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The Augmented Encrypted Key Exchange (A-EKE) proposed by Bellovin and Merritt
(1993) used the hash of the sender’s password as the shared secret key for encryption. How-
ever, this scheme can be broken by Simmon’s Attack. To overcome this, we propose to improve
the scheme by incorporating Indirect RSA Encryption and Confounder. In our scheme we
use a public key which will be kept by the communicating parties and will be exchanged
indirectly, i.e., instead of sending the whole public key, the two parties will send the number
which determines their public key, along with the shared key. Meanwhile, the confounder
is used to overcome partition attack which can be used to overcome the subtle problem of
A-EKE using RSA encryption. Theoretical analysis shows that our proposed scheme is more

secure than A-EKE.

1. Introduction

In computer security, authentication is one
of several areas that needs to be investigated to
secure the environment for legitimate use. Sev-
eral methods have been proposed to accomplish
this. One of them is Augmented Encrypted Key
Exchange (A-EKE) proposed by Bellovin and
Merritt?). It uses two one way functions to
authenticate the sender. However this scheme
can be broken by Simmon’s Attack®, when
the session key and the number which builds
the hash of the sender’s password are relatively
prime. It has been shown that the probability
of these numbers being relatively prime is 6/72
(about 0.61), which means that the probability
to break the scheme is also 0.61.

We propose a method to improve the scheme
by using indirect RSA for user authentication,
instead of using two one way functions. It dif-
fers from the conventional RSA in that the com-
municating parties exchange the public key in-
directly. In other words, instead of the public
key itself, they will exchange a number which
determines their public key. This number will
be encrypted by a shared secret key. To ob-
tain each others public key, a hash function is
applied to that number. The hash function is
determined by a number which previously has
been agreed upon by the communicating par-
ties.

Their public keys are used to encrypt the ex-
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ponential random numbers which will be ex-
changed between the communicating parties.
Since these numbers will be used to determine
the session key, we need to protect these num-
bers from attackers by keeping the public keys
only known to both parties.

Thus, instead of using only one shared secret
key as has been proposed by Bellovin and Mer-
ritt, we also use an integer number which will
build the hash of the communicating parties’
number. This number will be used later to de-
termine the public key. Both of them are kept
secret between the communicating parties and
have to be agreed upon in advance.

Since the number which determines the pub-
lic key is always odd, if no special precautions
are taken, an attacker can rule out half of the
candidate values of the shared secret key if the
encrypted message was an even number. Since
each session will use a different number, inde-
pendent of all others previously used, trial de-
cryptions resulting in illegal values of the num-
ber which determines the public key will ex-
clude a different shared secret key each time.
Put another way, each session will partition the
remaining candidate key space into two approx-
imately equal halves. The decrease of the key
space is logarithmic; comparatively few inter-
cepted conversations will suffice to reject all in-
valid guesses of the shared secret key 1)-2). This
attack is usually called partition attack.

We overcome this weakness by further in-
corporating a confounder, which was originally
proposed by Gong, et al”). A confounder is
a random number whose value can be ignored
by the recipient, with the assumption that its
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Message 1. Alice — Bob: Alice,{a®4 mod 8} H(P)

Message 2. Bob — Alice:Bob {aRB mod 3} y(py, {challengep} k
Message 3: Alice - Bob: {challenge, challengep}x

Message 4. Bob — Alice:{challenges}x

Message 5. Alice — Bob: {F(P, K)}x

Fig. 1 Augmented Encrypted Key Exchange (A-EKE).

length has been predetermined by the commu-
nicating parties. Since a confounder is a ran-
dom number which could be odd or even, the
attacker can not identify the real number that
we encrypted. Hence, the attacker can not ex-
clude different shared secret key for each trial
decryption, which means that the attacker can
not apply partition attack on our scheme. De-
tailed analysis of how the confounder can over-
come the partition attack will be described in
Section 4.

Section 2 first presents the Augmented-EKE,
and Section 3 proposes our scheme. Section
4 analyzes our proposed scheme based on the
knowledge of the hash of sender’s password and
also from a mathematical viewpoint. Section 5
makes concluding remarks.

