Vol. 39 No. 12

Transactions of Information Processing Society of Japan

Regular Paper

Calculus of Classical Proofs 1I*

KEN-ETSU FuJiTat

We provide a simple natural deduction system of classical propositional logic called Aegc,
and demonstrate the proof-theoretical and computational properties of the system from a

Mhin Todamndicndlas AL Y 24 n Amccon i an AL nain Al S
1€ Iftroauction o1 /\emc is a consequence or our observations on

plugla,luuuus VJUWpUlllb
the existence of a special form of cut-free LK proofs, which we call LJK proofs with invariants.
We first show the existence of LIK proofs with invariants for each tautology. On the basis of
the proof-theoretical result, we then present (1) a strict fragment of Aegc that is complete with
respect to classical provability, (2) a translation from arbitrary proofs to LJK-style proofs,

Dec. 1998

(3) the Church-Rosser and strong normalization properties of A ., and (4) an isomorphism
between Parigot’s Ap-calculus and Aeze, and a comparison with related work.

1. Introduction

The computational meaning of proofs has
been investigated in a wide range of fields, in-
cluding only intuitionistic logic 16)18)23) and
constructive type theory 2%, but also classical
logic 3)19):22),26):32) and modal logic'®. Algo-
rithmic contents of proofs can be used to obtain
correct programs that satisfy logical specifica-
tions. In this paper, our motivation is to study
the computational aspects of a simple classical
natural deduction system, which arises from our
proof-theoretical observations on the existence
of a special form of cut-free LK proofs for each
tautology. We call the special form of LK proofs
LJK proofs with invariants®. In LJK proofs,
the succedent of each sequent in the proof is
such that every occurrence of the succedent, ex-
cept for at most one occurrence, is the same as
the invariant throughout the proof. Following
the proof-theoretical result, we provide a clas-
sical natural deduction system Aeze by using
a variant of the excluded middle. In this pa-
per, on the basis of the Curry-Howard isomor-
phism '®, we investigate from a programming
viewpoint the computational properties of clas-
sical proofs as programs.

In Section 2, we provide a sequent calcu-
lus LJK and demonstrate the proof-theoretical
properties of the system. In Section 3, on the
basis of the existence of LJK proofs, we intro-
duce a simple natural deduction system, Acgc,
of classical propositional logic using a variant
of the excluded middle. In A, we study a
computational property of classical proofs, and

t Faculty of Computer Science and Systems Engineer-
ing, Kyushu Institute of Technology

3269

discuss the meaning of the existence of LJK
proofs from a programming viewpoint. We
also show a direct translation from any proof
in Aege to an LJK-style proof. In Section
4, we prove that A.;. has the Church-Rosser
and strong normalization properties. Finally in
Section 5, we compare it with related work—
Parigot’s Ap-calculus, Reholf & Sgrensen’s Aa,
and Felleisen’s A,—to clarify their similarities
and differences, from which we obtain an iso-
morphism between Apu-calculus and A.g., and
the strong normalization property of A¢zc.

From a programming viewpoint, this work
follows from our previous work®. The termi-
nology of LJK proofs denotes exactly the same
style of proofs as p-head form proofs in Ref. 8).
Another follow-on study was devoted to a call-
by-value programming language based on clas-
sical proofs 9-11),

2. Sequent Calculus LJK

In sequent calculi, we can distinguish classi-
cal systems and intuitionistic systems by the
cardinality restriction on the succedent of the
sequent 3%). This restriction is critical in some
systems such as 1°J29 the Beth-tableau sys-
tem in Ref.36), and IL”33). By introducing
LJK proofs, we first show that at most two
kinds of formulae on the succedent are enough
to prove any tautology.

On the other hand, the role of structural rules
in sequent calculi is very important; in fact, by

* A preliminary version of this paper was presented
at New Aspects in Non-Classical Logics and Their
Kripke Semantics, Kyoto University, RIMS, March
(1997). The revised version was in part presented at
Workshop on Theories of Types and Proofs, Tokyo
Institute of Technology, September (1997).

3270 Transactions of Information Processing Society of Japan

adding and/or deleting structural rules, the sys-
tems may drastically change their logical prop-
erties as well as decidability properties. The no-
tion of LJK proofs is obtained from observation
of the effect of the right contraction rule. Care-
ful consideration naturally leads to separation
of the succedent into two parts, namely, a con-
tractable part and a non-contractable part. We
will discuss whether the right contraction rule
can be applied to certain subformulae among
the given formulae. The subformulae to which
the right contraction rules are applied are spec-
ified in terms of the notion of “invariants” used
in LJK proofs.

Simple examples of LIK proofs (to be defined
later) of Peirce’s law are given below in terms
of LK. The following proof 1 below is called an

LJK proof of (A — B) - A) — A with the
invariant A, and proof 2 an LJK proof with the
invariant ((A - B) - A) - A. In LJK proofs,
the succedent of each sequent is such that every
occurrence of formulae in the succedent, except
for at most one occurrence, is the same as the
invariant.
proof 1:

A=A
A= AB
= A A—>B A=A
(A-B)> A= AA
(A->B)- A=A
= ((A—>B)—>A) > A

proof 2:
A=A
(A-B)>AA— A
A= ((A—-B)—>A) - A

A= ((A—->B)—>A) - AB

= ((A->B)>A)>A,A-B A=A

(A-B)2 A= ((A—>B)—>A) - A A

= (A—=B)=4) -4

To specify LJK proofs, we introduce a se-
quent calculus called LJK*. The system uses a
sequent of the form I' = A; A*, where A con-
sists of at most one occurrence, and A* consists
of a finite number possibly zero of occurrences

of a formula A. Roughly speaking, with the an-
tecedent I' and the first part A of the succedent

* The notion of LJK proofs was introduced by the au-
thor independently of Girard’s LC13) and LU14),
but it can be regarded as a fragment of LC. Here, for
simplicity, we consider only the fragment of implica-
tion and negation. Our discussion can be extended
to the full LK: see Ref. 8).

Dec. 1998

we simulate intuitionistic inference by forbid-
ding the right contraction rule for A. On the
other hand, the right contraction rule can be
applied to the second part A*. Thus our idea
is to distinguish an intuitionistic part from a
non-intuitionistic part in classical proofs.
LIK:

(Axioms)

B — B;
(Structural Rules)

I = A; A*
CTr= a4 @)

I'= A;A"
I' = A;A, A*
C,C,T = A; A*

C,I'= A; A*

= A;A A A*

= A;A A"
IC,D,1 = A; A*
ID,C,)l1 = A; A*
T — A A*

— i, 4

I'= ;A A*

(= we)

(c=)

(=9

(e =)

I —
e

JAA

&) T=1a

(= s:)

I = B; AV B, II == A; A*®
[0 = A; A1) A4*(?)

