Vol. 40 No. 1

Regular Paper

Transactions of Information Processing Society of Japan

Jan. 1999

Version Vector for Maintaining Distributed Replicas

KyouJi HASEGAWA," HIROAKI HIGAKI," and MAKOTO TAKIZAWA'

In object-based systems, objects are replicated to increase the performance, reliability, and
availability. We discuss a novel object-based locking (OBL) protocol for locking replicas of
objects that support abstract methods; this protocol was created by extending the quorum-
based protocol to abstract objects. Here, the number of the replicas locked is decided on
the basis of the frequency of use of the lock mode. Unless two methods conflict, subsets of
the replicas locked by the methods do not intersect even if the methods change the repli-
cas. Methods not computed on a replica but on another one are computed when a method
conflicting with them is issued to the replica. Hence, the replicas have the same state. We
propose a version vector for identifying what methods are computed on a replica.

1. Introduction

To increase the reliability, availability, and
performance of an object-based system, objects
are replicated in the system. Replicas of an ob-
ject have to be mutually consistent. The two-
phase locking (2PL) protocol)?) locks one of
the replicas for read and all the replicas for
write. This method is not efficient for write-
dominated applications, because all the repli-
cas are locked for write. In the quorum-based
protocol®, some numbers @, and @, of the
replicas named quorum numbers are locked for
read and write, respectively. Here, a constraint
“Qr+Q, > a” for the number a of the replicas
has to be satisfied. @, and @, are decided on
the basis of how frequently read and write are
issued.

Distributed applications are modeled as a col-
lection of multiple cooperating objects. Object-
based frameworks such as CORBA ®) are widely
used for developing distributed applications.
Objects support abstract methods such as
Deposit in a bank object. Each object is locked
in an abstract mode corresponding to a method.
A pair of methods op; and op2 supported by an
object o conflict if the result obtained by ap-
plying op; and ops to o depends on the com-
putation order of op; and ops V. In this paper,
we propose a novel locking scheme for replicated
objects, named the OBL (object-based locking)
protocol. The OBL protocol is an extension
of the quorum-based protocol 3) to abstract ob-
jects. Before computing a method op; on an
object o, some number @, of the replicas of o

t Department of Computers and Systems Engineer-
ing, Tokyo Denki University

208

are locked in the abstract mode for op;. @ is
the quorum number of op;. @ depends on how
frequently op; is invoked. The more frequently
op; is invoked, the fewer replicas are locked.
Suppose a pair of methods op; and op, are is-
sued to replicas of the object o. If op; and op,
change the state of o, the traditional quorum-
based protocol requires that “Q; + Q. > a”
hold. That is, both op; and op,, are guaranteed
to be computed on at least one replica. If op;
and op, are computed on replicas o’ and oY,
respectively, the states of o' and o* are differ-
ent. Then, if both op; and op, are computed
on replicas o' and o, respectively, o' and o*
have the same state if op; and op, are com-
patible. In the quorum-based method, there
must be at least one newest replica where every
write method is computed. However, it is pos-
sible in some instances to construct the newest
version even if there is no up-to-date replica.
To do so, it is necessary to identify what meth-
ods are computed on each replica. We propose
a version vector to identify the methods com-
puted. In the OBL protocol, fewer number of
replicas are locked than in the quorum-based
protocol and the 2PL protocol.

In Section 2, we present the system model.
In Section 3, we discuss abstract lock modes.
In Section 4, we discuss the O BL protocol with
the version vector. In Section 5, we evaluate the
OBL protocol in comparison with the quorum-
based protocol in terms of the number of repli-
cas to be locked.

2. Replicated Objects

A system is composed of objects 01,...,0,
(n > 1) that cooperate by exchanging messages
in a network. Each object o; supports a set of

Vol. 40 No. 1

methods op;1, .. ., opi,, and is encapsulated so
that it can be manipulated only through the
methods, it supports. By using the network, o;
can send messages to o; with no message loss,
in the order in which they were sent.

If a transaction T sends a request message for
a method op; to an object 0;, 0; computes the
method op;, which may invoke a method op;; on
another object o;;. 0; sends op; back to T as a
response. The transaction 7' is an atomic invo-
cation sequence of methods. T commits only if
all the methods invoked by T successfully com-
plete their tasks, that is, if the methods com-
mit. A method op invoked by T' commits only
if all the methods invoked by op commit. op is
also an atomic unit of computation. Thus, the
methods are nested”. A method that changes
the state of the object is an update method.

