

this kind of knowledge available during design.
It seems likely, given the sharp decrease over
time in questions about user scenarios, that any
tool or technique that is adopted will have its
primary benefit in requirements definition, and
will be substantially less useful in group design.
(5) Functional definitions and interfaces

Tracking and sharing the functional defini-
tions of modules and interfaces among mod-
ules is an area where developers could use
help in the design stage. In fact, there are
data which strongly suggest that misunder-
standing the functions that modules are sup-
posed to carry out and misunderstanding in-
terfaces between modules are the two most fre-
quent sources of software errors2%).

5. Open Questions

As we mentioned earlier, a result that was
particularly unexpected is the low frequency of
why questions. There are several possible ex-
planations for this finding. One is that the kind
of information elicited by why questions, i.e.,
the rationale behind decisions, is simply rela-
tively unimportant. This certainly runs counter
to the intuitions of many individuals experi-
enced in software development, but it is not
ruled out by our data. A variation on this
theme is that this information is simply per-
ceived to be unimportant, and perhaps even
actively avoided by designers wishing to escape
the overhead of becoming domain experts. A
second possibility is that why questions and the
information they elicit are relatively unlikely to
arise in meetings as compared with other set-
tings in which design work is done. One plau-
sible line of reasoning is that in meetings, the
context, as well as the content, is generally clear
to all the participants. Why questions may of-
ten be used to establish this context when it
is unclear. A third possibility is that the in-
formation that could be directly elicited with
a why question is often elicited with how or
what questions. If one knows enough about the
possible rationales behind a decision, one may
be able to infer the correct rationale by using
clues obtained in this indirect way. If this turns
out to be the case, it suggests that a good rep-
resentation of the what and how of the design
may enable one to infer many of the whys. Fi-
nally, it may be that why questions are seldom
asked in meetings because the participants re-
alize that they cannot generally be answered in
current practice, with current tools. This inter-

Oct. 1998

pretation, of course, suggests that representa-
tions of design spaces or histories would often
be consulted if available. Our data do not allow
us to distinguish among these possibilities.

These considerations hint at a broader need
to assemble the rest of the puzzle of which this
work is but one piece. Future work should be
aimed at looking at additional settings in which
work is done in group software development.
We have focused on meetings among develop-
ers, but work also gets done in meetings with
clients, casual conversations around the water
cooler, individuals working by themselves, and
so on. We need to fill out the picture by exam-
ining what kinds of information are important
in these other settings. The information needs
may or may not differ substantially from what
we found here. We also need to look at the full
software development life cycle. Our data come
from upstream activities, and the needs for in-
formation in the later stages might be different.

Finally, different development methods may
give rise to different kinds of information needs.
The data we report provide a baseline of infor-
mation needs using traditional methods, which
could be used in order to detect and evaluate
changes introduced by new technology. In fact,
one of the authors (JDH) is currently examin-
ing questions from development meetings using
object-oriented methods in order to make such
a comparison.

We conclude by noting the importance of em-
pirical studies of software development groups.
While we agree that building prototype tools
and trying them out is indispensable, unless
such efforts are complemented by careful em-
pirical analysis, they run the risk of solving the
wrong problem.

Acknowledgments This work has been
supported by the National Science Foundation
(Grant No.IRI-8902930), and by the Center for
Strategic Technology Research (CSTaR) at An-
dersen Consulting, and by a grant from the
Center for Japanese Studies at the University
of Michigan. We would particularly like to
thank Libby Mack, Nancy Pennington, Barbara
Smith, and Bill Curtis for their help in the col-
lection and analysis of the data. We also wish
to acknowledge the important contribution of
the researchers at NTT Software Laboratories
who made data available to us. We would
also like to thank Kevin Crowston, Michael
Knister, Gary M. Olson, Judith S. Olson, Atul
Prakash, Seishiro Tsuruho, Hironobu Nagano,



Vol. 39 No. 10 An Empirical Study of Information Needs in Collaborative Software Design 2897

and Koichi Matsuda for their valuable com-
ments and suggestions.

References

1) Booch, G.: Object-oriented development,
IEEE Trans. Softw. Eng., Vol.12, pp.211-221
(1986).

2) Brooks, F.P.: The mythical man-month: Es-
says on software engineering, Addison-Weslsy,
Reading, MA (1975).

3) Brooks, F.P.: No silver bullet, JEEE Com-
puter, Vol.20, No.4, pp.10-19 (1987).

4) Chen, P.: The entity-relationship model - To-
ward a unified view of data, ACM Trans.
Database Syst., Vol.1, No.1 (1976).

5) Coad, P. and Yourdan, E.: Object-oriented
analysis, 2d ed, Prentice Hall, Englewood
Cliffs, NJ (1990).

6) Conklin, E.J. and Yakemovic, K.CB.: A
process-oriented approach to design rationale,
Human-Computer Interaction, Vol.6, pp.357—
391 (1991).

7) Curtis, B., Krasner, H. and Iscoe, N.: A field
study of the software design process for large
systems, Comm. ACM, Vol.31, pp.1268-1287
(1988).

8) Davis, A.M.: Software Requirements: Analy-
sis and Specification, Prentice Hall, Englewood
Cliffs (1990).