(cut;)

I = A; A4, A0 A= ;A*®
[= A; A*(D)) 4*(2)
(Logical Rules)
I' = B; A*() 11 = A; A*®)
B - C,ITI = A; A*(), 4*(2)

B,T' = C; A*
I'= B — (C;A*

I' = B;A* B, = ;A"
-B,I = ;A* I' = -B; A*

Definition 1

(LJK Proofs with Invariants)

A proof in the system LJK is said to be an
LJK proof with the invariant A, if the second
part of succedents consists of occurrences of A
throughout the proof.

From the above definition, LJK proofs with
empty invariants can be identified with LJ
proofs. We give examples of Peirce’s law in the
following.

(cut.)

(==)

(=)

(=) =)

Vol. 39 No. 12
proof 3:
A= A
A=— ;A
A= B;A
= A B;A A= A4
(A—>B)> A= A;A
(A-B)—- A= ;A A
(A-B)> A= ;A
(A— B) > A= A;
— ((A—> B) » A) - 4;
proof 4:

A = A
(A— B) = A, A = A

A= ((A— B) > A) = 4;

A= ;(A->B)—-A4) > A

A= B;((A—>B)—»A) —~ A
= A->B;((A—+>B)—A) A A= 4
(A-B) 2 A= A;((A->B)—>A) - A

= (A B) = A) - A;

Lemma 1 (Embedding of LJK Proofs)
If I' = A; A* is provable with the invariant A
in LJK, then I', mA = A is provable in LJ.

Proof. By induction on the derivation. O

For example, from proof 3 and proof 4 one
can easily obtain LJ proofs of ~4 = ((4 —
B) » A) 5> Aand ~(((A - B) - A) —»
A) = ((A - B) = A) — A, respectively.

Let T'/A be the sequence obtained from I' by
deleting all occurrences of the formula A. The
following lemma plays an important role in our
discussion:

Lemma 2

(From LJ Proofs to LIK Proofs)

If ' = B is provable in LJ, then I'/-4 —
B; A is provable with the invariant A in LJK.
In particular, cut-free LJK proofs with some
invariants are obtained from cut-free LJ proofs.

Proof. By induction on the derivation. O

Corollary 1 (Cut-Free LJK Proofs)

If we have an LJK proof of I' = A; A* with
the invariant A, then there exists a cut-free LJK
proof of I' = A; A with the invariant A.

Proof. From the above two lemmata and the
cut-elimination property of LJ. i

To obtain a candidate for invariants to which
the right contraction is applied, we decompose
a formula into its components and assumptions.

Calculus of Classical Proofs 11 3271

Definition 2

(Invariants and Corresponding

Assumptions)

Given a formula A, the collection of candidates
for invariants denoted by CI(A) is defined as
a collection of strictly positive subformulae of
A with respect to —. In other words, when A
is decomposed by the following rule ~», CI(A)
is a collection of the second elements of all the
pairs appearing in the decomposition process
starting from ([], A):
([F]7 Al - A?) ~ ({F)Al]aAZ)’

where I' is a sequence of formulae. For each
A; € CI(A), we will write Assume(A;, A) for
the first element [T'] of the pair ([T'], 4;) appear-
ing in the decomposition of A.

For instance, in the case of Peirce’s law
Peirce= ((A—B)—A)— A we have CI(Peirce)
=[Peirce, A], where Peirce is called the outer-
most invariant, and A is the innermost invari-
ant. Then Assume (Peirce, Peirce)=[] and
Assume (A, Peirce) = [(A — B) —» Al.

Theorem 1 (Existence of LJK Proofs)
If we have I' =3 A in LK, then for any B in
CI(A), thereis a cut-free LIK proof of I = A4;
with the invariant B.

Proof. Assume that one has I' = A in
LK; then one also has I',Assume(B,A) =
B in LK. From Glivenko’s theorem, we
have T', Assume(B, A),mB = B in LIJ, and
T, Assume(B, A) —> B; B with invariant B in
cut-free LJK from Lemma 2 and Corollary 1.
Hence, we have I' = A; with invariant B in
cut-free LJK. o

By contraposition of Lemma 1, we can check
which subformulae of the given formula can be
invariants. For instance, in the case of Peirce’s
law there are only two invariants among the
subformulae, namely, the cases of proof 3 and
proof 4. From Theorem 1, moreover, for each
tautology there are invariants among the sub-
formulae, and the strictly positive subformulae
can be invariants.

The notion of invariants gives a general form
of Glivenko’s theorem in the sense that if I' =
A; is provable with the invariant B, then the
formula obtained from A by replacing the oc-
currence B of the invariant with ——B is prov-
able from I' in LJ. The obtained formula is de-
noted by A™™B. For example, from proof 3 one
can obtain the LJ proof of = ((A — B) —
A) —» ——A. In proof 4, the application of the
right contraction rule is delayed to the end, and
the proof can be translated into the proof of

3272 Transactions of Information Processing Society of Japan Dec. 1998

= -=(((A - B) » A) —» A) in LJ, which is
a consequence of Glivenko’s theorem.

Proposition 1

(Double-Negation Translation)

If I' = A is provable in LK, then ' => A™B
is provable in LJ for any B in CI(A).

This proposition gives another double nega-
tion translation depending on the invariants.
However, the embedded formulae by distinct
invariants become intuitionistically equivalent,
since A -+ -—B & ——=(A — B) in LJ.

3. Application to Programming

3.1 Natural Deduction System A,

It has become well-known from the work of
Griffin 15, Murthy 22, and others, that classical
proofs of I statements can be interpreted as
programs with control operators. On the ba-
sis of the Curry-Howard isomorphism ¥ the
key notion of LJK proofs also provides a simple
method for obtaining exception-handling pro-
grams. Following our discussion in the previous
section, we present a simple classical natural de-
duction system A.,. and analyze the computa-
tional content of the proofs. It willi be observed
that an invariant computationally plays the role
of a type of exceptional parameter.

As stated in the proof of Theorem 1, we have
the following equivalence between LK sequents
and LJ sequents:

Proposition 2 Let B be in CI(4). T =
Ain LK iff T, Assume(B, A),-B — B in LJ.

This approach would be different from the
existing ones with the double-negation elimina-
tion rule in the sense that classical proofs are
derived from two intuitionistic proofs by ap-
plication of the classical cut-rules with the in-
variant B, or equivalently the excluded middle.
Following the observation, we define a classi-
cal natural deduction system®, and study the
computational meaning of proofs in this sys-
tem. The types are defined as usual by type
variables, a constant 1, and —. The terms are
defined by two kinds of variables z's and y's,
where y's (called exceptional variables or con-
tinuation variables) are used only for negation
types —A defined as A — 1. FV(M) stands
for the set of free variables in M.

* At first appearance, our system Aczc seems to be
different from the existing ones. However, as a con-
sequence of Section 5.1, we will have an isomorphism
between the finite type fragment of Parigot’s Ay 26)
and Aegec.