Let op(s) denote a state obtained by applying
a method op to a state s of 0;. A method op;; is
compatible with op;, iff ops; o opsx (s;) = opi ©
opi; (s;) for every state s; of 0;. op;; conflicts
with op;; unless op;; is compatible with opg.
The conflicting relation is not transitive. We
assume that the conflicting relation is symmet-
ric. The interleaved and parallel computation
of methods has to be serializable.

On receipt of a request from a method op;,
an object o; is locked in a lock mode p(op;) in
order to make the computation serializable. If
a method op; is compatible with ops, u(op;) is
compatible with p(ops). Otherwise, the modes
conflict. For example, Dlock and Wlock de-
note lock modes of the methods Deposit and
Withdraw of the bank object B, respectively.
Dlock and Wlock are compatible. After com-
puting op;, the lock of the mode p(op;) on o;
is released. Let C;(m) be a set of lock modes
with which a lock mode m conflicts in o;.

3. Abstract Lock Modes

Replicas of an object o; are locked in a mode
u(op;) before op; is computed. If the replicas
are already locked by modes conflicting with
u(op;), op; blocks. The larger number of modes
conflict with u(op;), the longer op; blocks. A
lock mode m; is more restricted than mo iff
Ci(m1) 2 Ci(m2) 9.

[Example 1] Let rlock and wlock be lock
modes for read and write, respectively, in
a file object f. Cy(rlock) = {wlock}
and Cy(wlock) = {wlock, rlock}. Since
Cy(rlock) C Cy(wlock), wlock is more re-
stricted than rlock. O

Version Vector for Maintaining Distributed Replicas 209

[Example 2] A bank object B supports meth-
ods Deposit, Withdraw, Check, and Audit.
Let Dlock, Wlock, Clock, and Alock show
the lock modes p(Deposit), p(Withdraw),
u(Check), and p(Audit), respectively. Dlock
and Wlock are compatible. The mode Clock
conflicts with the modes Dlock and Wlock.
Audit derives data on the accounts and stores
them in the object B. Hence, Alock con-
flicts with Dlock and Wlock but is compati-
ble with Clock. Cp(Dlock) = Cg(Wlock) =
{Alock, Clock} and Cg(Clock) = Cg(Alock)
= {Dlock,Wlock}. Since Cg(Dlock) N
Cp(Clock) = ¢, there is no relation among
Clock and Dlock. m]

Let ¢(m) be the frequency of use of a mode
m, that is, the frequency with which methods
of m are issued to o;. Here, 3, ,r @(m) = 1.
The weighted strength ||Ci(m)|| of m is defined
to be Zm’ECi(m) cp(m') (S 1)

[Definition] A mode m, is stronger than mo
(my = my) iff my € Cij(my), my € Ci(my), and
ICi(ma)l| = [|Ci(ma)]l. o

Let m; and my be modes p(op;) and p(ops)
in an object o;, respectively. If ||C;(m4)|| >
[|C;(my)]|, there is a bigger blocking probability
that op; will wait for the release of the lock
conflicting with op; than ops.

In Example 1, wlock > rlock since Cy(wlock)
D Cy(rlock). In Example 2, suppose the
usage ratios are @(Alock) = 0.1, ¢(Clock)
= 0.2, ¢(Dlock) = 04, and @(Wlock)
= 0.3. ||C(Clock)|| = [|ICs(Alock)|| =
@(Dlock) + p(Wlock) = 0.7. ||Cg(Dlock)||
= ||Cg(Wlock)|| = ¢(Clock) + ¢(Alock) =
0.3. Hence, Dlock < Clock, Wlock < Clock,
and Alock < Clock, since ||Cp(Dlock)|| <
ICB(Clock)||, ||C(Wlock)|| < ||Cp(Dlock)|l,
and ||Cp(Alock)|| < ||Cg(Clock)].

The modes supported by the object o; are
partially ordered according to the strength rela-
tion “<”. A mode m is referred to as mazimal
in o; iff there is no mode m’ such that m < m/.
The minimal mode is similarly defined. m is
the least upper bound of modes m; and my
(written as my Umg) iff my < m, ms <m, and
there is no mode m' such that m; < m' < m
and me < m' < m. The greatest lower bound
of m; and mgy (written as my Nmy) is similarly
defined.