2. Augmented Encrypted Key Ex-
change (A-EKE)

Augmented-EKE uses two one way hash func-
tions. The first one H(P) (the hash of the
sender’s password P) is used as the communi-
cating parties’ shared secret key:

H(P) = P’mod n
where z is a random number which is chosen
by the sender and n is a product of 2 prime
numbers which are public. The second function
F(P, K) is used to verify the sender:

= PKmod n
where K is the communicating parties’ session

key.

The basic idea is to exchange both parties’ ex-
ponential random numbers encrypted by H(P).
These random numbers are a(f4 O £8) mod 3,
where « is a primitive root of Galois Field of
B (GF(B)), B is a prime number and both of
them are public. The result of this exchange is
a session key K which depends on both parties’
exponential random numbers.

This session key can in practice only be
known by someone who knows H(P). If the
intruder can guess H(P), he/she will be able to
impersonate the sender, the receiver or both.

To reduce the risk, the sender must supply
F(P,K) to prove the receiver of the sender’s
identity. The receiver verifies the sender by
checking Hi (H(P)) and H(F(P, K)), where
Hy(H(P)) = (H(P))Xmod n
H(F(P,K)) = (F(P,K))*mod n

If these two hash functions are equal, then the
sender will be verified by the receiver as the le-
gitimate sender. These two hash functions will
be equal iff the password P which is used in
H(P) and F(P,K) are equal. The complete
scheme of A-EKE is shown in Fig. 1 with Alice
as the sender and Bob as the receiver.

The attacker can still break the scheme if
he/she can guess the sender’s password. If the
session key K and z are relatively prime, then
by using Simmon’s attack, the probability of
breaking the password is approximately 0.61.
Since the probability to break the scheme is
equal to the probability to break the password,
the probability of breaking the protocol is also
0.61, which is quite large.

3. A-EKE Using Indirect RSA (A-
EKE/RSA)

To reduce the probability of breaking A-EKE,
we propose a scheme which applies Indirect
RSA public key. We first briefly describe the
RSA Cryptosystem and then incorporate it to
A-EKE along with a confounder.

3.1 RSA Cryptosystem

RSA cryptosystem is made up of a collection
of users, each having his own enciphering and
deciphering keys. The enciphering key (non-
secret) consists of integers n and K, while the
deciphering key (secret) is an integer K;. In
this scheme, n is an integer which is the product
of two carefully selected large primes p and gq,
ie, n = pg. K, denotes the public key and
K, the private key. The keys K; and K, must
be selected in such a way that each is relatively
prime to ¢(n), where ¢(n) = (p—1)(g—1) is
the Euler Totient function and the product of
the two keys should be equal to (1 mod(¢(n))).

In RSA, encryption of message M (where
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Message 1. Alice — Bob: Alice,{n4, Ka,ca}tu(p)
Message 2. Bob — Alice:Bob,{np, Kp,a"? mod §,¢cp}xk,,,. .
Message 3: Alice — Bob: {a®4 mod B}k, ,{challenges}x
Message 4. Bob — Alice:{challenge4,challengep}x

Message 5. Alice — Bob: {{challengep}k,,, }x
Fig. 2 A-EKE using RSA and confounder.

0 < M <n-1)is as follows:
Y = M¥» modn
while decryption of Y is as follows:
Y5 modn = M%rEmodn
= M modn

where K, x Ks; = 1 mod ¢(n).

3.2 A-EKE using Indirect RSA

Before using A-EKE with indirect RSA, we
must first set the value of hy (a number used to
build the public key which needs to be agreed
in advance by the communicating parties) and
assume that both parties know the hash of the
sender’s password P. We set the length of the
confounder ¢4 and cp equal to the length of
ho, because if both parties exchange the value
of the length of the confounders, it can cause
leaked information, while using another com-
ponent to determine the length of ko will waste
memory. In the rest of this paper, we will call
the sender as Alice and the receiver as Bob.

The complete scheme of our method is as fol-

lows (see Fig. 2):

(1) Alice sends Bob her modulus number
(n4), a number (K4) which determines
her public key and a confounder cg4,
encrypted with their shared secret key
(H(P)).

