BRI FESE CPR 7 FERY) 2EAR

1-93

Object-Based Causality in Group Communication *

2E—4

Takayuki Tachikawa and Makoto Takizawa !
Tokyo Denki University ?

e-mail{tachi,taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications like teleconferences are
composed of multiple objects. Objects support op-
erations for manipulating the states of the objects. A
group is a collection of multiple application objects.
After the group is established, messages sent by each
object are delivered to the destinations in the group.

We have to find the significant precedence rela-
tion among messages from the application point of
view. The computation on objects is based on the
remote procedure call (RPC). The compatibility rela-
tion among the operations is defined for each object
based on the semantics of the object. The responses
of operations like read and the requests of operations
like write carry data from the sender object to the
receivers, The causal significant relation among the
messages is defined by the compatibility relation and
the information flow relation. In this paper, we would
like to discuss what is the causally ordered delivery of
message at the application level.

In section 2, we present the system model. In section
3, we discuss how to realize the application-oriented
causal order.

2 System Model
2.1 System structure

The distributed computation is composed of com-
putation of operations in the objects and communi-
cations among the objects. An object o is defined to
be a pair of data D, and a collection P, of abstract
operations for manipulating D,. On receipt of a re-
quest of op in P,, o computes op and sends back the
response. op may change D,. A group G is defined to
be a collection of multiple ob_)ects 01, ..., 0n (n > 2).
The objects in G are cooperated with each other by
sending requests and receiving responses.
2.2 Computation model

An object o; sends o3 a request m; to compute an
operation op,. On receipt of m,; semt by 01, 03 com-
putes op, of m, if o; supports op,. Here, 0; and o, are
the sender and receiver of my, respectively. On com-
pletion of op;, 02 sends the response message back to
01. Thus, there are two kinds of messages, i.e. re-
quests and responses. The request message m; sent
by o, carries op; and input data in,, i.e. m; = { opy,
iny) to 0z. If iny # ¢, information in o, is flown into
0,. The résponse my of m; carries the output data of
opy, i.e. my = { outy). Ifout; # ¢, information in
0z is flown into oy. If oy issues a request m3z = (opz,
ing) after receiving my which has data, ms may for-
ward the information carried by mg, i.e. m3 is causally
effected by ma.
2.3 Conflict operations

For every operation op and state s of o, let op(s)
denote a state obtained by applying op to s.
[Deﬁmtlon] For every state s of the object o, two
operations op; and op, supported by o are compatible

iff opy(0p,(s)) = opy(opy(s)). O
CIA—-TRBECBTEF T2 P RESRREMER
Yyl &7 ¥R B
SR

Two operations op, and op, conflict iff they are not
compatible. Suppose that op, is currently being com-
puted in o and then op, is issued to o. If op, and op,
are compatible, op, can be computed.

Here, suppose that o; sends m; = { op1, ing) to o;
and oy sends my = (ops, iny) to o;. Suppose that o;
computes op; after op; completes. If in; # ¢ and op,
changes the state of o;, the information is flown from o;
to o;. op, is computed and then o; sends the response
mgz = (outy) to ox. Here, if op; and op; conflict and
outy # ¢, ma may mclude some information carried
by mi, i.e. my causally effects ms.

2.4 Instantiation of operation

Each time o receives op, a thread for computing op
is created if op is compatible with all operations being
computed or being waited in the ready queue RQ,. If
not, op is enqueued into RQ,. If op completes, the
response is sent to the sender object of op and the
thread is removed. Each thread for op is computed
sequentially, i.e. a sequence of actions. The action is
an atomic primitive operation in the object. The com-
putation of op is instance of op in 0. The computation
of op is considered to be atomic by the sender of op,.

3 Message Precedence
3.1 Message types
If a message m carries in of the request and out of
the response, information in the sender of m is flown
into the receiver. Hence, it is important to consider
whether the messages carry data or not. The second
point is concerned with whether the operation changes
the state of the object or not. The request m = (op,
in) is typed as af-request where a is S if op changes
the state of the object, N otherwise, and 8 is I if in
¢, N otherwise. The response m = { out) is typed
as v-response where v is O if out # ¢, N otherwise.
3.2 Message precedence in object
3.2.1 Send-send precedence
For m; and m; sent by o;, there are the following
cases [Figure 1]:
C1. my and m; are sent by the same instance op}.
C2. m; and my are sent by different instances op}
" and op}, respectively:
C2.1. op = op.
C2.2. op} and op} are interleaved.
In C1, m; precedes my in o; (mq <; my). In C2, if
my and m; carry no data, my ||; mz . Here, my || m2
means that neither m; <; my nor my < my. If my
or my carries data, the information is flown out from
. In C2.1,if op1 and opy conﬂxct in o; and my or m,
carries data, m; <; mg if op1 = op2 Because the data
carried by m; or m; depend on the computation order
of op} and op}. Table 1 shows the precedence relation
in C2.1 where O means “my <; my" if op} and op}
conflict and - means “m; || m2”. In C2.2, m, ||; m,.