We discuss how to lock replicas o},...,of"
in' the cluster R(o;). We extend the tradi-
tional quorum-based protocol® to the replicas

210 Transactions of Information Processing Society of Japan

in object-based systems. Let N;; be a set of
replicas to be locked by a method op;;, named
the quorum set of op;. Let Qi be the num-
ber of the replicas in N, named the quorum
number of op;;. The larger the number of repli-
cas locked, the more communication and com-
putation are required. Hence, the more fre-
quently op;; is invoked, the fewer replicas are
locked. The quorum number Q);; is decided so
as to satisfy the following constraints:
[OBL constraints]

o If u(opit) conflicts with p(opiv), Qit+Qin >

a;.

In addition, the quorum numbers Q;1, . . . ,Q;
are obtained so as to minimize the average
number ¢(op;1)Qi1 + - - - + @(0pa,)Qu, of repli-
cas locked. A transaction T locks replicas
0},...,0} of o; by the following locking pro-
tocol before manipulating the replicas by a
method op;;.

[Locking protocol]
1 First, a quorum set Ny is fixed for op;; in
the cluster R(o;)."

2 Every replica in Ny is locked in a mode

p(opit)-

3 If all the replicas in N;; are locked, the

replicas in N;; are manipulated by op;;.

4 When T commits, the locks on the replicas

in N;; are released. a

4. Object-based Locking Protocol

4.1 Quorums for Methods

In the quorum-based protocol, Qs + Qi > a;
if a pair of methods op;; and op;, are update
methods where a; is the number of replicas of an
object 0;. In the OBL protocol, Qi + Qi > a;
only if op;; conflicts with op;,,. In other words,
Qi + Qi > a; might hold even if op;; or op;y, is
an update method. The OBL protocol satisfies
the following properties:
[Properties] For every pair of conflicting
methods op;; and op;,, of an object o;:

1 At least one replica computes both op;
and op;,-

2 If apair of replicas o and of compute both
op;t and opj,, ol and of compute op;; and
0p;y, in the same order. O

[Example 3] Replicas B!, B?, B3, and B* of
the bank object B support the four methods
Deposit (D), Withdraw (W), Check (C), and
Audit (A) shown in Example 2. D is compatible
with W. C is compatible with A. D and W
conflict with C and A. D, W, and A are update

Jan. 1999
O—®
WF—©)

Fig. 1 Conflicting graph.

methods but C is not. Figure 1 indicates a
graph showing the conflicting relation among
the methods. Here, a node shows a method,
and an edge between the nodes indicates that
two methods shown by the nodes conflict. Each
replica B has a version number V* whose initial
value is 0. Let the quorum number Qp of D be
3 and Qw be 2. Here, Qp + Qw > 4. D is
issued to three replicas, say B!, B%, and B?
and V! = V2 = V3 = 1. Then, W is issued to
B! and B*. Since Vi(=1) > V4(=0), W is
computed on B! and V! = 2. B*is updated by
sending the state of B!. Here, V! = V% =2and
V? = V3 = 1. If the quorum number is decided
on the basis of the conflicting relation among
the methods, we can reduce the quorum number
but cannot decide which replica is up-to-date by
using the version numbers. Here, Qi + Qi >
a; if the methods op;; and op;, conflict. For
exa'mplea Q@p, Qw, Qc, and Q4 can be 2, 2,
3, and 3, respectively. First, suppose that the
method D is issued to two replicas B! and B?
and W is issued to B® and B%, since Qp = Qw
= 2. Here, the version numbers of the replicas
are changed to 1, that is, V! = V2 = V3 = V4
= 1. Then, C is issued to B', B?, and B? since
Qc = 3. Here, the state of B? is different from
the states of B! and B? although they have the
same version number 1. Since D and W are
compatible, the instance of D computed on the
replicas B! and B? is also computed on B® and
B*, and the instance of W computed on B3
and B* is computed on B' and B2. Then, C
can be computed on one of the replicas, say B'.
Thus, the replicas can be brought up-to-date by
computing methods that are not computed on
the replicas but computed on the others if these
methods are compatible. The problem is that
we cannot tell that the states of B! and B? are
different from those of B3 and B* by locking
at the version numbers of the replicas, because
the version numbers of B!, B2, B3, and B* are
all 1 after D and W have been computed. O
A replica o is considered to be newer than
another replica of if every method computed in
% is computed on of. We define a precedent

o0; -

relation “—” among the replicas to show which

Vol. 40 No. 1

replica is newer.
[Definition] A replica o} precedes another
replica of (o} — of) iff every update method
computed on of is computed on ol O