(2) Bob decrypts the message from Alice us-
ing their shared secret key, and calcu-
lates Alice’s public key (Kp,,,..) which is
equal to (K4)". Then Bob chooses his
modulus number npg and a number (Kp)
which determines his public key. Also,
he chooses his random number Rp and
calculates a8 mod (3. He sends Alice
all of these numbers concatenated with
confounder cg, and encrypts all of them
with KPAuce‘

(8) Alice decrypts the message from Bob
using her secret key (K,,,,..) which is
equal to ((K4)")™! mod ¢(n). She
picks her random number R4, calculates
(ofi4 mod B) and also (a®4Fe mod f)
as their session key K. She also calcu-
lates Bob’s public key (Kp,,,) which is

equal to (Kg)". After that, she sends
Bob (aft4 mod B) encrypted with K.,
and also her challenge (challenges) en-
crypted with their session key K. A chal-
lenge is a message which is exchanged be-
tween the communicating parties to ver-
ify each other.

(4) Bob decrypts Alice’s first message using
his secret key (K,,,,) to obtain (af4
mod 3). Using this value, Bob calculates
K which is equal to (a®4F® mod B).
Then he decrypts Alice’s second message
using K. After he obtained Alice’s chal-
lenge (challenge 1), he picks his challenge
(challengep) and sends both challenges
encrypted with their session key K to Al-
ice.

(5) Alice decrypts the message from Bob to
obtain (challenges and challengep), and
compares (challenge,) which comes from
Bob with her legitimate (challenges). If
they match, then she sends (challengeg)
back to Bob signed with K,,,,.. and en-
crypted with K.

(6) Finally, Bob decrypts the message from
Alice using the session key K and Ky, .
to obtain (challengep). If Bob verifies
that (challengeg) echoed correctly, then
the scheme is concluded.

This proposed scheme uses ((K4)") as Al-
ice’s public key and (((K4)")~! mod ¢(na))
as Alice’s secret key. The value of (K4)h
should be congruent to ((K4)"* mod ¢(n4)).

An intruder may try to assign a modulus
number n 4 for Alice’s modulus number, choose
a number K4 as the number that determines
Alice’s public key, guess the value of confounder
ca and send these numbers encrypted with the
guessed shared secret key H(P)' to Bob. Bob
will decrypt the message using H(P). In this
case, Bob will obtain K’y and n'y. Using K/
Bob will calculate Alice’s public key which is
equal to (K’;)". Then he will send his modu-
lus number, the number which determines his
public key Kp, his exponential random num-
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ber (a®# mod 3) and the confounder cp en-
crypted with Alice’s public key to the intruder.
The intruder will guess the value of hg (i.e.,
hg), compute her secret key, and decrypt the
message from Bob using the guessed secret key.
The intruder can not verify his guess until Mes-
sage 4, because until then the intruder can
not match his legitimate challenge (challenge 4)
and (challenge';) sent by Bob. If both values
match, then H(P)' is equal to H(P) and hy is
equal to hg. Thus the scheme will conclude if
both H(P) and hy can be guessed, but as long
as these are kept secret by the communicating
parties and never sent in clear, it is very difficult
to guess their values.

Suppose the intruder is able to guess one of
these two elements, for example H(P). With
the knowledge of H{P), the intruder could send
K4, na and confounder c4 whose length is
the guessed length of hg, encrypted by H(P)
which will be received by Bob as K/ and
n'y. According to the above method the in-
truder can not verify his guess until Message
4, when he can match his legitimate challenge
{(chalienge4) with the challenge sent by Bob
(challenge'y). If both values match, then the
guessed length of hg is true. Even though the
guessed length of hg is true, this does not mean
that the intruder can directly break the pro-
tocol, because the intruder still has to guess
the value of hy. So, it is still difficult for the
intruder to calculate his public key, because
he does not know the value of hg. Thus, the
strength of this scheme depends on the diffi-
culty to guess hg. The difficulty to guess hg
will be discussed in Section 4.