Aezct
Types
Au=al|l|A—A
Contexts
Fu=()|z:AT|y:=AT
Terms
M=z | x.M| MM | raise(M) | yM
| {y:~A}M
Type Assignment,
'z :T'(z)
Iz:A+M:B

TFwM Ass D

I'FMi:A>B THM,:A

TF MM, : B (= E)
'FM: L
[k raise(M) : A (LE)
r-M:A . -
FEMA (11)if T = -4
y:mA-M: A

T {yoAir a4 &%)

We denote by AL the system A, with
replaced by (— E) and (ezc) deleted.

The classical rule (exzc) is a variant of the
ezcluded middle3®. This rule is introduced in-
dependently of (LE), in contrast to the double-
negation elimination rules, such as (_L¢), which
infers I' - A from I',~A + L, and (C), which
infers I' F A from I' —=—A. We call the rule
(exzc) a rule of exception-handling. The type
A in (exc) is called the type of an ezceptional
parameter.

Note the similarity of (LI) to (— E), but
note also that I' I/ y : =4 even if T'(y) = —A.
The negative assumption of the form y : -4
can be discharged only by (ezc) in this system.
This style of proof is called a regular proof in
Ref.1). In Aa-calculus ®?), not only regular but
also non-regular proofs are considered. How-
ever, from a non-regular proof we can simply
construct a regular proof that has the same as-
sumptions and conclusion.

The reduction rules (e2), (e3), and (e4) below
are logically obvious, but they are computation-
ally important. The reduction rule (e5) can be
considered as a logical permutative reduction
in the sense of Refs.31) and 1), which is also
called the structural reduction in Ref. 26).

Term Reductions:

(el) (Az.M)N > Mz := NJ;
(e2) (raise(M))N o raise(M);

Vol. 39 No. 12

(e3-1) y(raise(M)) v M
(€3-2) y({yr: 2 AIM) > [1= yl;
(e4-1) {y:~AIM > M ify g FV(M);
(e4-2) {y: ﬂA}(ralse(yM > {y:—~A}M;
(e5) ({y:~(A = B)}M)N

> {y:-B}((M[y < N)N),

where M[y <= N] is defined as follows:

zly < N| = =;

(Az.M)[y < N] = Az. My < NJ;

(yM)ly <= N] = y(My < N]N);

(yM)ly <= N]=y'(M[y <= N]) ify' #£y;

(M1 M)y < N| = (Miy < N|)(M:[y < NJ);
(raise(M))[y <= N] = raise(M[y < NJ]);
({y':mAIM)[y <= N] = {y':~A}(M[y < N]).

For technical simplicity, we identify
{y:—AHy: : ~AIM with {y: A} My, := y]
The transitive closure of > is denoted by b7,..
The reflexive transitive closure of b is denoted
by »,.., and the binary relation =.; is defined
as the reflexive, symmetric, and transitive clo-
sure of >. The relations »g, >3, and =g are
defined as usual. We sometimes write the term
{y}M without type information.

Proposition 3 There exists a term M such
that I' -y, M : Aiff A as a formula is classi-
cally provable from T

Proposition 4 (Subject Reduction)

Let T'ky,,. M : A If Mgy Ny then T' k),
N: A

Let C[] be a context with a single hole [] such
that C[]==1[]] (C[])M. We denote C[M] by
the term obtained by replacing [| in C[] with
the term M. We then have Clraise(M)] v¥,.
raise(M). Let P = Azi.{y}z1(Azq.raise(yz2))
of type Peirce. Then P(Ak.C[kM]) Do M
if k ¢ C[M]. Here, the context C[] is aban-
doned, and the term M to be passed on has
the same type as that of the exceptional pa-
rameter of P. This is why the type A in the
definition of (exc) is called the type of an ex-
ceptional parameter, and this example can be
used to implement a simple exit mechanism. In
terms of ML 2D, {y:~A}M may be informally
read as let exception y of A in M handle
(yx) => x end, on the basis of the correspon-
dence of L with exn (type of exceptions in
ML)*.

We now discuss which subformulae of the
given formula can give the type of exceptional
parameters. The notion of those invariants to
which the right contraction is applied can be
taken as the type of exceptional parameters.
Here, since —A is defined as 4 — 1, we re-
define the decomposition relation ~ as follows:

Calculus of Classical Proofs 11 3273

(Ir,A — B) ~ ([I',A],B) if B# 1.
Next, we will show that a strict fragment of A,
in which a single use of (ezc) is allowed is com-
plete with respect to classical provability. The
terms of the fragment, called LJK-style proofs,
are defined as follows:

Mc n= {y}M] |)\.’L'.Mc;

My o=z | de.My | MMy | yM | raise(My).
The following proposition shows that the re-
stricted terms M that represent some stan-
dard form of classical proofs are complete with
respect to classical provability, and that the ex-
istence of invariants provides an effective way
to determine which type has to be assumed in
writting classical proofs as programs.

Proposition 5 Let A as a formula be clas-
sically provable from I', and let A; € CI(A).
Then there exists a Aqz.-proof Mg, called an
LJK-style proof with the invariant A;, such that
' Mg : A and the type of exceptional param-
eter is A;.

This proposition also means that for each tau-
tology A and A; € CI(A), we have a classical
program M¢ of type A with at most one ex-
ception and the type of an exceptional param-
eter A;. In the next section, we give a concrete
method of translation into the LJK-style proofs.

3.2 Translation into LIK-Style Proofs

We give an algorithm for translating arbi-
trary classical proofs into LJK-style proofs.
This analysis gives a new reduction relation to
Aeze, which shifts the invariant to the inside.
The new reduction can be regarded, in a sense,
as an 7)-like expansion of (e5). To establish this
translation, we use an auxiliary type system
A7+, The translation consists of the follow-
ing three steps:

(1) Given a proof M of A in Ay, One obtains
an embedding G(M) into A7L;

(2) A pullback of G(M),

{y : —A}raise(G(M)(Az.yz)), is an LIK-style
proof of A with the invariant A;

(3) To obtain an LJK-style proof of A
with the invariant A;, apply the shift re-
duction (to be defined later) 7 times to
{y : ~A}raise(G(M)(Az.yz)), where CI(A) is

* Although we can write the ML program fun
Peirce(w) = let exception y of ’la in w(fn z
=> raise(y z)) handle (y x) => x end for P,
whose type can be inferred as ((’la -> ’8) ->
’1a) -> ’1a by the ML system, the correspondence
is snformal in the sense that ML is a call-by-value
language and the occurrence of y in exception y is
treated as the name of an exception rather than a
variable, as in {y}M. See also Ref.9).

3274 Transactions of Information Processing Society of Japan

Definition 3 The embedding G from the
proof terms of Aege to A7+ is defined as fol-
lows:

G(z) = Ak.kz;
G(Az.M)

= Ak.k(Az.raise(G(M)(Am.k(Av.m))));
G(MN) = Ak.G(M)(Am.G(N)(An.k(mn)));
G(raise(M)) = Ak.G(M)(\z.z);
G(yM) = Ak.k(G(M)y);
G({y:~AIM) = \y.G(M)y,
where we assume that two categories of vari-
ables are transformed into one category of A-
variables.