“oh — of” means that a replica of is ob-
solete, since some update methods computed
on o are not computed on of. The quorum-
based protocol requires that every quorum set
include at least one maximum replica of, that
is, o — of for every replica of. In other words,
if a pair of update methods op;; and opy,, are is-
sued, at least one replica o? computes both of
them. On the other hand, in the OBL proto-
col, no replica may compute both op;; and op;,,
if they are compatible, even if they are update
methods. Hence, there may be no maximum
replica but multiple maximal replicas. A clus-
ter R(o;) is complete iff there is a maximum
replica in R(o;). Although R(o;) is complete
in the quorum-based method, R(0;) may be in-
complete in the OBL protocol.
[Definition] Every pair of maximal replicas o
and of are unifiable (o = of) iff they have
the same state in the event that every update
method not computed on one of of and of is
computed on the other replica. a

Let (0ph1, - - -, O0Phi,) be a sequence Ty, of up-
date methods computed on a replica o but not
on of. Let (opk1,.--,0pk,) be a sequence mgp
of update methods computed on of but not on
of. If every pair of methods opp, and opg, are
compatible foru =1,...,lpandv=1,...,l, a
state obtained by applying 7, to of is the same
as a state obtained by applying 7y to of. The
state obtained here is referred to as the least
upper bound of of and of (written as of U o)
on to the precedent relation “—”. For example,
suppose the replicas B and B? compute the
method D and the replicas B% and B* compute
W in Example 3. Here, m3 = mo3 = (W) and
w31 = 741 = (D). The unifiable relation “=” is
equivalent. Let U(ol) be an equivalent set {of
| of = o in R(0;)} for a maximal replica of'.
A cluster R(o;) is consistent iff U(o}) = U (oz?)
for every pair of maximal replicas ofL and of in
R(o;). Here, U(ol) is referred to as a unifiable
set U(o;) of R(0;). A least upper bound in a
consistent cluster R(o;) shows a possible maxi-
mum replica to be obtained from the replicas in
R(0;). In the quorum-based protocol, there ex-
ists a maximum replica. If R(0;) is inconsistent,
the replicas cannot be consistent.

In an incomplete cluster R(o;), some methods

computed on a maximal replica have to be com-

Version Vector for Maintaining Distributed Replicas 211

puted later on other maximal replicas that have
not yet computed the methods. Incomplete
methods are defined as update methods that
are computed on some replicas but not on ev-
ery replica in a unifiable set U(0;) of R(0;). In
Example 3, the methods D and W are incom-
plete. The replicas B! and B? are unifiable,
ie., Bl = B2 U(o;) = {B', B?, B%, B}. Ev-
ery pair of incomplete methods not computed
on the same replica are not computed on any
replica. Complete methods are update methods
computed on every replica in U(0;).

Let us consider how a method op;; is com-
puted on the replicas. op;; can be computed
on a replica 0? in the quorum set Ny if ev-
ery incomplete method that conflicts with op;;
is computed on off. However, there might not
exist such a replica o} in R(o;). Hence, the
method op;; is computed as follows:

1 Incomplete methods on each maximal
replica are computed on the other maximal
replicas in the quorum set Ny, as explained
before. Here, every maximal replica is the
newest one.

2 Then, op; is computed on the maximal
replicas.

3 If ops is an update method, the states of
the replicas in N;; have to be changed. The
non-maximal replicas in R(o;) compute ev-
ery update method computed in the maxi-
mal ones but not computed in the replicas.
In another way, one of the maximal replicas
sends the state to the other replicas.

Here, every replica in N;; is the newest one,
that is, the maximum replica in R(0;).

4.2 Version Vector

In the OBL protocol, it is critical to identify
what methods each replica has computed. As
explained before, the version number cannot be
used to maintain consistency among the object
replicas, because some pairs of update methods
may not be computed on any replica if they do
not conflict.

We introduce a wversion vector to identify
what methods are computed on each replica.
Each replica o? has a version vector BM} =
(BMP},...,BM}) and a counter vector Ul =
(Uk,...,UL). Each element BM} is a ver-
sion of the replica of for a method op; in a
bitmap form (BM!M ... BM}*) showing to
which replica op;; is issued. The kth bit BM}*
is 1 if opj is issued to of; otherwise, 0 (k =
1,...,a;). BEach U} is a version number of of

212 Transactions of Information Processing Society of Japan

- B?
<00000, 00006 00000 Oooos> <0oaoo, Ooova 00oos Ooood>

B 3
<0000, 0000 00000 Ooooo>

<0p000, 00006 00006 Ovoor>

Jan. 1999

B4
<0000, 00006 00000 Ovooc>

<0p000, 00000 00000 Ovoor>

D
1] pemeeceeessssmmese pesmsmmsssccemomon
W <1100, 00000 00000 Oooos> <11100, Oooos 00000 Ooooo> l<0_(Jgo_(),_1_og1_5_0_ogqa_0_ooow. '<00000,_1_091_1,_0_ogo_a_0_090_@v.
D, 2 e W w
D, W < W

L L

C [<11100, 10011 00000 00000>| _______________ <0oco0, 10011 00000 Ooooo>

D, wcC D, W

D, <11100, 10013 00000 Opooc>
DWwcC D,

A <I1100, 10013 00006 Ooooc>
DI wcC

} , ,
<2111, 1oo1s OODOGV
D, ‘i’Dz WD,

<0000, 10013 00000 lo117>
DI WD2 A D A

—

Fig. 2 Version vectors.