3.3 Finding the Public Key

In this section we will discuss how Bob can
calculate Alice’s public key, and vice versa. Af-
ter Bob receives the first message, he will know
the value which determines Alice’s public key
K 4 and he can directly calculate Alice’s public
key by using:

Kpaiice = (KA)hO (1)

Bob can encrypt his message (Message 2) using
Alice’s public key and send it to Alice.

According to RSA, Alice’s public key should
be:

K

PAlice

= (K4)™ = (K4)™ mod ¢(na)
= X4 mod ¢(n4)

where X4 is a positive integer which is rela-
tively prime to ¢(n4). Thus, (K )" should be
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relatively prime to ¢(na).

Since the value of ¢(n4) has to be kept
secret, the public key of Alice which is cal-
culated by Bob will be (K4)* instead of
(K 4)" mod ¢(n4). To prove that this method
is plausible, there are two points which has to
be observed:

o The secret key for which the public key is
(Ka)ho (e, (Ka)h mod ¢(ny)) is the
same as that for which the public key is
Xa (X4 mod ¢(na)). According to RSA,
the secret key of Alice is the multiplicative
inverse of her public key.

e The message which is encrypted with
(K 4)™ should be decrypted using the se-
cret key for which the public key is X4
mod @(n4) (that is (X4 mod ¢(n))~1).

For observing the first point, we have to prove
Theorem 1.

Theorem 1 Since (K 4)"° and (X 4 mod
#(n4)) are congruent, the multiplicative inverse
of both numbers are the same. The proof of this
theorem is shown in Appendix A.2.

Next, let us observe the second point using
Theorem 2.

Theorem 2 We will encrypt a mes-
sage M using public key (K )P, and ob-
tain (M)E4™ mod ny. The communi-
cating .party can decrypt the message using
the secret key (X4 mod ¢(na))™! (where
(KA)hO mod ¢(ns) = X4 mod ¢(na)). The
proof of this theorem is shown in Appendix A.3

Since these two points can be proven, we can
say that our method is plausible.

3.4 Choosing a Number which Deter-
mines the Public Key (K4/Kp)
and the Secret Key

Since (K 4)"° should be relatively prime to
#(na), we have to choose a number K4 which
should be relatively prime to ¢(na) (see Ap-
pendix A.5), to construct the public key. The
algorithm to choose a number which determines -
the public key is as follows:

(1) Choose a positive integer X which is not
equal to p,q or n, where n = pxq, and p
and ¢ are prime numbers.

(2) Calculate ged(X, ¢(n)). If the value of
gcd(X, ¢(n)) is equal to 1, go to the next
step. Otherwise, go back to step 1.

(3) Compute the multiplicative inverse of the
public key (i.e., X" mod 4(n)) to ob-
tain the secret key. If the multiplicative
inverse has no unique value or the value
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is equal to 1, then find another number
as the value of X and repeat the proce-
dures from the beginning until the mul-
tiplicative inverse has a unique value and
not equal to 1. Otherwise, use X as the
number which determines the public key.
Unique value means a value whose multi-

plicative inverse is not equal to the value
iteelf,

1LSTiL.

This algorithm can be applied for choosing
numbers for Kpg and K 4.

The inverse value is actually the secret key.
If this value is negative, the sender will get a
wrong message. To overcome this problem, the
value should be replaced by ¢(n) added by the
inverse value®).

4. Security Analysis

In this chapter we will analyze the security
of A-EKE using RSA without and with con-
founder.