Note that the above embedding G, except
for the case of Az.M, bears a strong resem-
blance to a call-by-value CPS translation, for
instance, see Ref.9). A classical term M : A is
probably interpreted as a function G(M) which
takes as an argument a continuation that ex-
pects an object of A, where a variable y plays
the role of a continuation variable. Let b’ con-
sist of (e2), (e3-2), (e4-1), (e4-2), (eb), or (el)
replaced with (Az.M)V' v’ M[z := V'], where
V' u= 1z | yM. In fact, it can be shown that
if we have M v’ N, then G(M) =g, G(N)
in A7% with n-reductions, since G(M[y <«
N]) =g G(M)[y := Xm.G(N)(An.y(mn))], and
G(({y}M)N) =5 G({y}M[y < NIN), and
G((Az.M)V') 3 G(M[z = V']), and so on.
However, at the current stage, it is not clear
that such a computational property holds, in a
natural sense, for the full system with respect
to G.

Proposition 6 If we have ' - M : A in
Aeze, then ' G(M) : == A in \7L.

Proof. By induction on the derivation. O

We define an invariant shift reduction rela-
tion > for LIK-style proofs, which changes an
outer invariant into an inner invariant:

{y:~(4 = B)}M

>s Az {y:~B}(Mzly := Ak.y(kz)]).
The 4 applications of >, are denoted by b for
1=0,1,2,---.

Let [Ag, A1, -+, Ay] be CI(A). Then we as-
sume on the ordering that Ag = A is the out-
ermost invariant and A, is the innermost in-
variant, and that 4; = A} — A;;, for some A}
where 0 <7 <n—1.

Lemma 3 Let [Ag, Ay,---,Ap] be CI(A).
If we have ' M : A in A4, then for any 7 in
0 < i <mn, M such that

{y:—A}raise(G(M)(Ak.yk)) bt M’

Dec. 1998

is an LJK-style proof of A with the invariant
A

Proof. By case analysis on the number of 7.

Case of ¢ = 0:

- M: Ain Aege, then ' F G(M) : ==A
in A7+, Hence, {y: ~A}raise(G(M)(\k.yk))
is an LJK-style proof of A with the invariant
A= Ao.

Caseof i =k+ 1 where0< k<n-—1:
Assume that Azy - - zp.{y:~Ar}N is an LIK-
style proof of A with the invariant A, where
Ak = A;c — Ak+1. Then
Azy -2 {y: AR N by M gives an LIK-style
proof of A with the invariant Agy; by the
following replacement of each yP in N with
(Ak.y(kx))P:

[y:—A4g]! P: A
yP: L

Ps

[y : ~Apqa]'
ylkz) : L
Ak.y(kz) - ~Ag P: A
(Mey(kz))P: L

Ny := Mey(kz)] : A [z : AL
Ny := Ak.y(kx)]z : Agsy
{y: 2 Ak41}(N[y = Moy (kz)]z) @ Apga
Az {y:~Ap F(N oy = Aky(ka)]) : A
Azy - wpe Yy —App H(Naly = Ak.y(kz)]) - fé

3

The formula (invariant) to which the right
contraction rules are applied in terms of sequent
calculus is changed to the inside by the reduc-
tion rules ;. On the other hand, the shift of
the invariant is characterized in terms of The-
orem 1 on Page 39 of Ref. 30); that is, the ap-
plication of (L¢) can be restricted to atomic
formulae. Moreover, with respect to LJK-style
proofs with the innermost invariant, the appli-
cation of (exc) is taken to be a strictly positive
and atomic subformula of the conclusion in the
implication fragment (possibly with A). In the
more general case of adding a primitive V, it
would not be possible to postulate (ezc) only
for an atomic formula.

Vol. 39 No. 12

It is stated that >, and (e5) have a strong
connection, such that ({y:—(4 — B)}M)N >,
(Az{y:-~B}(My := Az.y(zz)]z))N g
{y : =B} My := Az.y(zN)]N), which leads to
the same result as the one by (eb), since we
know that My := Az.y(zN)]vj My < NJ.
That is, the two terms {y:—-(A — B)}M and
Az.{y:~B}(M[y := Az.y(zz)]z) are extension-

allv equivalent.

aly gl it

4. Strong Normalization and Church-
Rosser Properties

In this section, we prove that A.;. has the
strong normalization property and the Church-
Rosser property®. To verify that A.p. is
strongly normalizable, we first show the post-
ponement property of (e4) and then show that
the reduction relations consisting of (el), (e2),
(e3) and (e5) have the strong normalization
property, from which we show that all the re-
ductions are strongly normalizable. Next the
Church-Rosser property of A.;. can be derived
from the weak Church-Rosser property by us-
ing Newman’s Lemma. Let >;;5; be a reduction
relation consisting of (ei), (e7), (ek), and (el),
where 1 <14,7,k,1 <5.

Lemma 4 If My Ny o35 P, then MDIF235
N v} P for some Ns.

Proof. By induction on the derivations of by
and pio35. We show one of the cases; M1 N by
My N is derived from M; by Ms:

Case 1. M; = {y}(Az.M3) >y My = Az.Ms
where y & FV(Ms3):

We have MlN Dy M2N >y Mg[l' = N] Now
we also have MiN = ({y}(Az.M3))N »>5
}\?f/}((/\iEMg)N) Dy {y}Mg[ac = N] Dy Mg[x =

Case 2. M; = {y}raise(Ms) by My =
raise(Ms3) where y ¢ FV{Ms):
We have My N by MsN py raise(M3). On the
other hand, M1N = ({y}(raise(M3)))N b5
{y}(raise(M3)) N po {y}raise(M3) >3 raise(Ms).
Case 3. M; = {y}(raise(yM3)) vy My =
{y}Ms:
We have M{N s MaoN by {y}(M3[y R N]N)
Then ({y}(raise(yMs)))N vs

* From the isomorphism between Ay and Aeze Ob-
tained in Section 5.1, it would not be essential to
establish the fundamental properties of Aezc. How-
ever, the “proof” of Church-Rosser for Ay, given in
Ref.26) contains a fatal error. The straightforward
use of the Tait & Martin-Lo6f parallel reduction could
not work for proving the Church-Rosser property for
Xezc including (e3-2), i.e., renaming rules. See also
the footnote to Lemma 8.

Calculus of Classical Proofs 11 3275

{y}(raise(y(Mafy < NIN)N b;
{y}raise(y(Msly <= N]N)) by
{y}(Maly < NIN).

Case 4. MQN >1935 M3N from Mz D>1235 M32
We have MlN >4 Mo N D>1235 M3N From the
induction hypothesis, M;b 535 N'b} M3 for some
N'. Then MyN vy N'N o} MsN.