3.2.2 Receive-send precedence

Next, suppose that o; sends m, after receiving m;.
There are the same cases as C1 and C2 [Figure 2]. If
my is the response without data, i.e. N-response, m;

1 —94

0¢ 0; 04
op} op} °P} ,
my ™m op2
my
m2
Op; ma
m2
timeY timeY timeY
C1 C2.1 C2.2

Figure 1: Send-send precedence

[mi\mz [BIN]NSTNN] O[N]

5 _JO]-TO[-10]L-
IN S N
NS Ol -1TO] -T1TOT-
IN - T - - T-1-
O - - - - - -
N . = = . N R

Table 1: Send - send (C2.1)

|| mz2. Here, suppose that m, is the request of op}
or O-response. In Cl, if m; does not include data,
my |li mz. Hence, m; <; my if my is O-response, or
m; is the request of op}, and m; includes data or the
response of op}. Table 2 shows “<;” for C1. A shows
that m; <; m; if m; is the request of opi and m; is
the response of op}. In C2.1, if op} and op} conflict in
o; and m; carries data, the ‘data carried by m; may
be derived from the data changed by op}. Here, if m,
is the request of op! or O-response, m; ~; m; if op}
and op} conflict and m; carries data. Table 3 shows
I‘I‘<,-” for C2.1 where op} and op‘2 conflict. In C2.2, m,
i ma.

0; 0 oy
{ i i

my op} m oP1 o, OPL .

\ \ Opz

ma
ap; m2
m2
time 47 timeV timeY
C1 C2.1 C2.2

Figure 2: Receive-send precedence
3.2.3 Receive-receive precedence

Suppose that o; sends m; after receiving m, and o,
receives m, and m;. Here, suppose that my <; my.
Problem is in which order o, has to receive m; and
mg. There are the following cases :

M1. m,; and m; are requests.

M2. m, is a request and m; is a response.
Ma3. m, is a response and m; is a request.
M4. m,; and m; are responses.

éag m, and m; are received by the instance opf.

b) m; and m; are received by different instances
op? and op%, respectively.

For (a), only M2 and M4 can be considered. Here, m,

< M3.

[m\m; [ISTINJNRS[NN T O

N |
I QIOTOT - TOTA
IN Q1O - - 1O1A
NS O[-T1TOT - TATA
IN - |- - - |ATA
o JOlOl - [- 10[-
N T " - T

Table 2: Receive - send (C1)

{mi\m; [ISTINTNSTNNTO [N
5 JOTOTO[- [0
IN - - - - - -
NS Ol - 1O1 - 10T~
IN - - = - - Z
o) . - " -
N T ~ . P

Table 3: Receive - send (C2.1)

Next, let us consider (b). In M1, m; is the request
of op* and m; is the request of op. If op* and opk
conflict in o, op} => op%. Here, m; <) m,. Otherwise,
my e ma.

In M2, m, is a request of opf. If op§ and op% conflict
in o, opt = op%. Hence, m; < my. If not conflict,
my ke ™Ma2.

In M3, m; is a request of opk. Like M2, m; <3 my
if op* and op% conflict. Otherwise, m, llx ma.

In M4, the responses m, and m; are received by op'le
and op¥, respectively. Unless op¥ and op¥ conflict, m;
{le m2. Suppose that op? and op% conflict in 0. If m,
and m; are N-responses, m; || m,. If not, my <
may. This requires that op? = opk. However, if opt
starts before op} and waits for my, opt has to wait
indefinitely because m, is delivered to o after m,. In
this case, op% has to be aborted by the time out or
deadlock resolution mechanism.

3.3 Message precedence among objects

Suppose that o, sends m; to o;, 0;, and o, and o
sends m; to o, o;, and o0;. o; and o; receive both m;
and m,. Problem s in which order o; and o; receive my
and mg. In M1, suppose that m; and m; are requests
of op; and op;, respectively. The common destinations
o; and o; receive m; and my. If op} and op} conflict
in o0;, and op] and op)} conflict in o;, then op} = op}
iff op] => opj to realize the serializability.

4 Concluding Remarks

In this paper, we have discussed how to support the
causally ordered delivery of messages from the appli-
cation point of view. Based on the compatibility rela-

tion among the operations, the significant causal order
is decided.
References
(1] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[2] Tachikawa, T. and Takizawa, M., “Selective Total
Ordering Broadcast Protocol,” Proc. of the 2nd
IEEE ICNP, 1994, pp.212—219.