4.1 Analysis of A-EKE/RSA without

Confounder

First, we will calculate the probability of find-
ing the public keys under the assumption that
the intruder has already obtained H(P). Sup-
pose hg is an [-digit positive integer, then there
are 10" numbers which could be the value of hg.
For example, Alice’s public key which is used
by Bob to encrypt his message is (K4)"° in-
stead of ((K4)" mod ¢(ny)). Thus, (Ka)he
itself could be greater than n4, but the value
of ((Ka)* mod ¢(ns)) will always be smaller
than @(n4). According to the Carmichael
Function (see Appendix A.1), if K4 and ¢(n4)
are relatively prime, there are A{¢p(na)) — 1
numbers which satisfy ((K4)" mod ¢(n4) #
1) or in other words there is only one pub-
lic key value which is equal to 1 (i.e., for hg
equal to A(#(na))) within A(¢(n4)) numbers
(where X is the Carmichael Function). Since
this value will be repeated in the order of
A(#(n4)), there are at least -y values of hy which
could have the same value of public key where
7. M(#(n4)) > 10°. This means that there are
YA (d(na)) — 1) + 6 (for & < A(¢p(na)))value of
ho which satisfy the requirements, where vy is
a positive integer and § > 0. These numbers
have to satisfy the following equation:

Y{(AM¢p(na)) =1} + 6+ =10
YA($(na))) + 6 = 10° @)

Thus, the probability that a guess on ((K4)"
mod ¢(n4)) will yield the correct value of Al-
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ice’s public key is
Pr (Kp,,,.. is correct)
Y

® N @ma)) — 1) + 6
If § € y(AM(#(na)) — 1)) then

Pr (Kp,,.. is correct)
1
N 3)

@)~ 1)

From the above equation, we can conclude
that the larger the value of A(¢(n4)) — 1 be-
comes, the smaller the probability of obtaining
Alice’s public key becomes. In this case, al-
though the intruder has already obtained the
public key, it does not mean that they can break
the scheme, because there are more than one
value of hy which could yield the same value of
public key.

As mentioned above, there are approximately
~ numbers which satisfy the value of the public
key. Thus, the probability to obtain the correct
h() is

Pr (hg is correct)
N 1 y 1 @)
Mo(na)) =1) v
Theorem 3 For an attacker with the
knowledge of H(P), the probability of break-
ing the scheme is W—T) x %, where
(M(@{na)) — 1)v is greater than 2. Since the
minimum value of (A(¢(n4)) — 1)y > 2, the
maximum value of Eq. (4) is smaller than 1/2
(for na consists of 2 digit prime numbers or
more). The proof of this theorem will be shown
in Appendix A.4.
As an example, we choose the smallest 2 digit

prime numbers, ie., py = 11 and ¢ = 13.
Then,
A(p(n4))
= lem(lem(A(2), A(5)), lem(A(4), A(3)))
= icm(lcmw@), $(5)),lem(¢(4), 6(3)))
Since v =1,

T(A(p(na)) — 1)) = é(‘i -1
It is already proven that the minimum value of
AMé(ng4)) for 2 digit prime numbers is greater
than 2.
Furthermore, the maximum value of Eq. (4)
fory=11is
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1
(A(¢(na)) = 1)(7)
N S
T@-1n(1) 3

Thus the maximum value of Eq. (4) for 2 digit
prime numbers is 1/3 which is smaller than 1/2.

The probability will decrease with the in-
crease of the prime numbers’ length. Since
the length of the prime numbers used in our
proposed scheme is greater than 2 digits, the
probability to break the scheme is smaller than
1/3. This means that although the attacker
has already obtained H(P) it is still harder
to break A-EKE/RSA than to break A-EKE.

Next, we will discuss the probability to break
the scheme for an attacker without the knowl-
edge of H(P). As an example, we will use
IDEAY to encrypt the first message of A-
EKE/RSA which uses 128 bit key to encrypt
the message. By using brute force attack, the
probability to obtain a message encrypted by
IDEA is 1/2'%8. Using this fact, the probabil-
ity of obtaining hg for an attacker without the
knowledge of H(P) is

Pr (hg is correct) a2

Pr (hg is correct)
1 1

O (5)

So, the probability of obtaining he without
the knowledge of H (P) is smaller than the prob-
ability of obtaining he with the knowledge of
H(P).

