RO FRESE CER7ERY) 2EAR

3 —259

The Worldwide Multilingual Computing (8):

4Q--8

Multilingual Basic Environment — C Language and OS

Shoichiro Yamanishit, Kazutomo Uezonot, Tomoko Kataoka*, Hidejiro Daikokuyat,
Toshio Oyat, Tadao Tanakat, Kenji Maruyamat, Yutaka Kataoka* and Hiroyoshi Oharat

* Centre for Informatics, Waseda University 1 School of Science and Engineering, Waseda University
% Research and Development, Japan Computer Corporation

1. Introduction

The Multilingual Computing Environment was
developed by the Global I/O TM/C System based on
researches of characters, codesets and orthographies [1].
The information brought by the researches of the multi-
lingual computing is the best criterion to define functions
of programming languages, device drivers, application
softwares as well as libraries and structures of functional
modules [Talk 1]. In fact, a lot of problems, insufficien-
cies and necessities to enhance specifications were found
by the information discovered by our researches [Talks
3,5, 6]

The functions to be enhanced were modified but
original calling conventions of the functions were not
modified to ensure backward compatibilities. But to
realize the environment, a few functions were provided
and applications have to call the functions, e.g., for
Multi-Locale Model.

Especially, it was found that X server and X font file
had a lot of place to improve. In the WASEDA Multilin-
gual Computing Environment (WASEDA MLCE), X
protocol itself and font file structures are the same as
X11. But by our test, new X server and new font files
could increase performance of X server when it draws
texts.

By the implementation of the environment, restric-
tions to process characters were cleared, and larger pos-
sibilities of computing came. And WASEDA Multilin-
gual Computing Environment requires minimum
changes for applications to be multilingual. But new
applications that are designed as multilingual can call
more effective additional functions to be multilingual.

2. Programming Language C

First of all, syntax of Programing Language C [2, 3]
brings an obstacle to multilingual processing. Data type
char can be interpreted as signed or as unsigned char by
the specification of C. Since the range of an octet is
from 00/00 to 15/15 and each bit pattern is non-zero
value, the type char should be unsigned char. Thus, tak-
ing type char as unsigned char by modification of the C
compiler itself was selected on the WASEDA MLCE.

WC is also implementation dependent and using WC
in a source code does not ensure portability of the code
[2, 3, 8 9]. And generally WC depends on. Locale
Model except for our system [4]. Thus, our compiler
may restrict using WC in a source code by compile
switch.

All source codes of the Global /O TM/C System
were carefully programmed to avoid problems caused
from the problem above. Therefore, the Global I/O
TM/C System can compile and run on other systems.

3. POSIX Libraries

Basically POSIX Locale Model is a bi-lingual model
and the problems caused by POSIX Locale Model have
been discussed {8, 10]. The Meta Converter System, the
kemel of the WASEDA MLCE, can absorb system
dependencies by no hard-codings that all data are stored
in files to be customized [1, 4]. Note that there are some
serious problems in Locale related functions still
remained.

The ctype macros and wctype functions were also
replaced by calling functions in the Meta Converter Sys-
tem [1, 4]. Also all functions in string.h were rewritten.

Since one code point of WC in the WASEDA MLCE
is unique among locales, changing a locale does not
effect the results of the functions. But relation between a
locale and a language is not defined, i.e., a locale does
not specify language nor codeset. Thus, collation order-
ing must not be determined by a locale — specification
requires to do so by function strcoll() and others. Colla-
tion orderings depend on not only language but also per-
sonal requirements. Therefore, collation ordering must
be selected from multiple candidates and collation order-
ing must be done by TMCs [Talk 4]. But the Locale
Model does not have such flexibilities. In the WASEDA
MLCE, additional functions of the Locale Model can
provide the flexibilities.

Note that collation ordering beyond boundary of
graphic character sets does not have any rule. The addi-
tional functions can set a rule to the situation.

The largest problem in the specification of formatted
wide-character input/output functions occurs from map-
ping between WC codepoints and glyphs. The number
of glyph of one WC codepoint is not always one [11, 12,
13, 14, Talk 4). And when a ligature is prescnted by two
WC codepoints or more, one of such WCs cannot spec-
ify a glyph. Therefore, specifying ‘%c’ for one WC
codepoint cannot work correctly. Also functions
wctomb() and mbtowc() cause the same trouble. By the
problems above, POSIX and C specifications clearly
need more considerations.

Note that OM in the WASEDA MLCE can return the
number of glyphs from one WC codepoint. By this
observation of the relation between the number of glyphs



3 —260

and the number of WC codepoints, bitfields of WC were
determined in the WASEDA MLCE, i.e., a WC only as
‘identifier’ does not work.

4. X Window System

The X Waseda Window System (WX) is backward
compatible to X11 RS and R6 in calling conventions of
X libraries. And X protocol of the WX is fully compati-
ble to X11 RS and R6.