<0000, 10013 00000 lo111>
w D2 D1 A

y

<00000, 10013 Ooooo 1o111>
WD2 D1 A

<11100, 10013 00000 Ooooc>
DI wcC

with respect to ops. Ui’; is incremented by 1
each time op; is computed on o and op; is
an update method. For example, vectors BM}§
and Ug of a replica B® are (BM},, BMBW,
BMpc, BMBA) and (Ugp, Upw, Ubcs Uba)
respect1vely, in Example 3 (Fig. 2). Here, let
V denote UtBMh For example, VBD = 21111

shows BM%,, = 1111 and U%p, =2. This means
that two method instances D; and D, of D are
computed on the replica B2, and B? knows that
the instances are also computed on B!,... B%.

V] is a version vector (V4,...,V}). Initially,

VB = (00000, 000005 Q00005 Ooooo) in each replica
Bl forj=1,..., 4. Suppose D is issued to B!
and B%. V} = Vﬁ = (11100, 00000, 00000, O0000)-
Then, the method W is issued to B3 and B%.
V3 = V5 = (00000, loo11, 00000, Ogooo)- Suppose
the method C is issued to B!, B2, and B®. V}}

= V& # V3. Since Vi, = VBD = 1y190 and
Viw = 10011, B! and B? know that D is issued
to B! and B2, and B® knows that W is issued
to B3 and B*. Here, no replica is maximum,
because every replica has computed either D
or W. One replica, say B!, is selected. The
instance of W computed on B® is computed
on B'. V}y is changed to be lgoi1, ie., V3
= (L1100, 10011, Ooooo; Ooooo)- Then, C is com-
puted on B!. Since C is not an update method,
V3¢ is not changed. Suppose D is issued to B3
and B*. V§ = V4 = (Loo11, Loo11, 00000, 00000)-

Then, the method A is issued to the replicas
B?, B3, and B*. Since V2, = 1y100 and V3p
= 10011, B? and B3 exchange the instances of D
computed with one another. In addition, V3,
= 0gogo and VBW = 1po11. Here, the instances
of the methods D and W computed on B® have
to be computed on B? to obtain the least upper
bound version of B2 and B®. Since D and W
are compatible, D and W can be computed on
B? in any order. Now, the method A is com-
puted on B? after D and W are computed. V32
= (21111, o011, Ooooo, lo111) and A changes the
state of B2. If the state of B? is sent to B3
and B*, B% and B* are updated with the state
of B2 VI = Vi = V§. Here, Vi, = Vi, =
VBD = VBD (= 21111) is initialized to be Opggo
since the same instances of D are certain to be
computed on every replica. Instead of sending
the states to B® and B*, B® and B* can com-
pute A. Then, B? can send a sequence of the
method instances computed on B? to the other
replicas.

Let BM} and BMF be bitmaps for the repli-
cas of and of, respectlvely BM! is included
in BM’“ (BM" C BM}) iff BM’” =1if BM}M

=1 for j =1,...,a;. BM} U BM} shows
(BMl,..'.,BM‘?*'), where BM7 = 1 if BM!
= BMY =1 and BMJ = 0 otherwise for
j = 1, ey Q4.

o Vi <VEif Ul <UE and BM! C BME.

Vol. 40 No. 1

. VS VFIEV) <
Opit.-

If BM: n BME # ¢, V{ and V’i are not or-
dered even if Uil Uk or Uk < UL. For exam-
ple, suppose VB = (11100, Uoooo, 00000, 0o000)
and V3 = (21110, Ooo0o, Ooooo, Ooooo). Here,
Vi < VB Here, if V2 = (20011, 00000, 00000,
Oooo0), V3 and VB are not compared. In a sub-
set N C R(oz), h is mazimal iff there is no
replica of in N where V¥ > V;* for of in N.