Case 5. MQN D>1935 M2N2 from N 19235 NQI
We have MiN by MaN pyags MsNo, and then
M N v1235 M1 Ny by MoNs.

The remaining cases can be similarly confirmed.
O

Next we show by the reducibility method of
Girard 1217 that by935 has the strong normal-
ization property. Let SA be a set of terms M
such that all the reductions consisting of (el),
(e2), (e3), and (eb) starting at M are finite.

Definition 4 (Reducibility)

Define a set of reducible terms of type 4, R(A4)
by induction on the structure of A:

(1) For M of atomic type A, M € R(A) iff
M e SN;

(2) For M of type A - B, M € R(A — B) iff
MN € R(B) for any N € R(A).

Lemma 5 Let A be a type. Let n > 0.

(a) zNy -+ N, € R(A) for N; € SN and N; of
type 4; (1 <i<n)and z of type A3 — -+ —
A, = A.

(b) R(A) C SN.

Lemma 6 Let M be a term of type B, and
N be a term of type A. Let N € R(A) if
z & FV(M). If Mz := N| € R(B), then
(Az.M)N € R(B).

The above two lemmata can be proved as in
Refs. 12) or 17).

Lemma 7 (1) Let M be a term of type A,
and y of ~A. If M € SN, then yM € R(L).
Hence, if M € R(A), then yM € R(L).

(2) Let M be a term of type L. M € R(L) iff
raise(M) € R(A).

(3) Let n > 0. Let M be a term of type A =
Ay = - = A, — a, where « is atomic, and
let y be a variable of =A. Let N; be a term of
type A; where 1 <i<n. [y« ﬁ] is denoted
by [y < Ni]---[y < N,], where N is Ny - - - N,.
If My <= N] € R(A) for any N; € R(A;), then
{y}M € R(A).

Proof. (1) We prove the first part by dou-
ble induction on the maximal reduction length
from M, denoted by v(M), and the term length
of M, denoted by I[(M). The second part is de-
rived from the first by using Lemma 5. Since
yM € R(L) iff yM € SN, it is enough to prove

3276 Transactions of Information Processing Society of Japan

that for each N if yM >1935 N, then N € SN.
The case analysis on N is as follows:
Case 1. M = raise(M;) p1a35 raise(Ms):
We have yM >3 M; with M; € SN since
M e SN.

Case 2. M = {yl}Ml >1935 {yl}Mgi
We have yM >3 yMi[y; := y]. From
M € SN, M; and M;[y; := y] arein SN. Here,
v(My) = v(M) and I(M;) < I(M). Hence, we
have yM'[y; = y] € SN.

Case 3. M D>1ags My:

We have yM 1935 yM;. Since M; € SN and
v(My) < v(M), we have yM; € SN.

(2) and (3) can be verified similarly to Lemma
6. O

We denote by [ﬁ /7] one of the following:

[z := N] with N € R(A), where type of z is 4;
or [y « N] with N; € R(4;) (1 < i < n),
where N is Ny --- N, the type of y is A, and
A=A -2 A, (n<m).

Proposition 7 Let the type of M be A and
n > 1. Assume that z; # z; for i # j and 2; ¢
Ujzi FV(N }. Then

M[N1 [z1] - [Nﬂ/zn] € R(A).

Proof. By induction on the structure of M.
We show the two cases. Let A= 4; = --- =
A — a where « is atomic (m > 0).

Case 1. M = yM;:

From the induction hypothesis, M; [N1 /=]
[j/zn] GR(A) If z; = y for some i, i, then we
also have M [N1 J21] - [No)z [N 2] N) €
R(Ak+1 — -+ = Am — a) with Nj; € R(4))
(N; = Ny -+ Nig; k < m) for some A;. From
Lemma 7, y(M[N}/z)- [N/) - [N fzal V)
€ R(L), and hence (yMl)[Nl/zl]_) [N [zn] €
R(L) since y = z; ¢ Ujzs FV(Nj). If there is
no z; such that z; = y, then it is straightfor-
ward.

Case 2. M = {y}My:

From the induction hypothesis, M; [N1 /2]
N, Jzally = Pl e R(A) for P; € R(A;) where
=P ---Ppband 1 <i< m., From Lemma

7, we have {y}(M;[N; /z1] - - [Ny /za]) € R(A),
and hence {y}Mi [171[/;1] []V//zn] € R(A).
O

Theorem 2 (Strong Normalization)
Well-typed Acyo-terms are strongly normaliz-
able.

Proof. From Proposition 7 and Lemma 5,
the reductions consisting of (el), (e2), (e3),
and (e5) are strongly normalizable. Following
Lemma 4 and the fact that the length of terms
decreases after the reduction of (e4), we can

Dec. 1998

show that A.;. has the strong normalization
property. 0
Lemma 8 (1) If M >, N, then
Mz i= P) e, Nl := Pl
If M v>eye N, then My < P]b},, N[y <« PJ*.
(2) IfMDe,;cN then Pz :=] e Plz := NJ.
If M >eze N, then Ply <= M|k, Ply < NJ.

Proof. (1) By induction on the derivation of
Deze- (2) By induction on the structure of P. O

Proposﬂslon 8

(Weak Church-Rosser Property)

If M vege My and M beye Mo, then My X, N
and M, v}, N for some N.

Proof. By induction on the derivation of bege.
We show one of the cases; {y}M be,. {y}N is
derived from M b, N:

Case 1. {y}M beye M where y ¢ FV(M):
Since y € FV(N), we have {y}N b¢ye N. From
the assumption, M bez. N.

Case 2. {y}M = {y}(raise(yM1))besc{y}M;:
M = raise(yM;) bege N = raise(N;) is derived
from yMipeyN1. For the derivation of yM;bey,
Ny, there are three cases:

Case 2-1. yM; = y(raise(M3)) bege N1 = Mo:
From the assumption, {y}M; = {y}raise(Ms)
= {y}raise(Ny) = {y} .

Case 2-2. yMl = y{yl}MZ Pexc Nl =

yMaly: == yl:

We have {y}N = {y}raise(V;) =
{y}raise(yMz[y: := y])>ece {y} Ma[y1 = y], and
also {y} My = {yHy1} Mz = {y} Maly :=y].

Case 2-3. yMibey. N1 = yNs from MibegzeNo:
We have {y} N = {y}raise(N;) = {y}raise(yN;)
Degc {Y} N2, and we also have {y} My >eqc {y} No
from M bz No.

Case 3. {y}M peze {y} V1 from M bey. Nyt
From the induction hypothesis, N v¥,. P and
Nyv},. P for some P. We have {y}Nvo¥ {y}P
and {y}Nl l>ea;c {y}P

The rest of the cases can be similarly con-
firmed. O

Theorem 3 (Church-Rosser Theorem)
If Mv;,, My and M}, My, then My pt, . N
and M v}, N for some N.