4.2 Analysis of A-EKE/RSA Using

Confounder

We incorporated confounders in Messages 1
and 2 of our proposed scheme to prevent our
scheme against partition attack. Let us re-
fer to Messages 1 and 2 of Fig.2. Suppose
an attacker that intercepts Message 1, that is
{na,Ka,ca}tucp), inserts H(P)' as the value
of H(P), and he obtains an even number for
the value of {{n4, Ka, CA}H(P)}(H(I))I)—I . This
condition does not mean that the number is an
illegal value for {n4,Ka,ca}. Since we used
a confounder ¢4 which is random (¢4 can be
odd or even), the value of {n4, K4,c4} can also
be odd or even, and it means that an attacker
can not exclude H(P)' although the values of
{{nA, KA, CA}H(p)}(H(P)I)—l were even. Thus,
we can prevent our proposed scheme against
partition attack by using the confounder c4.

We now turn to the probability of breaking
the scheme or to find hg. Let us refer to Mes-
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sage 1 of Fig.2. If we use IDEA encryption
to encrypt {n4,Ka,ca}, the probability of ob-
taining {na,Ka,ca} is 1/2128. Therefore, the
probability of obtaining {n4, K4} is smaller
than 1/2'28 because to obtain {n4, K4} the
attacker has to guess c4. Next, let us calculate
the probability of obtaining c4. Assume that
the length of ¢4 is l-digits, which means that
to guess c4 the attacker has to do I guesses or
in other words the probability of obtaining ca
from each intercepted message is 1/1. Thus the
probability of obtaining {n 4, K 4} from each in-
tercepted message of Message 1 is
1 1

PT‘({nA,KA}):-z‘TZ—gX T (6)

So, it is harder to break Message 1 which uses
a confounder than to break a message not us-
ing a confounder. Certainly, with the use of a
confounder, the probability of obtaining hg will
also be smaller.

Finally, the probability to obtain hg for A-
EKE/RSA using confounder with the knowl-
edge of H(P) is the product of the probabil-
ity in Eq. (4) and the probability to obtain c4,
which is described as follows:

Pr (hg is correct)
1 1

~ @) Dy 1 @)

and the probability to obtain hy for A-
EKE/RSA wusing confounder without the
knowledge of H(P) is the product of the prob-
ability in Eq.(7) and the probability to obtain
H(P), which is described as follows:

Pr (hg is correct)
1 1 1

= 0wy -ny 1w O

5. Conclusion

We proposed a method incorporating indirect
RSA encryption and confounder to A-EKE.

Indirect RSA Encryption was introduced into
A-EKE to decrease the possibility to break the
protocol for an adversary. In A-EKE, the prob-
ability was approximately 0.61. But, with our
scheme, the probability depends on the cho-
sen prime numbers. Even if the prime number
is small (e.g., 2 digits), the probability is still
lower than 1/3 (0.33). Larger digits will lower
the probability even more.

To anticipate the problems caused by imple-
mentation of RSA, we used a confounder which



3330 Transactions of Information Processing Society of Japan Dec. 1998

was originally proposed by Gong, et al”. By
using a confounder, an attacker can not guess
the message which includes the number that de-
termines the public key and the modulus num-
ber. Thus, he can not exclude the illegal values
of these numbers by using just a few messages,
or in other words to obtain these numbers he
has to do numerous trials.

Finally our analysis has shown that our
method has a low probability of being broken.
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Appendix

A.1 Carmichael Function
The Carmichael function of n can be calcu-
lated with the following algorithm:

(1) Find the divisor of n which is a power of
distinct primes.

(2) Calculate the Carmichael function (A(n))
which denotes the period of the sequence
of the power as follows:

e Ifnisl, 2or4, then A(n) = ¢(n)
(¢(n) is Euler Totient Function).
o If n > 4 and is a power of 2 (ex.
23,24)...), then A(n) = ¢(n)/2.
e If n is a power of an odd prime,
An) = ¢(n).
e If n is a product of P, P,..., P
of powers of distinct primes, then
() = lem(A(P), A(Py), ..., A(PE)
A.2 Proof of Theorem 1
Refering to Euler’s Generalization on Fermat’s

Little Theorem, the multiplicative inverse of

z mod n is equal to (=1 mod n. The in-

verse of (K4)" mod ¢(n4) can be obtained as

follows:

