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1. Introduction

We shall present here a new scale of complex-
ity of Boolean functions. This measure is based
upon information entropy, and thus will be called
information complexity. In fact, our definition of
information complexity will be given in terms of
‘conditional mutual information.” Although we
restrict ourselves to the complexity of Boolean
functions, information complexity is also appli-
cable to the investigation on the complexity of
any type of functions. Being defined in terms
of information entropy, it can be considered as
an ultimate scale of complexity of functions over
probabilistic variables. As a specific application,
we shall be involved in evaluating the complex-
ity of arithmetic operations on computers. An
arithmetic operation between two n-bit numbers
can be regarded as a collection of n-Boolean func-
tions having 2n-input Boolean variables. Com-
plexity of arithmetic operations can thus be de-
rived from that of Boolean functions. We shall
here clarify the necessity of introducing this new
scale of complexity of Boolean functions, illus-
trate the essential idea on information complex-
ity, and make some remarks upon representation
systems of numbers on which arithmetic opera-
tions are defined -

2. Information Complexity

A widely used measure scaling the complex-
ity of a Boolean function is that by means of
the minimum size of (logical) circuits comput-
ing it: circuit complexity. This tradition origi-
nated from Shannon. In recent literatures, the
circuit complexity of Boolean functions has been
investigated extensively in relation to algorith-
mic complexity. However, we do not adopt this
measure for our study of complexity. The reason
is threefold. First, it depends on a specific se-

lection of a-logical basis for the construction of
circuits. Second, there is (has not been given) no
criteria to choose, so-called, ‘universal’ basis for
the investigation of inherent nature of Boolean
functions. Third, even if we fix a logical basis, it
is known to be difficult in general to determine
the actual minimum size of a circuit to compute a
specific function; it is indeed true that there have
been several reports devoting themselves to the
circuit complexities of arithmetic functions and
some of them has succeeded to give lower bounds
of circuit complexity, though. Thus, we need a (-n
easily computable, if possible) scale of complex-
ity inherent in each Boolean function. Shannon
has also made another suggestion in this respect:
information entropy. Inspired by the concept of
information entropy, we shall introduce informa-
tion complexity as for the measure of complex-
ity of Boolean functions; it may be considered
as a natural characterization intrinsic to each
Boolean function.

We outline the essential idea on information
complexity here. For a Boolean function f having
an input variable z, the information complexity
of f concerning z is to be defined depending upon
the degree of the information on z included in
f, or, put equivalently, upon the degree of the
dependency of f on z. Thus, for example, the
information complexity of ‘f = z’ concerning z
is 1, while that of ‘f = TRUE’ is 0. Notice here
that it is not so immediate to conclude the former
complexity to be 1. In the discussion above, we in
fact assume implicitly that z has a value from one
of the two alternatives, TRUE or FALSE, and each
has an equal probability of occurrence. Hence,
the entropy of this probability distribution is to
be given by h(1/2) = 1, where

h(p) = —plog, p ~ (1 — p)log,(1 fp)
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is the entropy in the case of two possibilities with
probabilities p and 1—p. For a different probabil-
ity distribution, the complexity of ‘f = z’ giveh
above has a value other than 1 accordingly. Ob-
serve that 1 is the maximum value of entropy
that provability distributions of two possibilities
can attain. Then, consider the next example such
that ‘f = z ANDy.” In this case, x has full infor-
mation on f if ‘y = TRUE, whereas no informa-
tion if ‘y = FALSE.’ Thus, the information com-
plexity of ‘f = z ANDy’ concerning z must be
(14+0)/2 = 1/2. Let the ‘total’ information com-
plexity of a given Boolean function be the sum of
information complexities concerning each vari-
able. Thereby, for ‘f = z ANDy, it is given by
(1/2) + (1/2) = 1. Here, the simple summation
regarding to z and y is to be justified because
both input variables are mutually independent.

3. Complexity Analysis

We shall utilize the power of information
complexity for analyzing the complexity of Boolean
functions in order to evaluate quantitatively the
degree of complexity of arithmetic operations on
computers. We here comment on representa-
tion systems of numbers on which arithmetic op-
erations are defined. Widely used representa-
tion systems of real numbers at present, such as
IEEE standard, are based upon a floating-point
expression and allocate a fixed number of bits
for representing an exponent field. Defining a
real-number representation system can be con-
sidered as a problem to scatter a fixed number
of points onto the real-number line. To optimize
the distribution of these finite number of points,
several proposals have been made with variable-
length representation of an exponent field nec-
essarily employed. Among them, two notable
and successful ones are the Hamada’s system
(URR, as he calls) and its extension by Yokoo, and
level-index system developed by Clenshaw, Olver,
Turner and their colleagues. Recently, through
the investigation on properties of these represen-
tation systems, Akinari and Hagiwara [1] have
reached the conclusion that recommended is one

of the extensions of the Hamada’s system, that
is, Hy(z) system, in their notation. By adopt-

- ing double exponentation, the Hamada’s orig-

inal system, H;(z) system, in the same nota-
tion, has succeeded to embrace the specification
of the bit length of an exponent field into the
field itself gracefully. While it is possible to re-
duce the bit length of an exponent field about
half by the use of ‘triple’ exponentation (Hy(z)
system), the reduction cannot be sharpened fur-
ther by the additional multiplication in exponen-
tation (H;(z) systems for i = 3,4,5,...). On
the other hand, the H:(z) system can be re-
garded as one of the variants of level-index sys-
tem with maximal level being 2. Owing to the
fact that the original level-index system adopts
base e for exponentation and thus employs ‘man-
tissa’ rather than ‘fraction,” even small integers,
such as 2 or 3, cannot be exact in level-index
system. Thus, the H(z) system holds a special
position among real-number representation sys-
tems having a variable-length exponent field. As
an inevitable consequence of its elegance in rep-
resentation, the arithmetic operations of Hy(z)-
system numbers, however, are expected to be
harder than, for example, that of IEEE-standard
numbers or of integers. Our original motivation

.of this study has in fact been to evaluate the

degree of this difficulty in arithmetics of Hz(z)-
system numbers quantitatively. Having thus in-
troduced information complexity for this purpose,
we have, however, reached the conclusion op-
posing the expectation; that is, the arithmetic
manipulation of Hy(z)-system numbers is not
complex at all as compared even with integer
addition. Moreover, the arrangement of integer
arithmetics such as addition, multiplication, and
division has been found to be in order not of sim-
plicity, but of complexity.
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