Proof. From strong normalization, weak
Church-Rosser, and Newman’s Lemma: see

* Even though one defines parallel reduction > as
usual for Aeqc including (e3-2), we cannot establish
that if M; > N; (i = 1,2), then Mi[y < M) >
Nily <= N2], which is a counterpart of fact (iv) in
the proof of Theorem 1 26), This is why we do not
use the method of parallel reductions that was tried
in Ref. 26), but instead use Newman’s lemma, to ver-
ify Church-Rosser. See also the observation in the
proof of Church-Rosser in Ref.9).

Vol. 39 No. 12

Ref. 2). a
5. Comparison with Related Work

In the following subsection, we briefly com-
pare Ay, with some of the existing systems
of call-by-name style, namely, Ap-calculus %),
Aa 32, and a variant of A.®. As regards the
relation between Ap and Mgy, We can obtain
an isomorphism between them and the strong
normalization of A.z.. Our observation on the
relation between Aa and Ag;. suggests a gen-
eralization of some reduction rule of A, which
can lead to an isomorphism between them. We
discuss what kind of reduction rule needs to be
added to A, to make it isomorphic with Agzc-

5.1 Relation to Au-Calculus

To study computational interpretations of
classical proofs, Parigot?® introduced Au-
calculus of second order classical natural deduc-
tion with multiple conclusions. The Au-calculus
has elegant properties: from a proof-theoretical
point of view, in contrast to the well-known
NK, A has no operational rules such as double-
negation elimination or the absurdity rule, but
it has multiple conclusions and structural ruies.
The positive fragment of Ay is complete with re-
spect to the positive fragment of classical logic;
that is, to prove, for example, Peirce’s law, we
do not have to use a 1 that is not a subfor-
mula of the theorem. On the other hand, in
the proof of NK, Aa 3%, ..., and a variant of
Ap ala Ong?®, we have to use L, which is not
contained in the conclusion. Moreover, since
in Ay the name [a] always appears as the form
[@] M for some term M, the notion of regularity
in Ref. 1) is involved in the system.

From a computational viewpoint, in Ay
some proof terms of theorems may contain
a free name § of L1; for instance, the term
Azy.ped]{z1 (Aze.pd.[a)zs)) of type ——A — A
has a free name 4. To keep our usual inten-
tion of closed terms, we adopt a variant of Au-
calculus & la Ong?® and study the relation be-
tween Ap & la Ong and Agz.. At first appear-
ance the Ap-calculus has a single conclusion;
however, the remaining conclusions are placed
on the left side after the semicolon.

The system of Ay is defined in the follow-
ing. The types are defined in the normal man-
ner from atomic types that include 1, using
—. The context I' and terms are defined in
the usual way. The set of types with names is
denoted by A.

26)~28)

Calculus of Classical Proofs II 3277

AL
Pu=()]z:AT;, Au={)]|A%A;
M=z | MM| A z.M | [a]M | pa.M;
LAz T(2)

I'e:A;A+-M:B
AR M. M:A— B

IAFM:A—-B T ARENGA
I5AFMN: B
INAFM:A

LA A% [a]M 2 L

DA A M. L
AR paM: A

The reduction relation », of B-reductions,
structural reductions, (S1), and (52) in Ref. 27)
is considered, namely,
(Az.M)N v, Mz := NJ;
(pa.M)N >, po.M[a <= NJ;
(S1): [a)(uB.M) b, M[B := al;
(52): pafe]M >, M if o ¢ FreeName(M).
The binary relations by, and =, are defined in
the usual way.

Definition 5

(Translation from Agpe to Ap)
z = Az.M = Xz M; yM = [y]M; MN =
MN; raise(M) = pa.M, where « is a fresh
name; {y}M = py.[y]M.

For this translation, we separate a context in
Aeze iNto two parts as follows:
o= Fl] Fz;
Iy ou= < > | .’I::A,Fl;
y:—A Ty = AY Ty,

Proposition 9 If we have I'y, o by, . M :
A, then I';; Ty by, M2 A

Lemma 9 If Mg, N, then M >, N.

Proof. By induction on the derivation M g,
N. a

From Lemma 9, Proposition 9, and the strong
normalization of Ap?728) we can also show
that well-typed A.;.-terms are strongly normal-
izable.

Corollary 2 Well-typed Agz.-terms are
strongly normalizable.

Definition 6

(Translation from Ap to Aeec)
() = @; (Az.M) = Az.(M); (MN) = (M)(N);
(a]M) = a(M); (uaM) = {a}raise((M)).
(A%, A) = a:-A,(A).

Proposition 10 If IA k5, M : A, then
[, (A) Fa.. (M) : A

Ty = ()| y:n4,Ty.

3278 Transactions of Information Processing Society of Japan

Lemma 10 If M >, N, then (M), (N).
Proof. By induction on the derivation M >,
N. O
Lemma 11 (1) For any Aeg-term M,
(M) >t M.
(2) For any Ap-term N, (N) >y N.
Proof. From the definitions of the transla-

tions. O
and 11, with respect

3 1 1 cL

, W
is an isomorphism between

to conversions ther
Aeze and Ap.

Proposition 11 (Aege =~ Ap) Aeze and Ap
are isomorphic in the sense that M =, N
iff (M) = (N}, and that M =, N iff
M =u N.

In terms of the right structural rules of se-
quent calculus, the operator u in Ay works for
both the right contraction and the right weak-
ening. In A.;., on the other hand, the two roles
are separated: the right contraction can be sim-
ulated by (ezc), and the right weakening by
(LI) and raise. The logical aspect of the op-
erator u can be split into two primitive aspects
of Aeze, which is also computationally justified
under the isomorphism, and is used to define
proof terms of classical substructural logics in
Ref. 10).

5.2 Relation to Aa-Calculus

For the purpose of establishing the Curry-
Howard isomorphism in classical logic, Rehof
and Sgrensen 32) introduced Aa-calculus by re-
striction of Felleisen’s control operator C to
avoid a breakdown of neat properties like the
Church-Rosser property. The Aa-calculus is
natural and has good properties not only in
terms of proof theory but also in terms of typed
calculus. In relation to Mgz, Aa-calculus treats
both regular proofs and non-regular proofs; in
other words, there is no distinction of vari-
ables that are bound by A-abstraction or A-
abstraction. Of course, any non-regular proof
can be translated into a regular proof without
changing the assumptions or conclusion, such
that each variable y that is abstracted by A is
replaced with Az.yz. To study the relation be-
tween Aa and Mgy, we consider the Aa-proofs
under this modification.

The definition of Aa 3% is briefly given below.
The syntax of Aa-terms is defined as follows:

M:u=z|XM|MM|AzM

The reduction rules are defined as (d1), (d2),
and (d3) together with S-reductions.

(d1): (Az.M)N v Az.M[z := Az.z(2N)];

From Lemmata 9
e

Dec. 1998

(d2): Az.zMv M ifx g FV(M);
(d3): Az.z(AdxM)> M fz,dg FV(M).