We deﬁne a least upper bound operatlon U
for a pair of vector elements VZ’; and V¥ on op;
as follows:

V¥ for every method

VE i VE < VR
vh it vh > vk
Ul + vk, BM) U BME)
otherwise.

o VEUVE=(VEUVE,... Vi UVi).

For example, suppose Vg = (10011, 00000,
00000, 00000) and V3 = (11100, loo11, Ooooo;

Ooo00)- VA U VE = (21111, Loo11, 0000, Oo000)-
[Definition] A version vector V;* is equivalent

to VF (Vh = V) iff VR = V’c for every up-
date method op;, conﬂlctlng w1th every pair of
compatible methods. a

For example, the methods D and W are com-
patible with one another and conflict with A.
Hence, V3 (= (11100, 00000, Ooooo, 20101)) VB

= ({00000, 10011, 00000, 20101)) since V34 = V3,
= 20101- If V' = V| the replicas of and of can
have the same state by computing compatible
methods that have not yet been computed on
the replicas. For example, the replicas B! and
B? have the same states if the methods W and
D are computed on B! and B2, respectively.

4.3 Locking Protocol

We discuss a locking protocol with the ver-
sion vector. Suppose a method op; is issued
to an object 0;. A replica of has a method log
I} for storing a sequence of method instances
computed on of. Let I be a subsequence of
instances of op; in the method log lh Here, let
op.BM be a bitmap showing rephcas to which
an instance op is issued. That is, op.BM* =1
if op is issued to a replica of. The counter U}
gives the number of method instances in If%.
[Locking protocol] An object o, sends a
method op;; to every replica in the quorum set
N;; of opjy.

1 All the replicas in the quorum set N;; are
locked in a mode u(op;). Unless the repli-
cas are successfully locked the method op;;
aborts. Each replica o in N;; sends a re-

o ViUV =

Version Vector for Maintaining Distributed Replicas 213

sponse with the version vector V;* and the
method log I to os.

2 On receipt of the responses from all the
replicas in the quorum set N, o, obtains
Ve, = U {VF | of € Ni}. Let Py(opi)
denote a set {opw | opiu conﬁlcts with
opit, 0pi.BM # (1...1), and o computes
Opiv}. 05 finds a rephca oh in N,t that is
maximal with respect to a method conflict-
ing with op;.

3 If a rephca o is found at step 2, o, re-
quires of to compute the method op;. o?
computes ODit .

a If opy is not an update method, of
sends a response to 0s.

b Otherwise, o? sends the set Pp(opi:)
to one rephca of Ni. of computes
every method op;, in Pp(op;) unless
of has computed op;,. For every op;,
in Ph(opit), opiy.BM = op;y.BM V
opit.BM. of sends a response to os.

4 Unless o is found at step 2, os selects one
maximal rephca ol in Ny. Let P(opi) be
a set {opiy | opiu conﬁlcts with op;; and is
computed on some replica of in N;:}.

a If op;; is an update method, o, sends
the set P(opi:) to every replica in Ny.
Each replica o computes every update

method op;,, computed in N;; which is
not computed on o} and then computes
op;:. For every method opy,, in P(opy),
0pi.BM := 0py,.BM V op.BM in o?.

ol sends a response to 0s.
b If op;; is not an update method, o, se-
lects one maximal replica of in N;. o
sends P(op;t) to o. o computes every
0Piv in P(op;;) if of has not computed
ODiw, and then of computes op;;. of
sends a response to 0. |
Methods stored in the log I} have to be even-
tually removed in order to reduce the size of the
log in the replica o?. The bitmap op;.BM in
the log I shows that o" knows that the instance
op;t is computed on of if BM* =1. If op;y. BM
= (1...1), of knows ‘that op; is computed on
every rephca However, o" cannot remove op;;
from the log I#, because another replica of may
not yet know that every replica has computed
opi:- Hence, a method instance op;, in the log

I} is removed as follows:

e 0p;, is removed from the log I} if op;,,. BM
= op;y.BM = (1...1) for every method

214 Transactions of Information Processing Society of Japan

opiy in I} that conflicts with op;, and is
computed before op;,,.

The counter U% and the version BM} are ini-
tialized a,gam ie. Ul :=0and BM! :=(0...0)
if BM} gets (o). If BME = (1...1) in
some replica o the method op;; is computed
on every rephca o¥ in the quorum set N;;. Thus,
U} shows how many instances of op;; are com—
puted on of. If BM2 N BME = ¢ and (U
or Uk > 0) for an update method opj, a se-
quence s* of instances of op; computed on of
is different from a sequence s* in of. The se-
quences s" and s* include U and U; k instances
of op;z, respectively. In the OBL protocol, the
sequences s and s are required to be com-
puted on of and of, respectively. Then, BMZ;
= BMf = BM} n BMf and U} = Ut =
Uk + Uk + 1.