In order to realize 4 physical directions, an emulator
to draw 4 directions is embedded in the OM of WX. But
informations in font files in pcf format is not enough to
draw glyphs vertically. Thus, extra calculation is
required to determine the correct location of a glyph
when the glyph is drawn vertically. By adding new
drawing protocol which draws string vertically can dra-
matically increase drawing performance of X server. To
add the new protocol, the pcf format must be added to
specify information locating a glyph in a vertical line.

Glyph angle rotation can save memory space allo-
cated by X server. Most of characters, when the charac-
ters are drawn in different directions, can specify their
shapes by angle rotations. Thus, adding angle rotation
ability to the protocol can save memory space spent by X
server.

To support improvings above, WX protocol and WX
server are now under testing. For the WX protocol, new
library X11 can recognize versions of X server and select
new protocol or current version. And WX server can
accept both new font format and current one.

5. Peripherals

In order to accept any type of codeset, tty drivers
should pass 8bit through. But processing input sequence
by device drivers is rather difficult because the length of
one codepoint is not always one octet. Thus, to solve the
problem, the Meta Converter System should be called
from such drivers.

Cursor movement handling routines should manage
vertical line as well as horizontal line. And such control-
ling needs determining one ‘character’ and one ‘glyph’,
so assisting by the Meta Converter System is also
required.

6. Kernel of OS

Most of Current Operating Systems do not have real-
time capabilities which can ensure restricted response
time. For the event driven programming for visual and
sound managements, the realtime capability is essential.
But waiting time in current OSs is quite long by their
time-sharing managements. For example, X server has
to process incredibly large number of logical events
stacked when too many processes are running on a Sys-
tem. Therefore, realtime capabilities for event handling
and improvement of re-execution of processes are essen-
tial. Those capabilities were designed and those will be
integrated into the WASEDA ML.CE.

7. The WASEDA MLCE and its Future

As described above, the WASEDA MLCE was
designed and implemented. By this total coordination of
the system, the WASEDA MLCE is quite effective for
daily use with consistencies.

Beyond current results, which are essential for defin-
ing and using multilingual environment, a kernel which
is more effective to realtime and process management is
under development. The new kermel and WASEDA
MLCE will provide larger integrity of Multilingual Com-
puting and Multimedia.

References

[1] Kataoka, Y. et al., 1995. Codeset Independent Full
Multilingual Operating System: Principles, Model
and Optimal Architecture, IPSJ SIG System Soft-
ware & Operating System, 68-4, pp. 25-32.

[2] ISO/IEC 9899: 1990, Programming language C.

[3] ISO/MEC 9899: 1990/DAM 3, Draft Amendment
1:1994 (E), Programming languages — C AMEND-
MENT 1: C Integrity.

[4] Tanaka, T., et al., Multilingual I/O and Text Manip-
ulation System(4): The Optimal Data Format Con-
verter to/from MB/WC/TMC, Proceedings of the
49th General Meeting of IPSJ, Vol. 3, September
1994, pp 305-306.

[5] Kataoka, Y., et al., Multilingual I/O and Text
Manipulation System(1): The Total Design of the
Generalized System based on the World’s Writing
Scripts and Code Sets, Proceedings of the 49th
General Meeting of IPSJ, Vol. 3, September 1994,
Pp 299-300.

[6] Uezono, K. et al., Multilingual I/O and Text Manip-
ulation System (2): The Structure of the Output
Method Drawing the World’s Writing Scripts
beyond ISO 2022, Proceedings of the 49th General
Meeting of IPSJ, Vol. 3, September 1994, pp
301-302. :

[7] Kataoka, T. et al., Multilingual 1/0 and Text Manip-
ulation System (3): Extracting the Essential Infor-
mations from World’s Writing Scripts for Designing
TMC and for the Generalizing Text Manipulation,
Proceedings of the 49th General Meeting of IPSJ,
Vol. 3, September 1994, pp 303-304.

[8] Kataoka, Y. et al., A model for Input and Output of
Multilingual text in a windowing environment,
ACM Transactions on Information Systems, Vol.
10, No. 4, October 1992, pp 438-451.

[9] ISO/IEC 9945-1: 1990, Information technology —
Portable Operating System Interface (POSIX) Part
1: System Application Program Interface (API) [C
Language].

[10] Kataoka, Y. et al., A model for Input and Output of
Multilingual text in a windowing environment,
ACM UIST'91 November 11-13, pp 175-183.

[11] ISO/IEC 2022: 1986, Information processing —
7-bit and 8-bit coded character sets ~ Code exten-
sion techniques.

[12] ISO/TEC 6429: 1992, Information processing -
Control functions for coded character sets.

[13] IS 13194:1991, Indian Script Code for Information
%merchange - ISCII, Bureau of Indian Standards,
ndia.

[14] TIS 620-2533 (1990), Thai Character Codes for
Computers, Thai Industrial Standards Institute,
Ministry of Industry, Thailand.