The type inference rules are (— I), (= E),
and the following (L.).

z:A—-1FM: L N
T'-Az.M: A (Le)

Definition 7

(Translation from Aa to Aexc)
z° = z; (Az.M)° = dx.M°;, (MN)° = M°N°®;
(Az.M)° = {z}raise(M°).

Proposition 12 (1) If we have I'), M :
A, then Tk, M°: A
(2) If we have M > N in Aa, then M° =,,, N°
n Aege-

The above proposition can be verified by in-
duction. In particular, (2) can be confirmed
by using (M[y := Az.y(2N)])° b M°[y < N°],
where to prove (2), in contrast to Lemma 10,
the case of (d1) introduces conversions instead
of reductions. From (2), equivalent Aa-terms
are translated into equivalent . -terms with
respect to conversions (i.e., the correctness of
the translation).

Definition 8

(Translation from Agge to Aa)
zt =z; Qz.M)t = Az MTt; (yM)T = yMT;
(MN)* = M*N*; (raise(M))™ = Ad.M*
provided d € FV(M); ({y}M)* = Ay.yM+.

Proposition 13 If I' -y, M : A, then
Ty, M*:A.

As regards the statement that if we have
Muvg,.N,then MT =5 N1 in Aa, where =4 is
the reflexive, symmetric, and transitive closure
of b in Aa, our reduction rule of (e4-2) fails even
if we drop (e3-1) and (e3-2). Our observation
suggests adding a new reduction to A, instead
of (d3), such that Az.x(Ad.M)v> Az.M, where
d ¢ FV(M): (d4). Here, the new rule (d4) is
a general form of (d3). The dropped (d3) rule
can be covered by (d2) and (d4); and moreover,
the simulation of Felleisen’s A,% by Aa (call-
by-value variant), which is observed in Ref. 32),
is not lost. We can then show that M+ b* N*
in Aa if M beye N without (e3-1) and (e3-2).
Moreover, we know that (M*)°>* .M and that
(M°)* p* M in Ao with (d4) instead of (d3).
Hence, as in Proposition 11, there is an isomor-
phism between A.;. without (e3-1),(e3-2) and
Aa with (d4) instead of (d3).

With respect to the remaining rules (e3-1)
and (e3-2), they can be simulated in Aa by us-
ing the following rule:
y(Az.M) > M[z := y], where the type of the

Vol. 39 No. 12

variable y is of the form A — L.

All the above modifications of Ax can lead to
an isomorphism (Aa =~ Aeze)-

5.3 Relation to A.-Calculus

For reasoning about a call-by-value language,
Felleisen, et al.®-7) introduced X.-calculus ex-
tending the type-free A,-calculus of Plotkin 2%

with the control operator C and the abort op-
erator A. Griffin 15) 110ed the Ac~calculus to ex-

CLiavOL NFLALiiid wustl VO Larluius o

tend the Curry-Howard isomorphism to clas-
sical logic from a computational interest. It
is noteworthy that A, has the usual reduction
rules and the computation rules used only at
the top-level, which bring the computation of
the top-level continuation to a stop. Since de
Groote?) proved that there is an isomorphism
between Au and a call-by-name variant of A,
the relation may be obvious. However, we ob-
serve that the computation rules in A, are nec-
essary for simulating some of the compatible
rules in A.z¢, and that A.;. would be simulated
in A, with some reduction rule. Following the
observations in Refs. 4) and 32), we consider the
following call-by-name variant of A.. The terms
are defined as usual.

M:=xz | XM|MM|FM
The reduction rules are 3-reduction, (Fr), and
(Frop):
(FL): (FM)N > FORMOA(FN)));
(Fiop): FM > F(Ak.M(Af.ES)).
The operator F has the type -—A — A, which
is a variant of and can be defined by Felleisen’s
C, see Ref.32). In addition, the computation
rule is (Fr): FM vy M(Az.z), which is applied
only at the top-level.

Definition 9

(Translation from A; to Aege)
(z) = z; (Ax. M) = Az (M); (MN) = (M)(N);
(FM) = {y}raise((M)(Az.yz)).

Proposition 14 (1) If we have I' by, M :
A, thenT'Fy (M) : A
(2) If we have M >N in A¢, then (M) =¢zc (N).

The above proposition can be proved by
straightforward induction.

Definition 10

(Translation from Agzc to Ac)
JI“:EZ)\ZL'M——/\.’I:M yM = yM; MN =
MN; raise(M) = F(Aw.M) where v is fresh;
WIM = FOy.y2).

Proposition 15 If we have I' |-y
then T'), M.

With respect to the correctness of the trans-
lation, the reduction rules (e2) and (e5) can

M: A,

exc

Calculus of Classical Proofs II 3279

be simulated by (Fr). We also know that
(M) »%,. M. In contrast, the compatible rules
(e4-1) and (e4-2) can be simulated by the use
of the non-compatible (F7). Moreover, for (e3-
1) and (e3-2), they can be simulated in A, by
using the following reduction rule Fy:

y(FM) > M(Az.yz), where the type of y is of
the form —A.

This reduction rule is a special form of C}
in Barbanera and Berardi®, which is also used
in Ref.4) to simulate (Sl) of Au. With the
help of (Fi,p) and (Fj), we can show that
(FIM) = FOyF O Q) (a.ya))
> FQAy.(Qv.(M)(Az.yz))(Ak.yk))
> F(Ay.(M)(Az.yz)), and then we have that
(FM) = FM in A, which can lead to (M) =
M in A.. Hence, there is an isomorphism be-
tween A, and Agzc without (e4-1) and (e4-2),
denoted by A. ~ Agze, which is consistent with
Xeze ~ Au (Proposition 11) and Ap =~ A.Y.
However, compared with the proof of Ay >~ A,
the proof of (M) = M in A, needs one more
reduction rule, namely, Fy, which would reveal
another aspect of the relation between A... and

At
6. Concluding Remarks

We have provided a simple natural deduc-
tion system A.;. of classical propositional logic
based on our observations of LJK proofs in
sequent calculus, and have demonstrated its
proof-theoretical and computational properties.
The Church-Rosser and strong normalization
properties hold in the calculus, and there is
an isomorphism between A.;. and Ay with re-
spect to conversions. We have shown from the
existence of LJK proofs that there is a strict
fragment of Az., which is complete with re-
spect to classical provability and would serve
as a standard form of classical proofs. Here, we
observed that the invariant to be applied by the
right contraction rules, in term of sequent cal-
culus, computationally corresponds to the type
of exceptional parameter, and the type can be
specified as a strictly positive subformula with
respect to —.