[Proposition] For every update method op;;,
BM} = BME and U = UE if BM} n BME

£ ¢, o
[Proposition] For every update method op;,
Ut < UL if BM! C BME. O

[Theorem] For every update method op;;, if
BM} C BMF and U} < UE, every instance of
opit computed on Bh is also computed on BY.
D
From the properties of the OBL protocol, it
is straightforward to show that the following
theorem hold:
[Theorem)] If V* < V*, every pair of conflict-
ing method instances op;; and op;, computed
on areplica of are computed on another replica
¥ in the same order. a
[Theorem] Every pair of maximal replicas ol
and of can be unified to create one unique
rephca [}
[Proof] Assume that a pair of methods op;
and op;, conflict. If op; is computed on the
replica o?, 0p;,, is also computed on o?. Oth-
erwise, o is not maximal. Here, both op;
and op;, are computed on both of or of, or
on neither of them, from the OBL properties.
Method instances computed on either o? or of
do not conflict. These methods can be com-
puted in any order. Therefore, if the instances
computed on one replica are computed on the
other replica, of and of have the same state. O
From these theorems, the following theorem
holds:
[Theorem] All the replicas can be unified to
create one unique replica in the OBL protocol.
0

Jan. 1999

5. Evaluation

We evaluate the OBL protocol by compar-
ing it with the traditional quorum-based proto-
col in terms of the number of replicas locked.
An object o; supports methods op;1,...,opi,
(i > 1). In the quorum-based protocol, a
method op; of an object o; is considered to
be write if op; is an update method. Other-
wise, op;; is read. Quorum sets N;; and N,
for a pair of methods op; and op;, are de-
cided so that N;; N Ny # ¢ if op; or opyy, is an
update method. On the other hand, the quo-
rum sets N;,..., NNy, are obtained on the ba-
sis of the conflicting relation among the meth-
ods. N; N Ny # ¢ only if op;; conflicts with
opi. That is, Ny N N;,, = ¢ if opy is com-
patible with op;, even if op; or op;, is an up-
date method in the OBL protocol. Let ¢(op;;)
denote the frequency of use of a method op;,
where p(opi1) + ... + @(opy,) = 1. Let C; de-
note a conflicting relation, where Cjy,, = 1 if
opy conflicts with op;,, and Cj, = 0 other-
w1se The minimum quorum numbers Q and
Q of the replicas to be locked in the OBL pro-
tocol and the quorum-based protocol, respec-
tively, are calculated for various values of the
frequency of use ¢ and C;.

In the evaluation, an object o; is assumed to
support two methods op; and op;. Figure 3
shows conflicting graphs for three cases of the
conflicting relation C;. In the first case, op;
conflicts with op,. In the second case, op; con-
flicts with op; and ops. In the third case, op;
is compatible with ops.

Figures 4, 5, and 6 show the quorum num-
ber, that is, the number of replicas locked for
usage frequency of op; in the case where there
are ten replicas (a; = 10). In the traditional
protocol, the quorum number of the method
op; depends on whether or not op; is an up-
date method. We assume that op; is an up-
date method if op; conflicts with itself and that
either op; or op, is an update method if op,

case 1 :
'@ @ case?2:
case 3 :

Fig. 3 Conflicting relations.

Vol. 40 No. 1
=== == OBL protocol
............ wie guorum-based minimum
=10 quorum-based maximum
a;= amemme= guorum-based average
6.0 . g :w“'““ i
- :'“ ol
5.0 < “\'\
. v d]
5 ATY AT
2 P Il’ . N,
P A ~
§E 40 g v
= L & ~
§ 7
S 30
S ,/ °
R +
0) *
2.0 3
*
.
A3
1.0
0 . 0.5 Lo

Frequency of op,
Fig. 4 Evaluation of OBL protocol (case 1).

====u OBL protocol

r— quarum.based minimum
quorum-based maximum
a; =10 === quorum-based average
6.0 '..-.‘HT—‘*
.’ ; p—— "‘f’-'
A"’ l
L 30 g f“'
S R
S Rd /“
£ w0 t4 4
E L P
f ., yd
LT/
S /
2.0
4
L0
0 05 10

Frequency of op,

Fig. 5 Evaluation of OBL protocol (case 2).