9) Ghezzi, C., Jazayeri, M. and Mandrioli, D.:
Fundamentals of software engineering, Prentice
Hall, Englewood Cliffs, NJ (1991).

10) Guindon, R.: Designing the Design Process:
Exploiting Opportunistic Thoughts, Human-
Computer Interaction, Vol.5, Nos.2&3, pp.
305-344 (1990).

11) Guindon, R.: Knowledge exploited by experts
during software system design, Int. J. Man-
Mach. Stud., Vol.33, pp.279-304 (1990).

12) IEEE: Guide for software requirements speci-
fications, Std 830-1984 (1984).

13) IEEE: Recommended practice for software de-
sign descriptions, Std 1016-1987 (1987).

14) Jacobson, I., et al.: Object-oriented soft-
ware engineering: A use case driven approach,
Addison-Wesley, Reading, MA (1992).

15) Jeflries, R., Turner, A.A. and Polson, P.G.:
The processes involved in designing soft-
ware, Cognitive skills and their acquisition,
Anderson, J.R. (Ed.), pp.255-283, Erlbaum,
Hillsdale, NJ (1981).

16) Karat, J. and Bennett, J.L.: Using scenarios in
design meetings ~ A case study example, Tak-
ing software design seriously, Karat, J. (Ed.),
pp.63-94, Harcourt Brace Jovanovich, Boston
(1991).

17) Karat, J. and Bennett, J.L.: Working within

the design process: Supporting effective and ef-
ficient design, Designing interaction: Psychol-
ogy at the human-computer interface, Carroll,
J.M. (Ed.), pp.269-285, Cambridge University
Press, New York (1991).

18) Lee, J.: SIBYL: A tool for managing group
design, CSCW ’90, Los Angeles (1990).

19) Lee, J. and Lai, K.-Y.: What’s in design ra-
tionale, Human-Computer Interaction, Vol.6,
pp.251-280 (1991).

20) MacLean, A., et al.: Questions, options, and
criteria: Elements of design space analysis,
Human-Computer Interaction, Vol.6, pp.201-
250 (1991).

21) Marca, D. and McGowan, C.: Structured anal-
ysis and design technique, McGraw-Hill, New
York (1988).

22) Moran, T. and Carroll, J. (Eds.): Design
Rationale: Concepts, Techniques, and Use,
Lawrence Erlbaum Associates (1996).

23) Muller, M.J.: Retrospective on a year of par-
ticipatory design using the PICTIVE tech-
nique, CHI’92, ACM press, Monterey, CA
(1992).

24) Nakajo, T. and Kume, H.: A case history anal-
ysis of software error cause-effect relationships,
IEEE Trans. Softw. Eng., Vol.17, pp.830-837
(1991).

25) Nerson, J.-M.: Applying object-oriented anal-
ysis and design, Comm. ACM, Vol.35, pp.63-74
(1992).

26) Olson, G.M., et al.: Small group design meet-
ings: An analysis of collaboration, Human-
Computer Interaction (1992).

27) Olson, G.M., et al.: The structure of activ-
ity during design meetings, Design Rationale,
Moran, T. and Carroll, J. (Eds.) Lawrence
Erlbaum Associates (1996).

28) Potts, C.: Supporting software design: Inte-
grating design processes, design methods, and
design rationale, Design Rationale, Moran, T.
and Carroll, J. (Eds.) Lawrence Erlbaum As-
sociates (1996).

29) Rubin, K.S. and Goldberg, A.: Object Be-
havior Analysis, Comm. ACM, Vol.35, No.9,
pp-48-62 (1992).

30) Rumbaugh, J., et al.: Object-oriented model-
ing and design, Prentice Hall, Englewood Cliffs,
N.J. (1991).

31) Wirfs-Brock, R., Wilkerson, B. and Wiener,
L.: Designing object-oriented software, Prentice
Hall, Englewood Cliffs, NJ (1990).

(Received March 2, 1998)
(Accepted June 5, 1998)



2898 Transactions of Information Processing Society of Japan

James D. Herbsleb is a
member of the Software Pro-
duction Research Department of
Bell Laboratories, Lucent Tech-
nologies. He has a Masters De-
gree in computer science from

: the University of Michigan and
a Ph D. in psychology from the University of
Nebraska. Prior to joining Bell Labs, he con-
ducted empirical studies of software engineer-
ing as a post-doctoral fellow at the University of
Michigan, and at the Software Engineering In-
stitute at Carnegie Mellon University. His pub-
lished work includes studies of object oriented
technology, information needs in software en-
gineering, results of software process improve-
ment efforts, software metrics, and the use of
collaborative technology in software develop-
ment.

Oct. 1998

Eiji Kuwana received his
- B.S., M.S. in computer science
from the University of Electro-
Communications, in 1982, 1984,

respectively. He joined NTT
Laboratories in 1984. From
T 1991-1992, he worked for the

University of Michigan as a visiting research
scientist. He is currently a senior manager
of NTT Multimedia Service Promotion Head-
quarters. His major research interests in-
clude multimedia services, human-computer
interaction, computer network, and CSCW.
He served as a program committee member
of ACM DIS’95, CSCW’96, IEEE CoopIS’95,
ICPAD’96, APCHI'96, '97, '98. He is a mem-
ber of ACM and IPSJ.