((K4)"™ mod ¢(na))™*

= ((KA)h0)¢(¢(nA))“1 mod ¢(n4)
((Ka)™ mod ¢(n4))?(#nad=1

= (X4 mod ¢(ny))?@na))-1

= (X4 mod ¢(n4))t (9)
Thus,

((K4)"*) "mod ¢(n4)
= (X4) 'mod ¢(n,)

This means that the secret key for which the
public key is (K4)? is equal to the one for
which the public key is X 4. ]
A.3 Proof of Theorem 2
Proof: Accordinhg to E{SA the receiver
will obtain (M)E4)**(XA)™ mod ny. Since
(X4 mod ¢(na))~! is equal to ((K4)" mod
¢(nA))~la then
(M) ED XD od ny
= (M)ED™ (K" ) mod n
=M modny (10)
According to Eq. (10), the receiver will obtain
the message M. This means that we can use

(X4 mod ¢(na))~! to decrypt a message en-
crypted with (K 4)ke. [
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A.4 Proof of Theorem 3

Proof: According to the Carmichael Func-
tion,

AM$(na)

for nga = m X q1.
9 x x§? ... x  z% where zy,z5..., 2,
are prime numbers which divide p; — 1, and
a1,as,...,0s, s and k; are positive integers.
Let (g —1\ =2k s bt gl gl
where y1,¥s - . ., Y are prime numbers which di-
vide ¢1.—1, and bi,ba, ...
integers. Then

=lem((py — 1), (g1 — 1))
Let (pp — 1) = 2 x

bs, t and ko are positive

Mmn. —1)
TNFML )
= lem(\ (29Y), A (232), ..., (z%), X 2F1)

= lem(é (21"), (¢ (25°),- -,
(¢ (25))/2)
= lem((2§* ™ (21 — 1)), (25° (22 — 1)),
t (xas_l(zs - 1))7 2k1_2) (11)

8§

(¢ (z5°),

Similarly:

Mg —1) = (@!

et -1)...
(yb‘ et (12)
Using Eqgs. (11) and (12):
A¢(na)) =lem(A(py — 1), Mq1 — 1))
= lem(lem((z%* ™ H(zy — 1)) ...
(23 (zs = 1))(2572)),
lem((y2 H(y1 — 1)) ...

(g (ye — 1))(25272))) (13)

The minimum value of A(¢(n4)) will be ob-
tained if:

e All values of a;, b; for ¢ = 1,2,...

1,2,...,t are equal to 1.

o 2F1-2 and 2F2-2 are similar and equal to 2.
Since z1,...,Ts,Y1,- - -, Ys are primes, then z; —
1,...,z,—1,91—1,...,ys—1 can be divided by
2, and the maximum value of Eq. (4) for 2 digit
prime numbers of p; and ¢; is smaller than 1/2.
]

A.5 Theorem 4

Theorem 4 An integer number z with the
power of any positive number s (z®) will be rel-
atively prime to y, iff ged(z,y) = 1 (z is rela-
tively prime to y).

Proof Let z = rit x r2 ...

8y ) =

xrk and y =

i x ri . x rf;; where 7;,t;, I; and 2z are non-
negative numbers fori=0,1,2,...,2. Then:
_ mm(ll,t1) min(la,tz2)
ged(z,y) =r; X Ty e

xr;nm(lz,tz) (14)

Augmented Encrypted Key Exchange using RSA Encryption 3331
=(rl xrl . x )
=rh® x rl” . x rles (15)
From Egs. (14) and (15):
gcd(a: ,y) mm(lls t1) 7.;nm(lzs tz) )
xT;mn(lzs,tz) (16)
where min(l;s, t;) is the minimum value of both
numbers [;s and ¢;. ged(z®,y) = 1 implies
min(lys,t1) =0
min(las,t3) =0

min(l,s,t,) =0

This means that I;s or ¢; should be equal to 0,
or in other words, there is no common divisor
between z° and y. This condition will happen
if I; or t; are 0, because s is not zero. Now
referring to Eq. (16), ged{z*®,y) will be equal to
1ifl; or t; is equal to 0. According to Eq. (14), if
l; or t; is equal to 0, then ged(z, y) will be equal
to 1. Thus, ged(z®,y) = 1 iff ged(z,y) = 1. ®
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