== === OBL protocol
s quorum-based minimum
_ e UOTUM-based maximum
a,= F AL — quorum-based average

6.0

5.0

X e [
W0+ = :
f“" "\.

3.0

Quorum number

2.0

1.0

0 0.5 1.0
Frequency of op ;

Fig. 6 Evaluation of OBL protocol (case 3).

Version Vector for Maintaining Distributed Replicas 215

conflicts with op,. For example, at least one of
op; and ops must be an update method in case
1, because op; conflicts with op,. Hence, op;
and op, are considered to be one of three pairs:
write and write, write and read, or read and
write. That is, there are three cases, depend-
ing on whether the methods are update ones or
not. Hence, there are three combinations of up-
date and non-update methods in case 1, two in
case 2, and four in case 3. By computation, we
obtain the minimum, maximum, and average
quorum numbers for the quorum-based proto-
col. The quorum number of the OBL protocol
is also calculated so that the OBL constraint
presented in Section 4 is satisfied. Figures 4,
5, and 6 show that fewer replicas are locked in
the OBL protocol than in the quorum-based
protocol. In the OBL protocol, the conflicting
relation among the methods is defined on the
basis of the semantics of the object. Even if
the methods op; and opy are update methods,
op; may be compatible with ops. For example,
method D is compatible with W in Example 3.

6. Concluding Remarks

We have discussed an object-based locking
(OBL) protocol for replicas of objects. Objects
support more abstract level of methods than
read and write. The strength relation among
the lock modes is defined on the basis of the
conflicting relation among the methods and the
frequencies of use of the methods. In addition,
we proposed the version vector for maintain-
ing the mutual consistency of the replicas. The
replicas are not required to compute every up-
date method instance that has been computed
on the other replicas if the instance is compat-
ible with the instances computed. Our eval-
uation showed that by using the OBL proto-
col, more efficient access to replicated objects
can be realized in a distributed system, since
fewer replicas are locked than in the traditional
quorum-based protocol.

References

1) Bernstein, P.A., Hadzilacos, V. and Good-
man, N.: Concurrency Control and Recovery in
Database Systems, Addison-Wesley (1987).

2) Carey, J.M. and Livny, M.: Conflict Detection
Tradeoffs for Replicated Data, ACM TODS,
Vol.16, No.4, pp.703-746 (1991).

3) Garcia-Molina, H. and Barbara, D.: How to
Assign Votes in a Distributed System, J. ACM,
Vol.32, No.4, pp.841-860 (1985).

216 Transactions of Information Processing Society of Japan

4) Hasegawa, K. and Takizawa, M.: Optimistic
Concurrency Control for Replicated Objects,
Proc. Int’l Symp. on Communications (IS-
COM ’97), pp.149-152 (1997).

5) Jing, J., Bukhres, O. and Elmagarmid, A.:
Distributed Lock Management for Mobile
Transactions, Proc. IEEE ICDCS-15, pp.118-

125 (1995).

6) Korth, H.F.: Locking Primitives in a Database
System, JACM, Vol.30, No.1, pp.55-79 (1983).

7) Moss, J.E.: Nested Transactions: An Ap-
proach to Reliable Distributed Computing,
The MIT Press Series on Information Systems
(1985). :

8) Silvano, M. and Douglas, C.S.: Constructing
Reliable Distributed Communication Systems
with CORBA, IEEE Communications Maga-
zine, Vol.35, No.2, pp.56-60 (1997).

9) Yoshida, T. and Takizawa, M.: Model of Mo-
bile Objects, Proc. 7th DEXA, Lecture Notes
in Computer Science, Vol.1134, pp.623-632,
Springer-Verlag (1996).

(Received May 8, 1998)
(Accepted November 9, 1998)

Kyouji Hasegawa was born
in 1974. He received his B.E. de-
gree in computers and systems
engineering from Tokyo Denki
University, Japan in 1997. He
is now a graduate student of the

A master course in the Dept. of
Computers and Systems Engineering, Tokyo
Denki Univ. His research interests include dis-
tributed database system and object manage-
ment systems.

Jan. 1999

Hiroaki Higaki was born in
Tokyo, Japan, in 1967. He
received the B.E. degree from
the University of Tokyo in 1990.
He received the D.E. degree in
1997. His research interests in-

“% clude distributed algorithms and
computer network protocols. He is a member
of IEEE CS, ACM and IEICE.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku University,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku
Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves
on the program committees of many interna-
tional conferences. His research interests in-
clude communication protocols, group commu-
nication, distributed database systems, trans-

action management, and security. He is a mem-
ber of IEEE, ACM, IPSJ, and IEICE.