The relation between A.;. and A, is not ex-
actly clear. To study this, it would be impor-
tant to investigate the computational proper-
ties of a call-by-value version of Aege.. Such
an approach would also be worthwhile from a
practical programming viewpoint. The com-
putational properties of the call-by-value ver-

3280 Transactions of Information Processing Society of Japan

sion AY,. have been studied extensively from
a programming viewpoint, and classical proofs
as programs, including exceptions, are also
demonstrated in Ref.9). De Groote? proposed
a simple calculus Az}, of a call-by-value system
to explain the exception-handling mechanism.
The relation of AY,, to his calculus is also dis-
cussed in Ref.9).

Acknowledgments 1 would like to thank
M. Horai-Takahashi and Y. Andou for helpful
comments and discussions. I would also like to
thank all of the referees for their most valuable

comments.
References

1) Andou, Y.: A Normalization-Procedure for
the First Order Classical Natural Deduction
with Full Logical Symbols, Tsukuba Journal of
Mathematics, Vol.19, No.1, pp.153-162 (1995).

2) Barendregt, H.P.: The Lambda Calculus, Its
Syntaz and Semantics (revised edition), North-
Holland (1984).

3) Barbanera, F. and Berardi, S.: Esztracting
Constructive Contezt from Classical Logic via
Control-like Reductions, LNCS, Vol.664, pp.
45-59 (1993).

4) de Groote, P.: On the Relation between the Au-
Calculus and the Syntactic Theory of Sequen-
tial Control, LNAI, Vol.822, pp.31-43 (1994).

5) de Groote, P.: A Simple Calculus of Ezception
Handling, LNCS, V0l.902, pp.201-215 (1995).

6) Felleisen, M., Friedman, D.P., Kohlbecker, E.,
and Duba, B.: Reasoning with Continuations,
Proc. Annual IEEE Symposium on Logic in
Computer Science, pp.131-141 (1986).

7) Felleisen, M. and Hieb, R.: The Revised
Report on the Syntactic Theories of Sequen-
tial Control and State, Theor. Comput. Sci.,
Vol.103, pp.131-141 (1992).

8) Fujita, K.: p-Head Form Proofs with at Most
Two Formulas in the Succedent, Trans. IPS.
Japan, Vol.38, No.6, pp.1073-1082 (1997).

9) Fujita, K.: Calculus of Classical Proofs I,
LNCS, Vol.1345, pp.321-335 (1997).

10) Fujita, K.: On Proof Terms and Embeddings
of Classical Substructural Logics, Studia Logica
Vol.61, No.2, pp.199-221 (1998).

11) Fujita, K.: Polymorphic Call-by-Value Calcu-
lus Based on Classical Proofs, LNAI, Vol.1476,
pp.170-182 (1998).

12) Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs
and Types, Cambridge University Press (1989).

13) Girard, J.-Y.: A New Constructive Logic:
Classical Logic, Math. Struct. Comp. Science,
Vol.1, pp.255-296 (1991).

14) Girard, J.-Y.: On the Unity of Logic, Annals

Dec. 1998

of Pure and Applied Logic, Vol.59, pp.201-217
(1993).

15) Griffin, T.G.: A Formulae-as-Types Notion
of Control, Proc. 17th Annual ACM Sympo-
sium on Principles of Programming Languages,
pp-47-58 (1990).

16) Hayashi, S. and Nakano, H.: PX: A Compu-
tational Logic, MIT Press (1988).

17) Hindley, J.R. and Seldin, J.P.: Introduction to
Combinators and A-Calculus, Cambridge Uni-
versity Press (1986).

18) Howard, W.: The Formulae-as-Types No-
tion of Constructions, To H.B. Curry: Essays
on combinatory logic, lambda-calculus, and for-
malism, pp.479-490, Academic Press (1980).

19) Kobayashi, S.: Monad as Modality, Theor.
Comput. Sci., Vol.175, pp.29-74 (1997).

20) Maehara, S.: Eine Darstellung Der Intuition-
istischen Logik In Der Klassischen, Nagoya
Mathematical Journal, pp.45-64 (1954).

21) Millner, R., Tofte, M. and Harper, R.: The
Definition of Standard ML, MIT Press (1990).

22) Murthy, C.R.: An Evaluation Semantics for
Classical Proofs, Proc. 6th Annual IEEE Sym-
posium on Logic in Computer Science, pp.96—
107 (1991).

23) Nakano, H.: Logical Structures of the Catch
and Throw Mechanism, PhD Thesis, Univer-
sity of Tokyo (1995).

24) Nordstrom, B., Petersson, K., and Smith, J.
M.: Programming in Martin-Léf’s Type The-
ory, An Introduction, Clarendon Press (1990).

25) Ong, C.-H.L.: A Semantic View of Classical
Proofs: Type-Theoretic, Categorical, and De-
notational Characterizations, Linear Logic '96
Tokyo Meeting (1996).

26) Parigot, M.: Ap-Calculus: An Algorithmic
Interpretation of Classical Natural Deduction, -
LNCS, Vol.624, pp.190-201 (1992).

27) Parigot, M.: Classical Proofs as Programs,
LNCS, Vol.713, pp.263-276 (1993).

28) Parigot, M.: Strong Normalization for Sec-
ond Order Classical Natural Deduction, Proc.
8th Annual IEEE Symposium on Logic in Com-
puter Science {1993).

29) Plotkin, G.: Call-by-Name, Call-by-Value and
the A-Calculus, Theor. Comput. Sci., Vol.1,
pp.125-159 (1975).

30) Prawitz, D.: Natural Deduction: A Proof-
Theoretical Study, Almqvist & Wiksell (1965).

31) Prawitz, D.: Ideas and Results in Proof
Theory, Proc. 2nd Scandinavian Logic Sympo-
sium, Fenstad, N.E. (Ed.), pp.235-307, North-
Holland (1971).

32) Rehof, N.J. and Sgrensen, M.H.: The Aa-
Calculus, LNCS, Vol.789, pp.516-542 (1994).

33) Schellinx, H.: Some Syntactical Observations

Vol. 39 No. 12

on Linear Logic, J. Logic Computat., Vol.1,
No.4, pp.537-559 (1991).

34) Seldin, J.P.: Normalization and Excluded
Middle, I, Studia Logica XLVIII, 2, pp.193-217
(1989).

35) Szabo, M.E.: The Collected Papers of Gerhard
Gentzen, North-Holland (1969).

36) Troelstra, A.S. and van Dalen, D.: Con-
structivism in Mathematics, An Introduction,
North-Holland (1988).

(Received October 24, 1997)
(Accepted September 7, 1998)

Calculus of Classical Proofs 11 3281

Ken-etsu Fujita was born
in 1959. He received his M.E.
and Ph.D. degrees from Tohoku
Univ. in 1987 and 1990, respec-
tively. He has been in Kyushu
Institute of Technology as a re-
search associate from 1990 to
1994, and as a lecturer since 1994. His cur-

ront rogoarch interegsts are relationghi
rent rescarcil MUerests are reialionsnip between

type systems and logics, and its application to
programming. He is a member of IPSJ, JSSST,
JSAI, EATCS, and MSJ.

